Thoughts on Memory

Prof. Bruce Jacob

Keystone Professor & Director of Computer Engineering Program Electrical & Computer Engineering
University of Maryland at College Park

How it is represented

```
if (cache_miss(addr)) {
   cycle_count += DRAM_LATENCY;
}
```

even in simulators with "cycle accurate" memory systems—no lie

Problem: Capacity

Problem: Capacity

JEDEC DDRx ~10W/DIMM, ~20W total

FB-DIMM ~10W/DIMM, ~300W total

Problem: Bandwidth

- Like capacity, primarily a power and heat issue: can get more BW by adding busses, but they need to be narrow & thus fast.
 Fast = hot.
- Required BW per core is roughly 1 GB/s, and cores per chip is increasing
- Graph: Thread-based load (SPECjbb), memory set to 52GB/s sustained ... cf. 32-core Sun Niagara: saturates at 25.6 GB/s

Problem: Bandwidth

Sometimes bandwidth is everything ...

Problem: TLB Reach

- Doesn't scale at all (still small and not upgradeable)
- Currently accounts for 20+% of system overhead
- Higher associativity (which offsets the TLB's small size) can create a power issue
- The TLB's "reach" is actually much worse than it looks, because of different access granularities

Trend: Disk, Flash, and other NV

- Flash is currently eating Disk's lunch
- PCM is expected to eat Flash's lunch

Obvious Conclusions I

 Want capacity without sacrificing bandwidth

 Need a new memory system architecture

 This is coming (details will change, of course)

Obvious Conclusions II

- Flash/NV is inexpensive, is fast (rel. to disk), and has better capacity roadmap than DRAM
- Make it a first-class citizen in the memory hierarchy
- Access it via load/store interface, use DRAM to buffer writes, software management
- Probably reduces capacity pressure on DRAM system

Obvious Conclusions II

- Flash/NV is inexpensive, is fast (rel. to disk), and has better capacity roadmap than DRAM
- Make it a first-class citizen in the memory hierarchy
- Access it via load/store interface, use DRAM to buffer writes, software management
- Probably reduces capacity pressure on DRAM system

Obvious Conclusions III

- Reduce translation overhead (both in performance and in power)
- Need an OS/arch redesign
- Revisit superpages, multi-level TLBs
- Revisit SASOS concepts,
 location of translation point/s
- Probably most suited for the high-end, at least initially

Acknowledgements & Shameless Plugs

- Much of this has appeared previously in our books, papers, etc.
 - The Memory System (You Can't Avoid It; You Can't Ignore It; You Can't Fake It). B. Jacob, with contributions by S. Srinivasan and D. T. Wang. ISBN 978-1598295870. Morgan & Claypool Publishers: San Rafael CA, 2009.
 - Memory Systems: Cache, DRAM, Disk. B. Jacob, S. Ng, and D. Wang, with contributions by S. Rodriguez. ISBN 978-0123797513. Morgan Kaufmann: San Francisco CA, 2007.
- Support from Intel, DoD, DOE, Sandia National Lab, Micron, Cypress Semiconductor

The Memory System

You Can't Avoid It, You Can't Ignore It, You Can't Fake It

Questions?

(thank you for your kind indulgence)

Prof. Bruce Jacob

Keystone Professor & Director of Computer Engineering Program Electrical & Computer Engineering
University of Maryland at College Park

blj@umd.edu www.ece.umd.edu/~blj

... or just google "bruce jacob"

