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ENEE 446: Digital Computer Design — IBM 360/91’s Out-of-Order Fixed-Point Pipe

1

This is a guess (my guess) as to the implementation of the out-of-order instruction issue and
commit mechanism in IBM’s System/360 Model 91, fixed-point pipeline. The guess is based on
the text and figures 2, 3, 6 and 7 in the article “The IBM System/360 Model 91: Machine
Philosophy and Instruction-Handling” by Anderson, Sparacio, and Tomasulo.

The fundamental problem is this: how does the system know when a given instruction may write
to the general-purpose register file? The pipeline has in-order enqueue, out-of-order execution and
completion, and it synchronizes through the register file: instructions reading their operands from
the register file do not obtain them from forwarding paths. The pipeline enforces coherent writing
to the register file by scheduling when instructions that would otherwise cause a write-after-write
hazard are allowed access to the register file. The article mentions that each instruction that writes
to a GPR increments a counter associated with that register during decode and decrements that
counter at the time of register file update, and the article says that no instruction may read an
operand from a GPR unless its associated counter has returned to zero. What is missing is the
mechanism by which an instruction knows that it is its turn to write its result into the GPR.

The paper does not give a detailed diagram of the fixed-point pipeline ... the diagrams are a bit
simple, but this is probably enough detail (taken from figure 2):

For comparison, here is the floating-point pipeline, taken from figure 3:

We’ll assume for the moment that the fixed-point pipeline is similar to the floating-point pipeline,
as is suggested by the general flow shown in figure 2. Here is the behavior of four instructions in
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DRAM Read Timing
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Consequence: Due to buffering & reordering at 
multiple levels, the average latency is typically 
much higher than the minimum latency



TO COME



Move from concurrency via pipelining 
to concurrency via parallelism
(mirrors recent developments in CPU design)



Problem: Capacity



Problem: Bandwidth

• Like capacity, primarily a power 
and heat issue: can get more 
BW by adding busses, but they 
need to be narrow & thus fast. 
Fast = hot. 

• Required BW per core is 
roughly 1 GB/s, and cores per 
chip is increasing

• Graph: Thread-based load 
(SPECjbb), memory set to 
52GB/s sustained 
… cf. 32-core Sun Niagara: 
saturates at 25.6 GB/s



Problem: TLB Reach

• Doesn’t scale at all (still small 
and not upgradeable)

• Currently accounts for 20+%
of system overhead

• Higher associativity (which 
offsets the TLB’s small size) 
can create a power issue

• The TLB’s “reach” is actually 
much worse than it looks,
because of different
access granularities
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Trend: Disk, Flash, and other NV

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about 
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about 
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Magnet structure of

voice coil motor

Spindle & Motor

Disk

Actuator

Flash

Memory Arrays

Load / Unload

Mechanism

(a) HDD (b) SSD

• Flash is currently eating Disk’s lunch

• PCM is expected to eat Flash’s lunch



Obvious Conclusions I

• A new take on superpages that might overcome previous barriers
• A new cache design that enables very large L1 caches
• A virtual memory system for modern capacities

!ese are ideas that have been in development in our research group over the past 5–6 years. 
Fully Bu!ered DIMM, take 2 (aka “BOB”)

In the near term, the desired solution for the DRAM system is one that allows existing 
commodity DDRx DIMMs to be used, one that supports 100 DIMMs per CPU socket at a bare 
minimum, and one that does not require active heartbeats to keep its channels alive—i.e., it 

What Every CS/CE Needs to Know about the Memory System — Bruce Jacob, U. Maryland
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CPU (e.g. multicore)

MC MC MC

Master Memory Controller

MC MC MC

Figure X. A DRAM-system organization to solve the capacity & power problems

Fast, wide channel Fast, narrow channels

Slow, wide channel

• Want capacity without 
sacrificing bandwidth

• Need a new memory 
system architecture 

• This is coming
(details will change,
of course)



Obvious Conclusions II

• Flash/NV is inexpensive, is fast 
(rel. to disk), and has better 
capacity roadmap than DRAM

• Make it a first-class citizen in 
the memory hierarchy

• Access it via load/store 
interface, use DRAM to buffer 
writes, software management

• Probably reduces capacity 
pressure on DRAM system

$CPU
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Obvious Conclusions III

• Reduce translation overhead 
(both in performance & power)

• Need an OS/arch redesign

• Revisit superpages,
multi-level TLBs

• Revisit SASOS concepts,
*location of translation point/s* 
(i.e., PGAS)

• Arguably a good programming 
model for CMP

Chapter 31 VIRTUAL MEMORY 899

pages to physical pages is one-to-one, there are no 
virtual cache synonym problems.

When the synonym problem is eliminated, there is 
no longer a need to fl ush a virtual cache or a TLB for 
consistency reasons. The only time fl ushing is required 
is when virtual segments are remapped to new physi-
cal pages, such as when the operating system runs 
out of unused segment identifi ers and needs to reuse 
old ones. If there is any data left in the caches or TLB 
tagged by the old virtual address, data inconsistencies 
can occur. Direct Memory Access (DMA) also requires 
fl ushing of the affected region before a transaction, as 
an I/O controller does not know whether the data it 
overwrites is currently in a virtual cache.

The issue becomes one of segment granularity. If 
segments represent the granularity of sharing and data 
placement within an address space (but not the gran-
ularity of data movement between memory and disk), 
then segments must be numerous and small. They 
should still be larger than the L1 cache to keep the criti-
cal path between address generation and cache access 
clear. Therefore, the address space should be divided 
into a large number of small segments, for instance, 
1024 4-MB segments, 4096 1-MB segments, etc. 

Disjunct Page Table
Figure 31.15 illustrates an example mechanism. The 

segmentation granularity is 4 MB. The 4-GB address 
space is divided into 1024 segments. This simplifi es 

the design and should make the discussion clear. 
A 4-byte PTE can map a 4-KB page, which can, in turn, 
map an entire 4-MB segment. The “disjunct” page 
table organization uses a single global table to map 
the entire 52-bit segmented virtual-address space yet 
gives each process-address space its own addressing 
scope. Any single process is mapped onto 4 GB of this 
global space, and so it requires 4 MB of the global table 
at any given moment (this is easily modifi ed to sup-
port MIPS-style addressing in which the user process 
owns only half the 4 GB [Kane & Heinrich 1992]). The 
page table organization is pictured in Figure 31.16. It 
shows the global table as a 4-TB linear structure at the 
top of the global virtual-address space, composed of 
230 4-KB PTE pages that each map a 4-MB segment. If 
each user process has a 4-MB address space, the user 
space can be mapped by 1024 PTE pages in the global 
page table. These 1024 PTE pages make up a user 
page table, a disjunct set of virtual pages at the top 
of the global address space. These 1024 pages can be 
mapped by 1024 PTEs—a collective structure small 
enough to wire down in physical memory for every 
running process (4 KB, if each is 4 bytes). This struc-
ture is termed the per-user root page table in Figure 
31.16. In addition, there must be a table for every pro-
cess containing 1024 segment IDs and per-segment 
protection information. 

Global Virtual Space 

Process A Process B Process C 

Physical Memory

NULL
(segment only
partially-used)

Paged
Segment 

FIGURE 31.14: The use of segments to provide virtual-address 
aliasing.

TLB and
Page Table 

32-bit Effective Address

Segno (10 bits) Segment & Page Offsets (22 bits)

Segment Registers

Segment & Page Offsets (22 bits)Segment ID (30 bits)

52-bit Virtual Address 

Cache

FIGURE 31.15: Segmentation mechanism used in discussion.
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TLB & Page Table

Segment Registers (16)

Segment Offset

32-bit Effective Address

Seg#

Segment OffsetSegment ID

52-bit Virtual
Address  

Page Offset

32-bit Physical Address

Page Frame Number

FIGURE 31.13: The PowerPC segmentation mechanism. Seg-
mentation extends a 32-bit user address into a 52-bit global 
address. The global address can be used to index the caches.

is that the Pentium’s global space is no larger than an 
individual user-level address space, and there is no 
mechanism to prevent different segments from over-
lapping one another in the global 4-GB space. 

In contrast, the IBM 801 [Chang & Mergen 1988] 
 introduced a fi xed-size segmented architecture that 
continued through to the POWER and PowerPC archi-
tectures [IBM & Motorola 1993, May et al. 1994, Weiss & 
Smith 1994], shown in Figure 31.13. The PowerPC mem-
ory-management design maps user addresses onto a 
global fl at address space much larger than each per-
process address space. It is this extended virtual address 
space that is mapped by the TLBs and page table. 

Segmented architectures need not use address- 
space identifi ers; address space protection is 
 guaranteed by the segmentation mechanism.4 If two 

processes have the same segment identifi er, they 
share that virtual segment by defi nition. Similarly, if 
a process has a given segment identifi er in several 
of its segment registers, it has mapped the segment 
into its address space at multiple locations. The 
operating system can enforce inter-process protec-
tion by disallowing shared segment identifi ers, or it 
can share memory between processes by overlap-
ping segment identifi ers.

The “Virtue” of Segmentation
One obvious solution to the synonym and shared 

memory problems is to use global naming, as in 
a SASOS implementation, so that every physical 
address corresponds to exactly one virtual location. 
This eliminates redundancy of PTEs for any given 
physical page, with signifi cant performance and 
space savings. However, it does not allow processes to 
map objects at multiple locations within their address 
spaces; all processes must use the same name for the 
same data, which can create headaches for an oper-
ating system, as described earlier in “Perspective on 
Aliasing.”

A segmented architecture avoids this problem; seg-
mentation divides virtual aliasing and the synonym 
problem into two orthogonal issues. A one-to-one 
mapping from global space to physical space can be 
maintained—thereby eliminating the synonym prob-
lem—while supporting virtual aliases by indepen-
dently mapping segments in process-address spaces 
onto segments in the global space. Such an organiza-
tion is illustrated in Figure 31.14. In the fi gure, three 
processes share two different segments and have 
mapped the segments into arbitrary segment slots. 
Two of the processes have mapped the same segment 
at multiple locations in their address spaces. The 
page table maps the segments onto physical memory 
at the granularity of pages. If the mapping of global 

4Page-level protection is a different thing entirely. Whereas address space protection is intended to keep processes from 
accessing each other’s data, page-level protection is intended to protect pages from misuse. For instance, page-level 
protection keeps processes from writing to text pages by marking them read-only, etc. Page-level protection is typically 
supported through a TLB, but could be supported on a larger granularity through the segmentation mechanism. However, 
there is nothing intrinsic to segments that provide page-level protection, whereas address space protection is intrinsic to 
their nature.
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Problem: We don’t understand it very well



How it is represented

if (cache_miss(addr)) {

   cycle_count += DRAM_LATENCY;

 }

even in simulators with “cycle accurate” memory systems—no lie



Problem: Capacity

MC MC

JEDEC DDRx
~10W/DIMM, ~20W total

FB-DIMM
~10W/DIMM, ~300W total



The BlackWidow system has a number of innovative attributes,

including:

• scalable address translation that allows all of physical mem-

ory to be mapped simultaneously,

• load buffers to provide abundant concurrency for global

memory references,

• decoupled vector load-store and execution units, allowing

dynamic tolerance of memory latency,

• decoupled vector and scalar execution units, allowing run-

ahead scalar execution with efficient scalar-vector synchro-

nization primitives,

• vector atomic memory operations (AMOs) with a small

cache co-located with each memory bank for efficient read-

modify-write operations to main memory,

• a highly banked cache hierarchy with hashing to avoid stride

sensitivity,

• a high-bandwidth memory system optimized for good effi-

ciency on small granularity accesses, and

• a cache coherence protocol optimized for migratory sharing

and efficient scaling to large system size, combined with a

relaxed memory consistency model with release and acquire

semantics to exploit concurrency of global memory refer-

ences.

In this paper, we present the architecture of the Cray Black-

Widow multiprocessor. As a starting point, we describe the node

organization, packaging and system topology in Section 2. We de-

scribe the BW processor microarchitecture in Section 3, the mem-

ory system in Section 4, and a number of reliability features in

Section 5. Section 6 presents preliminary performance results.

Section 7 highlights prior related work. Finally, Section 8 sum-

marizes the key attributes of the BlackWidow system architecture.

2 BlackWidow System Overview

The BlackWidow system is built upon four-processor SMP

nodes, interconnected with a high-radix folded-Clos (a.k.a. fat-

tree) network. This section describes the node organization, net-

work topology and physical packaging of the system.

2.1 Node Organization

Figure 1 shows a block diagram of a BlackWidow compute

node consisting of four BW processors, and 16 Weaver chips

with their associated DDR2 memory parts co-located on a mem-
ory daughter card (MDC). The processor to memory channels

between each BW chip and Weaver chip use a 4-bit wide 5.0

Gbaud serializer/deserializer (SerDes) for an aggregate channel

bandwidth of 16×2.5 Gbytes/s = 40 Gbytes/s per direction — 160

Gbytes/s per direction for each node.

The Weaver chips serve as pin expanders, converting a small

number of high-speed differential signals from the BW processors

into a large number of single-ended signals that interface to com-

modity DDR2 memory parts. Each Weaver chip manages four

DDR2 memory channels, each with a 40-bit-wide data/ECC path.

The 32-bit data path, coupled with the four-deep memory access

Figure 1. BlackWidow node organization.

bursts of DDR2, provides a minimum transfer granularity of only

16 bytes. Thus the BlackWidow memory daughter card has twice

the peak data bandwidth and four times the single-word bandwidth

of a standard 72-bit-wide DIMM. Each of the eight MDCs con-

tains 20 or 40 memory parts, providing up to 128 Gbytes of mem-

ory capacity per node using 1-Gbit memory parts.

2.2 Network Topology

To reduce the cost and the latency of the network, BlackWidow

uses a high-radix, folded-Clos topology, which is modified to per-

mit sidelinks amongst multiple peer subtrees. Deterministic rout-

ing is performed using a hash function to obliviously balance net-

work traffic while maintaining point-to-point ordering on a cache

line basis. A BlackWidow system of up to 1024 processors can

be constructed by connecting up to 32 rank 1 (R1) subtrees, each

with 32 processors, to rank 2 (R2) routers. A system with up to

4608 processors can be constructed by connecting up to nine 512-

processor R2 subtrees via side links. Up to 16K processors may be

connected by a rank 3 (R3) network where up to 32 512-processor

R2 subtrees are connected by R3 routers. Multiple R3 subtrees can

be interconnected using sidelinks to scale up to 32K processors.

The BlackWidow system topology and packaging scheme en-

ables very flexible provisioning of network bandwidth. For in-

stance, by only using a single rank 1 router module, instead of two

as shown in Figure 2(a), the port bandwidth of each processor is

reduced in half — halving both the cost of the network and its

global bandwidth. An additional bandwidth taper can be achieved

by connecting only a subset of the rank 1 to rank 2 network ca-

bles, reducing cabling cost and R2 router cost at the expense of

the bandwidth taper as shown by the
1
4 taper in Figure 2(b).

The YARC chip is a high-radix router
2

used in the network of

the Cray BlackWidow multiprocessor. Using YARC routers, each

with 64 3-bit wide ports, the BlackWidow scales up to 32K proces-

sors using a folded-Clos [4] topology with a worst-case diameter

2
Each YARC port has a peak data rate of 6.25 Gb/s in each direc-

tion, however, to tolerate longer network cables, we reduced the target

frequency to 5.0 Gb/s

Problem: Bandwidth

Sometimes bandwidth is everything ...

Cray Black Widow memory system


