ISC'10

New Memory & Storage Hierarchies for HPC – Opportunities & Challenges

Memory Systems Then, Now, and To Come

Prof.Dr. Bruce Jacob

Keystone Professor & Director of Computer Engineering Program Electrical & Computer Engineering
University of Maryland at College Park

THEN

IBM 360/91 Fixed-Point Pipe

NOW

DRAM Read Timing

Cost of access is high; requires significant effort to amortize this over the (increasingly short) payoff.

"Significant Effort"

[deep pipes, reordering]

Consequence: Due to buffering & reordering at multiple levels, the **average** latency is typically much higher than the **minimum** latency

TO COME

Move from concurrency via pipelining to concurrency via parallelism (mirrors recent developments in CPU design)

Problem: Capacity

Problem: Bandwidth

- Like capacity, primarily a power and heat issue: can get more BW by adding busses, but they need to be narrow & thus fast.
 Fast = hot.
- Required BW per core is roughly 1 GB/s, and cores per chip is increasing
- Graph: Thread-based load (SPECjbb), memory set to 52GB/s sustained ... cf. 32-core Sun Niagara: saturates at 25.6 GB/s

Problem: TLB Reach

- Doesn't scale at all (still small and not upgradeable)
- Currently accounts for 20+% of system overhead
- Higher associativity (which offsets the TLB's small size) can create a power issue
- The TLB's "reach" is actually much worse than it looks, because of different access granularities

Trend: Disk, Flash, and other NV

- Flash is currently eating Disk's lunch
- PCM is expected to eat Flash's lunch

Obvious Conclusions I

 Want capacity without sacrificing bandwidth

 Need a new memory system architecture

 This is coming (details will change, of course)

Obvious Conclusions II

- Flash/NV is inexpensive, is fast (rel. to disk), and has better capacity roadmap than DRAM
- Make it a first-class citizen in the memory hierarchy
- Access it via load/store interface, use DRAM to buffer writes, software management
- Probably reduces capacity pressure on DRAM system

Obvious Conclusions II

- Flash/NV is inexpensive, is fast (rel. to disk), and has better capacity roadmap than DRAM
- Make it a first-class citizen in the memory hierarchy
- Access it via load/store interface, use DRAM to buffer writes, software management
- Probably reduces capacity pressure on DRAM system

Obvious Conclusions III

- Reduce translation overhead (both in performance & power)
- Need an OS/arch redesign
- Revisit superpages, multi-level TLBs
- Revisit SASOS concepts,
 location of translation point/s
 (i.e., PGAS)
- Arguably a good programming model for CMP

Acknowledgements & Shameless Plugs

- Much of this has appeared previously in our books, papers, etc.
 - The Memory System (You Can't Avoid It; You Can't Ignore It; You Can't Fake It). B. Jacob, with contributions by S. Srinivasan and D. T. Wang. ISBN 978-1598295870. Morgan & Claypool Publishers: San Rafael CA, 2009.
 - Memory Systems: Cache, DRAM, Disk. B. Jacob, S. Ng, and D. Wang, with contributions by S. Rodriguez. ISBN 978-0123797513. Morgan Kaufmann: San Francisco CA, 2007.
- Support from Intel, DoD, DOE, Sandia National Lab, Micron, Cypress Semiconductor

The Memory System

You Can't Avoid It, You Can't Ignore It, You Can't Fake It

Acknowledgements & Shameless Plugs

- DRAMsim the world's most accurate (hardware-validated)
 DRAM-system simulator:
 - "DRAMsim: A memory-system simulator."
 D. Wang, B. Ganesh, N. Tuaycharoen,
 K. Baynes, A. Jaleel, and B. Jacob.
 SIGARCH Computer Architecture News,
 vol. 33, no. 4, pp. 100–107. September 2005.
- Version II now available at

www.ece.umd.edu/dramsim

ETC.

Problem: We don't understand it very well

How it is represented

```
if (cache_miss(addr)) {
   cycle_count += DRAM_LATENCY;
}
```

even in simulators with "cycle accurate" memory systems—no lie

Problem: Capacity

JEDEC DDRx ~10W/DIMM, ~20W total

FB-DIMM ~10W/DIMM, ~300W total

Problem: Bandwidth

Sometimes bandwidth is everything ...

