
Part II. Memory Systems



Today’s Story

• Cache 
(lots to be done in content management, especially at software/app level)

• DRAM
(the design space is huge, sparsely explored, poorly understood)

• Disk & Flash
(flash overtaking disk, very little has been published)

• For each, a quick look at some of the non-obvious issues



Perspective: Performance

$CPU~10 IPC

~0.001 IPC

~0.0000001 IPC

~0.1 IPC



Perspective: Power

$CPU~100 W

~10 W per DIMM

~10 W per Disk

~100–400W



CACHE
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Figure 1.1(c) shows another partitioned 
confi guration, one that is found in most DSP 
architectures. As we will discuss in more 
detail later, these caches are an extension of 
the memory space, and, unlike the previous 
two organizations, they are not transparent 
to software. The main item to note is that 
the two partitions both hold data. This con-
fi guration is desirable in DSPs because of 
the high data bandwidth required by many 
DSP algorithms (e.g., dot-product calcula-
tions such as fi nite impulse response [FIR] 
fi lters), which fetch two different data oper-
ands from memory on every cycle.
Figure 1.1(d) shows a typical cache hierar-
chy for a multiprocessor organization. Each 

•

•

 processor core has its own private cache, 
and the last-level cache before the backing 
store (DRAM) is shared by all cores.
Figure 1.1(e) shows two different types of 
caches. First, the operating system stores 
the blocks it has fetched from disk in main 
memory as part of a buffer cache. When an 
application reads and writes data from/to 
fi les on disk, those requests are not serviced 
by the disk directly but are instead serviced 
out of the buffer cache. In addition, modern 
disks implement their own caches as well; 
these caches are not under the control of 
the operating system, but instead operate 
autonomously. We discuss disk caches in 
more detail in Chapter 22.

•
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FIGURE 1.1: Examples of caches. The caches are divided into two main groups: solid-state caches (top), and those that are 
implemented by software mechanisms, typically storing the cached data in main memory (e.g., DRAM) or disk.
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Locality Principles

• Spatial

• Temporal

• Algorithmic

for each polygon P in scene { 
 for each pixel p in P { 
  if (depth of p at i,j < image[i,j].depth) { 
   image[i,j].color = p.color 
   image[i,j].depth = depth of p at i,j 
  } 
 } 
}



Locality Principles

• Spatial

• Temporal

• Algorithmic

for each polygon P in scene { 
 prefetch P.next
 for each pixel p in P { 
  if (depth of p at i,j < image[i,j].depth) { 
   image[i,j].color = p.color 
   image[i,j].depth = depth of p at i,j 
  } 
 } 
}



Logical Organization: Who and Where?
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is truly a small hardware database. A datum 
can be placed anywhere in the cache; the tag 
fi eld identifi es the data contents. A search 
checks the tag of every datum stored in the 
cache. If any one of the tags matches the tag 
of the requested address, it is a cache hit: the 
cache contains the requested data.

The benefi t of a direct-mapped cache is that it is 
extremely quick to search and dissipates relatively lit-
tle power, since there can only be one place that any 
particular datum can be found. However, this intro-
duces the possibility that several different data might 
need to reside in the cache at the same place, caus-
ing what is known as contention for the desired data 
entry. This results in poor performance, with entries 
in the cache being replaced frequently; these are con-
fl ict misses. The problem can be solved by using a 
fully associative cache, a design choice traditionally 
avoided due to its high dynamic power dissipation (in 
a typical lookup, every single tag is compared to the 
search tag). However, as dynamic power decreases 
in signifi cance relative to leakage power, this design 
choice will become more attractive.

Set-Associative Organization: As a compro-
mise between the two extremes, a set-asso-
ciative cache lies in between direct-mapped 
and fully associative designs and often reaps 

•

the benefi ts of both designs—fast lookup 
and lower contention. Figures 2.5 and 2.6 
illustrate two set-associative organizations. 
Figure 2.5 shows an implementation built 
of a small number of direct-mapped caches, 
typically used for low levels of set associativ-
ity, and Figure 2.6 shows an implementation 
built of a small number of content-address-
able memories, typically used for higher 
degrees of set associativity.

These are the basic choices of organization for 
transparently addressed caches. They are applicable 
to solid-state implementations (evident from the 
diagrams) as well as software implementations. For 
instance, an operating system’s buffer cache or distri-
buted memory system’s object cache could be imple-
mented as a large array of blocks, indexed by a hash of 
the block ID or object ID, which would correspond to 
a direct-mapped organization as in Figure 2.3; it could 
be implemented as a binary search tree, which would 
correspond to a fully associative organization, because 
the search tree is simply software’s way to “search all 
tags in parallel” as in Figure 2.4; or it could be imple-
mented as a set of equivalence classes, each of which 
maintains its own binary search tree, an arrangement 
that would correspond to a set-associative organiza-
tion as in Figure 2.6 (each row in the fi gure is a separate 
equivalence class). The last organization of software 
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FIGURE 2.5: Block diagram for an n-way 
set-associative cache. A set-associative 
cache can be made of several direct-
mapped caches operated in parallel. Note 
that data read-out is controlled by tag 
comparison with the TLB output as well 
as the block-valid bit (part of the tag or 
metadata entry) and the page permissions 
(part of the TLB entry). Note also that the 
cache column size is equal to the virtual 
memory page size (the cache index does 
not use bits from the VPN).

ch02_P379751.indd   Sec2:84ch02_P379751.indd   Sec2:84 8/7/07   11:24:25 AM8/7/07   11:24:25 AM



Logical Organization
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Figure 1.1(f) shows another cache maintained 
by the operating system. When a translation 
is needed from domain name to IP address, 
the operating system may or may not actually 
ask a DNS server directly. Translations may 
be cached locally to avoid network requests. 
Similarly, routing information for hosts and 
subnets is typically cached locally.
Figure 1.1(g) shows two different types of 
caches. First, each web browser typically 
maintains its own local cache of down-
loaded web documents. These documents 
are usually stored on the local disk and buff-
ered in main memory as part of the operat-
ing system’s buffer cache (Figure 1.1(e)). In 
addition, a request that is sent to a particu-
lar web server may or may not actually reach 
the web server. A web proxy, which behaves 
like the transparent caches in Figures 1.1(a), 
(b), and (d), may intercept the request and 
reply on behalf of the server [Luotonen & 
Altis 1994].

One of the most important distinctions between 
different types of cache is their method of address-
ing. Some caches do not hold a copy of a datum; 
they hold the datum itself. These are often called 
scratch-pad memory and use a separate namespace 
from the backing store (i.e., the primary memory). 
A scratch-pad is non-transparent in that a program 
addresses it explicitly. A datum is brought into 
the scratch-pad by an explicit move that does not 
destroy the original copy. Therefore, two equal ver-
sions of the data remain; there is no attempt by the 
hardware to keep the versions consistent (to ensure 
that they always have the same value) because the 
semantics of the mechanism suggest that the two 
copies are not, in fact, copies of the same datum, 
but are instead two independent data. If they are 
to remain consistent, it is up to software. By con-
trast, the typical general-purpose cache uses the 
same namespace as the primary memory system. 
It is transparent in that a program addresses main 

•

•

memory to access the cache—a program does not 
explicitly access the cache or even need to know 
that the cache exists. 

How each of these two mechanisms (transparent 
cache and scratch-pad memory) fi ts into the micropro-
cessor’s memory model is shown in Figure 1.2, using 
solid-state memories (processor caches and tagless 
SRAMs) for examples. A general-purpose memory model 
has a single namespace1 that is shared by all memory 
structures. Any datum from any part of the namespace 
can be found in any of the caches. By contrast, a scratch-
pad uses the namespace to directly address the caches. 
For instance, the DSP memory model shown on the 
right explicitly places the system’s memory structures at 
specifi c disjunct locations in the namespace. A particu-
lar address corresponds to a particular physical storage 
device, and unlike a transparently addressed cache, a 
single address in the scratch-pad’s namespace cannot 
refer to both a cached datum and its copy in the back-
ing store.

1Assumes physically indexed caches.
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FIGURE 1.2: Transparent caches in a uniform space versus 
scratch-pad SRAMs in a non-uniform space. Any datum in the 
memory space can also reside in a cache (thus the designation 
“transparent”). Only items in certain segments of the memory 
space can reside in a scratch-pad memory.
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• Major differentiator 
between caches: is it 
part of the explicitly 
addressable space?

• Secondly, who manages 
the movement of data 
to/from backing store? 
(cache itself, or app?)

transparent non-transparent
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Note that these mechanisms are not specifi c to 
explicit/implicit addressing or explicit/implicit man-
agement. Virtual caches, address-space identifi ers 
(ASIDs), and/or protection bits can all be used in any 
of the cache organizations described in this chapter. 

2.4.1 Virtual Caches
As mentioned earlier, a transparent cache is an 

implementation in which the stored object retains 
the same identifi er as is used to access it from the 
backing store. Virtual caches offer a slight twist on this 
idea. The backing store for a processor cache is usu-
ally taken to be main memory, physically addressed; 
therefore, one would expect all processor caches to 
use the physical address to identify a cached item. 
However, virtual memory offers a completely differ-
ent address for use, one which might be even more 
convenient to use than the physical address. Recall 
that on each cache access, the cache is indexed, and 
the tags are compared. For each of these actions, 

either the data block’s virtual address or the data 
block’s physical address may be used. Thus, we have 
four choices for cache organization.

Physically indexed, physically tagged: The 
cache is indexed and tagged by its physical 
address. Therefore, the virtual address must be 
translated before the cache can be accessed. The 
advantage of the design is that since the cache 
uses the same namespace as physical memory, 
it can be entirely controlled by hardware, and 
the operating system need not concern itself 
with managing the cache. The disadvantage 
is that address translation is in the critical 
path. This becomes a problem as clock speeds 
increase, as application data sets increase with 
increasing memory sizes, and as larger TLBs are 
needed to map the larger data sets (it is diffi cult 
and expensive to make a large TLB fast). Two 
 different physically indexed, physically tagged 
 organizations are illustrated in Figure 2.10. The 
difference between the two is that the second 
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FIGURE 2.10: Two physically indexed, physically tagged cache organizations. The cache organization on the right uses only bits from 
the page offset to index the cache, and so it is technically still a virtually indexed cache. The benefit of doing so is that its TLB  lookup is 
not in the critical path for cache indexing (as is the case in the organization on the left). The disadvantage is that the cache  index cannot 
grow, and so cache capacity can only grow by increasing the size of each cache block and/or increasing set associativity.
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Windows assumes physical cache (left)
to solve aliasing problem.
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locations in a cache, requiring careful cache manage-
ment to keep data inconsistencies from occurring. 

It becomes clear that this feature—shared mem-
ory—breaks the cache model of virtual memory. If 
a single datum is allowed to have several equivalent 
names, then it is possible for the datum to reside in 
a cache at multiple locations. This can easily cause 
inconsistencies, for example, when one writes val-
ues to two different locations that map to the same 
datum. It is for this reason that virtual memory is 
described as a mapping between two namespaces; 
one must remember this when dealing with virtual 
caches. As long as there is a one-to-one mapping 
between data and names, no inconsistencies can 
occur, and the entire virtual memory mechanism 
behaves no differently than a traditional cache hier-
archy. Thus, virtual caches can be used without fear 
of data inconsistencies. As soon as shared memory 
is introduced, the simple cache model becomes 
diffi cult to maintain, because it is very convenient 
for an operating system to allow one-to-many 
namespace mappings. However, as we will see in 
later chapters, there are many tricks one can play 
to keep the cache model and still support shared 
memory.

The Consistency Problem of Virtual Caches
A virtually indexed cache allows the processor 

to use the untranslated virtual address as an index. 
This removes the TLB from the critical path, allow-
ing shorter cycle times and/or a reduced number of 
pipeline stages. However, it introduces the possibil-
ity of data-consistency problems occurring when two 
processes write to the same physical location through 
different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This 
is called the virtual cache synonym problem [Good-
man 1987]. The problem is illustrated in Figure 4.2; 
a shared physical page maps to different locations 
in two different process-address spaces. The virtual 
cache is larger than a page, so the pages map to differ-
ent locations in the virtual cache. As far as the cache 
is concerned, these are two different pages, not two 

different views of the same page. Thus, if the two pro-
cesses write to the same page at the same time, using 
two different names, then two different values will be 
found in the cache.

Hardware Solutions The synonym problem has 
been solved in hardware using schemes such as dual 
tag sets [Goodman 1987] or back-pointers [Wang 
et al. 1989], but these require complex hardware and 
control logic that can impede high clock rates. One 
can also restrict the size of the cache to the page size 
or, in the case of set-associative caches, similarly 
restrict the size of each cache bin (the size of the cache 
divided by its associativity [Kessler & Hill 1992]) to the 
size of one page. This is illustrated in Figure 4.3; it is 
the solution used in many desktop processors such 
as various PowerPC and Pentium designs. The dis-
advantages are the limitation in cache size and the 
increased access time of a set-associative cache. For 
example, the Pentium and PowerPC architectures 

Address Space A 

BAddress Space B 

Physical
Memory

Virtual
Cache

FIGURE 4.2: The synonym problem of virtual caches. If two 
processes are allowed to map physical pages at arbitrary loca-
tions in their virtual-address spaces, inconsistencies can occur 
in a virtually indexed cache.
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must increase associativity to increase the size of 
their on-chip caches, and both architectures have 
used 8-way set-associative cache designs. Physically 
tagged caches guarantee consistency within a single 
cache set, but this only applies when the virtual syn-
onyms map to the same set.

Software Solutions Wheeler and Bershad describe 
a state-machine approach to reduce the number 
of cache fl ushes required to guarantee consistency 
[1992]. The mechanism allows a page to be mapped 
anywhere in an address space, and the operating sys-
tem maintains correct behavior with respect to cache 
aliasing. The aliasing problem can also be solved 
through policy, as shown in Figure 4.4. For example, 
the SPUR project disallowed virtual aliases altogether 
[Hill et al. 1986]. Similarly, OS/2 locates all shared 
segments at the same address in all processes  [Deitel 
1990]. This reduces the amount of virtual memory 
available to each process, whether the process uses 
the shared segments or not. However, it eliminates 
the aliasing problem entirely and allows pointers to 

be shared between address spaces. SunOS requires 
shared pages to be aligned on cache-size boundar-
ies [Hennessy & Patterson 1990], allowing physical 
pages to be mapped into address spaces at almost 
any location, but ensuring that virtual aliases align in 
the cache. Note that the SunOS scheme only solves 
the problem for direct-mapped virtual caches or 
set-associative virtual caches with physical tags; 
shared data can still exist in two different blocks of 
the same set in an associative, virtually indexed, vir-
tually tagged cache. Single address space operating 
systems such as Opal [Chase et al. 1992a, 1992b] or 
Psyche [Scott et al. 1988] solve the problem by elimi-
nating the concept of individual per-process address 
spaces entirely. Like OS/2, they defi ne a one-to-one 
correspondence of virtual to physical addresses and 
in doing so allow pointers to be freely shared across 
process boundaries. 

Combined Solutions Note that it is possible, using 
a segmented hardware architecture and an appropriate 
software organization, to solve the aliasing problem. 

Address Space A 

Address Space B 

Physical
Memory

Direct-Mapped
Virtual Cache

Set-Associative
Virtual Cache

(w/ physical tags)

OR

FIGURE 4.3: Simple hardware solutions to page aliasing. If the cache is no larger than the page size and direct-mapped, then no 
aliasing can occur. Set-associative caches can be used, provided they have physical tags.
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the aliasing problem common solutions



Content Management: What and When?

• On-line Heuristics
(operate at run time)

• Off-line Heuristics
(operate at design/compile time)

• Combined Heuristics
(both: e.g., profile-directed)

• Partitioning Heuristics
(what to cache & not to cache)

• Prefetching Heuristics
(when to cache it, perhaps early)

• Locality Optimizations
(rearranging of code & data)



Content Management: Some Examples

• On-line Partitioning: replacement strategies, victim caches

• Off-line Partitioning: scratch-pad management, sleep-mode analysis

• On-line Prefetching: stream buffers, dynamic predictors 

• Off-line Prefetching: software prefetching, jump pointers

• On-line Locality: garbage collection, page coloring, dynamic compression

• Off-line Locality: code- and data-packing algorithms, tiling/blocking
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cache. A variant hashes the process ID with 
the VPN fi rst to ensure that similar, com-
monly referenced address ranges in differ-
ent processes map to different ranges in the 
cache (e.g., the beginning of the code sec-
tion, the top of the stack, etc.).
Bin hopping: This uses a round-robin 
page assignment in which the operat-
ing system maintains for each process a 
separate pointer into the set of bin queues, 
facilitating the same separation of process-

•

address spaces as the hashed version of 
page coloring, above. For example, the fi rst 
virtual page mapped in address space UID 
is assigned to a page frame in bin number 
(last_bin[UID] ! rand()), meaning that the 
initial placement is random. The second 
is assigned to a page frame in bin number 
(""last_bin[UID]), meaning that the bin 
number is one greater than the previous. If 
no pages are available in the desired bin, the 
next sequential bin is chosen.

32KB Virtual Cache
(maps 8 4K pages)

4KB
region

of cache

40KB Region
of the process’s virtual address space

32KB Physical Cache
(maps 8 4K pages)

192KB Region
of physical memory

This mapping
is entirely OS-dependent
and can vary significantly
from run to run of application

FIGURE 3.17: How virtual mapping can negate page placement. A compiler’s page-placement heuristic ensures that objects 
used at the same time are placed in adjacent or non-conflicting locations, e.g., pages that do not map to the same region in a 
virtually indexed cache. This is shown on the left side of the Figure.  For objects that cannot be placed in adjacent locations, such 
as a block of code and the data on which it operates, the page-placement heuristic ensures that even if the objects map to the 
same region of the cache, they will not map to the same cache blocks (as shown on the left: two instances where two pages 
co-reside in the cache without conflict). However, when a physically indexed cache is used, the compiler’s efforts are completely 
undone, unless the kernel preserves contiguity of virtual data in the physical space (which it does not, in general, do). On the right 
is shown an arbitrary mapping of virtual pages to physical pages that results in numerous page and cache block conflicts that 
would not have occurred in a virtually indexed cache.
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Consistency Management

• Consistency with BACKING STORE

• Consistency with SELF

• Consistency with OTHERS



Consistency Management: BACKING STORE
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4.1.2 Delayed Write, Driven By the Cache
This policy delays writing the data to the backing 

store until later, where “later” is determined by the 
cache. There are some obvious triggers.

Confl ict-Driven Update
In this policy, the data written into the cache is 

written to the backing store when there is a cache 
confl ict with that block, i.e., data from a written block 
(i.e., a “dirty” block) is written to the backing store 
when another block of data is brought into the cache, 
displacing the dirty block. This is called the write-
back policy. 

There are some obvious benefi ts to using a write-
back policy. The main things are data coalescing 
and reduction of write traffi c, meaning that often-
times, an entire block of data will be overwritten, 
requiring multiple write operations (a cache block 
is usually much larger than the granularity of data 
that a load/store instruction handles). Coalescing 
the write data into a single transfer to the backing 
store is very benefi cial. In addition, studies have 
found that application behavior is such that writes 
to one location are frequently followed by more 

writes to the same location. So, if a location is going 
to be overwritten multiple times, one should not 
bother sending anything but the fi nal version to the 
backing store. 

Nonetheless, write-back causes problems in a 
multi-user scenario (e.g., multiprocessors). Some-
times you will want all of those little writes to the 
same location to be propagated to the rest of the sys-
tem so that the other processors can see your activ-
ity. One can either return to a write-through policy, 
or one can create additional update scenarios driven 
by the backing store, i.e., in the case that the data is 
needed by someone else. This is discussed briefl y in 
the next section and in more detail in Section 4.3.

Capacity-Driven Update
Note that there exist caches in which the concept of 

cache confl icts is hazy at best. Many software caches 
do not implement any organizational structure anal-
ogous to cache sets, and waiting to write data to the 
backing store until the cache is totally full (an event 
that would be analogous to a cache confl ict) may 
be waiting too late. Such a cache might instead use 
a capacity-driven update. In this sort of scenario, for 

Backing Store

Write Buffer/Cache

CPU
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CPU
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FIGURE 4.1: The use of write buffers and write caches in a write-through policy. (a) The write buffer or write cache is physi-
cally part of the cache, but logically part of the backing store. (b) Shows the implication as more caches become clients of the 
backing store.
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Consistency Management: SELF

the aliasing problem
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locations in a cache, requiring careful cache manage-
ment to keep data inconsistencies from occurring. 

It becomes clear that this feature—shared mem-
ory—breaks the cache model of virtual memory. If 
a single datum is allowed to have several equivalent 
names, then it is possible for the datum to reside in 
a cache at multiple locations. This can easily cause 
inconsistencies, for example, when one writes val-
ues to two different locations that map to the same 
datum. It is for this reason that virtual memory is 
described as a mapping between two namespaces; 
one must remember this when dealing with virtual 
caches. As long as there is a one-to-one mapping 
between data and names, no inconsistencies can 
occur, and the entire virtual memory mechanism 
behaves no differently than a traditional cache hier-
archy. Thus, virtual caches can be used without fear 
of data inconsistencies. As soon as shared memory 
is introduced, the simple cache model becomes 
diffi cult to maintain, because it is very convenient 
for an operating system to allow one-to-many 
namespace mappings. However, as we will see in 
later chapters, there are many tricks one can play 
to keep the cache model and still support shared 
memory.

The Consistency Problem of Virtual Caches
A virtually indexed cache allows the processor 

to use the untranslated virtual address as an index. 
This removes the TLB from the critical path, allow-
ing shorter cycle times and/or a reduced number of 
pipeline stages. However, it introduces the possibil-
ity of data-consistency problems occurring when two 
processes write to the same physical location through 
different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This 
is called the virtual cache synonym problem [Good-
man 1987]. The problem is illustrated in Figure 4.2; 
a shared physical page maps to different locations 
in two different process-address spaces. The virtual 
cache is larger than a page, so the pages map to differ-
ent locations in the virtual cache. As far as the cache 
is concerned, these are two different pages, not two 

different views of the same page. Thus, if the two pro-
cesses write to the same page at the same time, using 
two different names, then two different values will be 
found in the cache.

Hardware Solutions The synonym problem has 
been solved in hardware using schemes such as dual 
tag sets [Goodman 1987] or back-pointers [Wang 
et al. 1989], but these require complex hardware and 
control logic that can impede high clock rates. One 
can also restrict the size of the cache to the page size 
or, in the case of set-associative caches, similarly 
restrict the size of each cache bin (the size of the cache 
divided by its associativity [Kessler & Hill 1992]) to the 
size of one page. This is illustrated in Figure 4.3; it is 
the solution used in many desktop processors such 
as various PowerPC and Pentium designs. The dis-
advantages are the limitation in cache size and the 
increased access time of a set-associative cache. For 
example, the Pentium and PowerPC architectures 

Address Space A 

BAddress Space B 

Physical
Memory

Virtual
Cache

FIGURE 4.2: The synonym problem of virtual caches. If two 
processes are allowed to map physical pages at arbitrary loca-
tions in their virtual-address spaces, inconsistencies can occur 
in a virtually indexed cache.
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There is also an issue 
with ASIDs, which are 
used to distinguish the 
content that belongs to 
different processes. In 
general

# procs >> # ASIDS

… ergo constant 
remapping and reuse. 
Implication: the OS 
needs to be careful.



Consistency Management: OTHERS
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Scenario One
Figure 4.6 illustrates an example scenario.

Hardware device A transfers a block of data 
into memory (perhaps via a DMA [direct 
memory access] controller).
Software process B is A’s controller. It is a 
user-level process communicating with 
device A via a control link such as a serial 
port. 
Software process C is a consumer of the data 
and waits for B’s signal that the data is ready.

Though the scenario is contrived to have a (poten-
tial) race condition buried within it, this general 
structure is representative of many embedded sys-
tems in which software processes interact with hard-
ware devices. The specifi cs of the scenario are as 
follows: 

•

•

•

 1. B communicates to client processes via a 
synchronization variable called “ready” that 
indicates when a new block of data is valid 
in the memory system. At time 1, B sets 
this variable to the value 0 and initiates the 
transfer of data from hardware device A to 
the memory system. 

 2. When the data transfer is complete, the 
hardware device signals the controlling 
software process via some channel such as 
a device interrupt through the operating 
system, or perhaps the controlling soft-
ware must continuously poll the hardware 
device. Whatever the implementation, 
process B is aware that the data transfer has 
fi nished at time 2.

 3. At time 3, B updates the synchronization 
variable to refl ect the state of the data buf-
fer. It sets the variable to the value 1.

B

A

C

4K data buffer

1

2 B is signaled by A
(e.g., device interrupts the OS)

3 B updates synchronization After sync variable ‘ready’ is set to 0,
device A transfers a large chunk of data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

4 C uses both data buffer and
synchronization variable:

while (!ready) // spin 
;

x = data[i]; // read data buffer

Memory

…

into the memory system

…

FIGURE 4.6: Race condition example. At time 1, the synchronization variable “ready” is initialized to 0. Meanwhile, hardware 
device A begins to transfer data into the memory system. When this transfer is complete, A sends B a message, whereupon B 
updates the synchronization variable. Meanwhile, another software process, C, has been spinning on the synchronization variable 
ready waiting for it to become non-zero. When it sees the update, it reads the data buffer.
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 4. Meanwhile, process C has been spinning 
on the synchronization variable, waiting for 
the data to become available. A simple code 
block for the client process C could be the 
following:

 while (1) {

  // wait for data to become available
  while (!ready)
   ;

  // data is available; process buffer
  for (i=0; i<BUFSIZE; i++) {
   process( data[i] );
  }

  // reset synchronization variable
  ready = 0;

 }

  When the synchronization variable indi-
cates that the data is in memory, the client 
process starts reading it. When it fi nishes, 
the process begins again. For example, the 
server process B could be responsible for 
initializing the variable ready at the outset, 
starting up C, and, from then on, B spins 
on ready to become 0, initiates a new data 
transfer, sets ready to 1, and spins again—in 
the steady state, B is responsible only for 
the 0 -!1 transition, and C is responsible 
only for the 1 -!0 transition. 

The timing of events is shown in Figure 4.7. In 
a simple uniprocessor system, the example has 
very straightforward behavior; the memory system 
enforces sequentiality of memory references by defi -
nition; the single processor enforces sequentiality of 
task execution by defi nition; and the only thing that 
could cause a problem is if the software process that 
does the transferring of data from A into the memory 
system (e.g., perhaps a device driver within the oper-
ating system) takes too long to transfer the data from 
its own protected buffer space into the user-readable 
target buffer. 

In a simple uniprocessor system, causality is pre-
served because the system can only do one thing at 
a time: execute one instruction, handle one memory 
request. However, once this no longer holds, e.g., if 
this example is run on a multiprocessor or networked 
multicomputer, then all bets are off. Say, for example, 
that the memory system is distributed across many 
subsystems and that each of the processes (B, C, and 
the data transfer for A) are each running on a differ-
ent subsystem. The question arises in such a sce-
nario: does C get the correct data? This is a perfectly 
reasonable question to ask. Which happens fi rst, the 
data buffer being available or the synchronization 
variable being available? In a complex system, the 
answer is not clear. 

An Analogy: Distributed Systems Design
Let’s fi rst explore why arbitrary ordering of mem-

ory requests might be a good thing. We have put forth 
a scenario in which arbitrary ordering in the memory 
system could create a race condition. This happens 
because our scenario exhibits a causal relationship 
between different, seemingly unrelated, memory loca-
tions, but note that not all applications do. Moreover, 
while consistency models exist that make a multipro-
cessor behave like a uniprocessor, their implementa-
tions usually come at the price of lower achievable 
performance. A better scheme may be to relax one’s 
expectations of the memory system and instead 
enforce ordering between events explicitly, when and 
where one knows causal relationships to exist. 

data

ready

A B C

1 2 3 4

time

FIGURE 4.7: Event timing.
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DRAM



Perspective

DDRx@800Mbps = 6.4GB/s
(x4 DRAM part: 400MB/s, 
100mA, 200mW)

Entry system: 2x 3GHz CPU 
(2MB cache each), 1GB DRAM, 
80GB disk (7.2K)

CPU = $300
DIMM = $30
DRAM = $3

$CPU



Some Trends

Jean-Luc Gaudiot: Area and System Clock Effects on SMT/CMP Processors, 2002.
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Some Trends

• Storage per CPU socket has 
been relatively flat for a while

• Note: per-core capacity 
decreases as # cores increases



Some Trends

• Required BW per core is 
roughly 1 GB/s

• Thread-based load (SPECjbb),
memory set to 52GB/s 
sustained

• Saturates around 64 cores/
threads (~1GB/s per core)

• cf. 32-core Sun Niagara: 
saturates at 25.6 GB/s



Some Trends

Commodity Systems:

• Low double-digit GB per CPU socket

• $10–100 per DIMM

High End:

• Higher (but still not high)
double-digit GB per CPU socket

• ~ $1000 per DIMM

Fully-Buffered DIMM:

• (largely failed) attempt to bridge the gap …



Fully Buffered DIMM

MC MC

JEDEC DDRx
~10W/DIMM, 20 total

FB-DIMM
~10W/DIMM, ~400W total



The Root of the Problem

Column
Read

tRP = 15ns tRCD = 15ns, tRAS = 37.5ns

CL = 8

Bank 
Precharge

Row Activate (15ns)
and Data Restore (another 22ns)

DATA 
(on bus)

BL = 8TIME

Cost of access is high; requires significant effort 
to amortize this over the (increasingly short) payoff.



CPU/$

“Significant Effort”

CPU/$

Outgoing 
bus request

MC

read data
read data

Read B
Write X, data
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System Level

Memory 
Controller

Memory 
Controller

Side View

Top View

Package Pins

Edge Connectors

PCB Bus Traces

DIMM 0 DIMM 1 DIMM 2

DRAMs DIMMs

Rank 0, Rank 1
or

Rank 0, Rank 1
or even  

Rank 0/1, Rank 2/3
…

One DIMM can have one 
RANK, two RANKs, or even 
more depending on its 
configuration.

I/O

MUX

One DRAM device with eight 
internal BANKS, each of which 
connects to the shared I/O bus.

One DRAM bank is comprised of many 
DRAM ARRAYS, depending on the part’s 
configuration.  This example shows four 
arrays, indicating a x4 part (4 data pins).

DRAM Array

One BANK,
four ARRAYS



Device Level

500

DRAM

… columns …

Data I/Out
Buffers

…
 r

ow
s 

…

Memory
Array

Column Decoder

Sense Amps

R
ow

 D
ec

od
er

Storage Cell
and its Access

Word Line

Bit Line
or Digitline a transistor

a capacitor



Issues: Palm HD

• 1920 x 1080 x 36b
x 60fps = 560MB/s (~1GB/s 
incl. ovhd)

• 3 x4 DDR800 = 1.2GB/s, 
600mW

• Power budget = 500mW total 
(DRAM 10–20%)



Issues

Cache-Bound ≤ 10M*
Much SPECint (not all), etc.
Embedded: mp3 playback

DRAM-Bound ≤ 10G*
SpecJBB, SPECfp, SAP, etc.
Embedded: HD video

Disk-Bound ≥ 10G*
TPCC, Google

* Desktop; scale down for embedded
Intel Technology Journal:11(3),  August 2007



Issues: Cost is Primary Limiter

• CPUs: die area (& power)
Systems: pins & power
 (desktop: power is cost
  embedded: power is limit)

• FB-DIMM (Intel’s solution to the 
capacity problem) observed 
former at cost 
of latter … R.I.P.  FBD

• Whither PERFORMANCE w/o 
limits?  10x at least



Issues: Education

• Because modeling the memory 
system is hard, 
few people do it; 
because few do it, 
few understand it

• Memory-system analysis 
domain of architecture (not 
circuits) 

• Computer designers are 
enamored w/ CPU
… R.I.P.  [insert company]

if (L1(addr) != HIT) {
if (L2(addr) != HIT) {

sim += DRAM_LATENCY;

}
}



How It Is Represented

if (cache_miss(addr)) {

   cycle_count += DRAM_LATENCY;

}

… even in simulators with “cycle accurate” memory systems—no lie



Issues: Accuracy

• Graphs compare 
- fixed latency
- queueing model 
  (from industry)
- “real” model 

• Using simple models gives 
inaccurate insights, leads to 
poor design

• Inaccuracies scale with 
workload (this is bad)
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Issues: Accuracy

SAP w/ prefetching
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Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.



Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.

(for DRAMs)



Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.



Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.



Trends …

tFAW (& tRRD & tDQS) vs. bandwidth (Dave Wang’s thesis)



DISK & FLASH



Disk

Chapter 17 THE PHYSICAL LAYER 621

RAMAC to the washing machine-size disk drives of 
the 1970s and 1980s and, fi nally, to the palm-size disk 
drives of the 1990s and today. Today’s disk drives all 
have their working components sealed inside an alu-
minum case, with an electronics card attached to one 
side. The components must be sealed because, with 
the very low fl ying height of the head over the disk 
surface, just a tiny amount of contaminant can spell 
disaster for the drive.

This section very briefl y describes the various 
mechanical and magnetic components of a hard disk 
drive [Sierra 1990, Wang & Taratorin 1999, Ashar 1997, 
Mee & Daniel 1996, Mamun et al. 2006, Schwaderer 
& Wilson 1996]. The desirable characteristics of each 
of these components are discussed. The major physi-
cal components are illustrated in Figure 17.8, which 
shows an exposed view of a disk drive with the cover 
removed. The principles of operation for most com-
ponents can be fully explained within this chapter. 
For the servo system, additional information will be 
required, and it will be described in Chapter 18.

17.2.1 Disks
The recording medium for hard disk drives is 

 basically a very thin layer of magnetically hard mate-
rial on a rigid circular substrate [Mee & Daniel 1996]. 
A fl exible substrate is used for a fl exible, or fl oppy, 
disk. Some of the desirable characteristics of record-
ing media are the following:

Thin substrate so that it takes up less space
Light substrate so that it requires less power 
to spin
High rigidity for low mechanical resonance 
and distortion under high rotational speed; 
needed for servo to accurately follow very 
narrow tracks
Flat and smooth surface to allow the head 
to fl y very low without ever making contact 
with the disk surface
High coercivity (Hc) so that the magnetic 
recording is stable, even as areal density is 
increased 

•
•

•

•

•

Actuator

Flex cable

Load/Unload
Ramp

Disk

Spindle & Motor

Head Disk Assembly

Magnet structure
of Voice

Coil Motor

Case

FIGURE 17.8: Major components of today’s typical disk drive. The cover of a Hitachi Global Storage Technologies UltraStarTM 
15K147 is removed to show the inside of a head-disk assembly. The actuator is parked in the load/unload ramp.
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Flash SSD

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about 
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about 
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Magnet structure of

voice coil motor

Spindle & Motor

Disk

Actuator

Flash

Memory Arrays

Load / Unload

Mechanism

(a) HDD (b) SSD

Flash memory 
arrays

Circuit board

ATA Interface



Disk Issues

• Keeping ahead of Flash in price-per-GB is difficult (and expensive)

• Dealing with timing in a polar-coordinate system is non-trivial

• OS schedules disk requests to optimize both linear & rotational latencies; 
ideally, OS should not have to become involved at that level

• Tolerating long-latency operations creates fun problems

• E.g., block-fill not atomic; must reserve buffer for duration; Belady’s MIN 
designed for disks & thus does not consider incoming block in analysis

• Internal cache & prefetch mechanisms are slightly behind the times 



Flash SSD Issues

• Flash does not allow in-place update of data (must block-erase first); 
implication is significant amount of garbage collection & storage management

• Asymmetric read [1x] & program times [10x] (plus erase time [100x])

• Proprietary firmware (heavily IP-oriented, not public, little published)

• Lack of models: timing/performance & power, notably
Flash Translation Layer is a black box (both good & bad)
Ditto with garbage collection heuristics, wear leveling, ECC, etc.

• Result: poorly researched (potentially?)
E.g., heuristics? how to best organize concurrency? etc.



SanDisk SSD Ultra ATA 2.5” Block Diagram



Flash SSD Organization & Operation

Ctrl
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Flash 

Array

Flash 

Array

Flash 

Array
Flash 

Array

Host I/F

Layer
NAND I/F

Layer

• Numerous Flash arrays

• Arrays controlled externally 
(controller rel. simple, but can 
stripe or interleave requests)

• Ganging is device-specific

• FTL manages mapping (VM), 
ECC, scheduling, wear 
leveling, data movement

• Host interface emulates HDD



Flash SSD Organization & Operation
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Cache Reg
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1 Page = 2 K bytes
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• 2 KB Page

• 128 KB Block

• 2 μs page read

• 200 μs page program

• 3 ms block erase

• 32 GB total storage



Flash SSD Timing

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array into 
data register

Xfer from data to 
cache register

Subsequent page is 
accessed while data is read 
out from cache register

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to 
data register

Page is programmed while 
data for subsequent page is 
written into cache register200 us

Read 8 KB
(4 Pages)

Write 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3



disk-interface speeds are scaling up with serial interface and fiber channel, SSD’s performance is 

expected to be limited by the media transfer rate. We have measured the effect of media transfer rate on 

the performance of NAND Flash SSD by scaling I/O bus bandwidth from 25 MB/s (8-bit wide bus at 25 

MHz) up to 400 MB/s (32-bit wide bus at 100 MHz). As shown in Figure 7, performance does not 

improve significantly beyond 100 MB/s.

However, note that, even when performance saturates at high bandwidths, it is still possible to 

achieve significant performance gains by increasing the level of concurrency by either banking or 

implementing superblocks. Performance saturates at 100MB/s because the real limitation to NAND Flash 

memory performance is the device’s core interface—the requirement to read and write the flash storage 

array through what is effectively a single port (the read/cache registers)—and this is a limitation that 

concurrency overcomes.

5.4. Increasing the Degree of Concurrency

As shown previously, flash memory performance can be improved significantly if request latency is 

reduced by dividing the flash array into independent banks and utilizing concurrency. The flash controller 

can support these concurrent requests through multiple flash memory banks via the same channel or 

through multiple independent channels to different banks, or through a combination of two. To get a 

better idea of the shape of the design space, we have focused on changing the degree of concurrency one 

I/O bandwidth at a time. Figure 8 shows example configurations modeled in our simulations with 

bandwidths ranging from 25 MB/s to 400 MB/s. This is equivalent to saying, “I have 4 50 MHz 8-bit I/O 

channels... what should I do? Gang them together, use them as independent channels, or a combination of 

the two?”

The performance results are shown in Figure 9. Though increasing the number of available 

concurrency in the storage sub-system (number of banks x number of channels) typically increases 
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(a) Single channel (b) Dedicated channel for each bank (c) Multiple shared channels

Figure 8: Flash SSD Organizations. (a) Single I/O bus is shared - 1, 2, or 4 banks;  (b) dedicated I/O bus: 1, 2, or 4 

buses and single bank per bus; (c) multiple shared I/O channels - 2 or 4 channels with 2 or 4 banks per channel.

Some Performance Studies
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I/O Access Optimization

• Access time increasing with level of banking on single channel

• Increase cache register size

• Reduce # of I/O access requests
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data register

Page is programmed while data for 
subsequent page is transferred200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Cache Reg

Data Reg

1 Block

1 Page

64 Pages

Flash

Array

2 K bytes

1 Page
Cache Reg

Data Reg

1 Block

1 Page

64 Pages

2 K bytes

4 Pages

Cmd

5 cycles
0.2 us

3 us

8192 cycles
327.68 us

I/O [7:0]

R/W

Xfer from cache to 
data register Page is programmed200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3 (d) Write 

using 8 KB 

cache register

(a) 2 KB  Cache Register (b) 8 KB  Cache Register

(c) Write 

using 2 KB 

cache register

8 KB Write, 2 KB reg. - 4 I/O accesses

8 KB reg. - Single I/O access



I/O Access Optimization

• Implement different bus-access policies for reads and writes

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array

Xfer from data to 
cache register

Subsequent page is 
accessed while 
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to 
data register

Page is programmed 
while data for 
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Access to I/O bus is not needed for 3 us and bus 
can be released if another memory bank asks for it. 
However, at the end of 3 us, it has to be acquired 
again.

Writes do not need I/O access as frequently as 
reads. I/O bus access is required between 
programming pages - 200us

(a) Release bus when it is not needed

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array

Xfer from data to 
cache register

Subsequent page is 
accessed while 
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Hold I/O bus between data burst even if it is not needed

(b) Reads hold bus during entire data transfer

Writes do not need I/O access 
as frequently as reads

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array

Xfer from data to 
cache register

Subsequent page is 
accessed while 
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to 
data register

Page is programmed 
while data for 
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Access to I/O bus is not needed for 3 us and bus 
can be released if another memory bank asks for it. 
However, at the end of 3 us, it has to be acquired 
again.

Writes do not need I/O access as frequently as 
reads. I/O bus access is required between 
programming pages - 200us

(a) Release bus when it is not needed

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array

Xfer from data to 
cache register

Subsequent page is 
accessed while 
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Hold I/O bus between data burst even if it is not needed

(b) Reads hold bus during entire data transfer

Reads: Hold I/O bus between data bursts


