
Part II. Memory Systems

Today’s Story

• Cache
(lots to be done in content management, especially at software/app level)

• DRAM
(the design space is huge, sparsely explored, poorly understood)

• Disk & Flash
(flash overtaking disk, very little has been published)

• For each, a quick look at some of the non-obvious issues

Perspective: Performance

$CPU~10 IPC

~0.001 IPC

~0.0000001 IPC

~0.1 IPC

Perspective: Power

$CPU~100 W

~10 W per DIMM

~10 W per Disk

~100–400W

CACHE

Caches: A Small Sample60 Memory Systems: Cache, DRAM, Disk

Figure 1.1(c) shows another partitioned
confi guration, one that is found in most DSP
architectures. As we will discuss in more
detail later, these caches are an extension of
the memory space, and, unlike the previous
two organizations, they are not transparent
to software. The main item to note is that
the two partitions both hold data. This con-
fi guration is desirable in DSPs because of
the high data bandwidth required by many
DSP algorithms (e.g., dot-product calcula-
tions such as fi nite impulse response [FIR]
fi lters), which fetch two different data oper-
ands from memory on every cycle.
Figure 1.1(d) shows a typical cache hierar-
chy for a multiprocessor organization. Each

•

•

 processor core has its own private cache,
and the last-level cache before the backing
store (DRAM) is shared by all cores.
Figure 1.1(e) shows two different types of
caches. First, the operating system stores
the blocks it has fetched from disk in main
memory as part of a buffer cache. When an
application reads and writes data from/to
fi les on disk, those requests are not serviced
by the disk directly but are instead serviced
out of the buffer cache. In addition, modern
disks implement their own caches as well;
these caches are not under the control of
the operating system, but instead operate
autonomously. We discuss disk caches in
more detail in Chapter 22.

•

CPU

Cache

DRAM

CPU

DRAM

I-Cache D-Cache

CPU

DRAM

Cache 0 Cache 1

CPU

Cache

CPU

Cache

CPU

Cache

Cache (L2)

DRAM

(d) multi-level cache hierarchy

BrowserBrowserBrowser

Cache Cache Cache

Cache

Web
Server

Web proxy

SOLID-STATE (HARDWARE) CACHES

SOFTWARE CACHES

Cache

DNS
Server

Operating System

Buffer Cache

Operating System

Cache

Hard Disk

Cache

Hard Disk

(g) web-document caches(f) IP-address translation caches(e) buffer caches (on both sides of interface)

(a) general-purpose cache (b) split cache (gen-purpose) (c) DSP-style caches

FIGURE 1.1: Examples of caches. The caches are divided into two main groups: solid-state caches (top), and those that are
implemented by software mechanisms, typically storing the cached data in main memory (e.g., DRAM) or disk.

ch01_P379751.indd Sec2:60ch01_P379751.indd Sec2:60 8/7/07 9:00:29 PM8/7/07 9:00:29 PM

Locality Principles

• Spatial

• Temporal

• Algorithmic

for each polygon P in scene {
 for each pixel p in P {
 if (depth of p at i,j < image[i,j].depth) {
 image[i,j].color = p.color
 image[i,j].depth = depth of p at i,j
 }
 }
}

Locality Principles

• Spatial

• Temporal

• Algorithmic

for each polygon P in scene {
 prefetch P.next
 for each pixel p in P {
 if (depth of p at i,j < image[i,j].depth) {
 image[i,j].color = p.color
 image[i,j].depth = depth of p at i,j
 }
 }
}

Logical Organization: Who and Where?

84 Memory Systems: Cache, DRAM, Disk

is truly a small hardware database. A datum
can be placed anywhere in the cache; the tag
fi eld identifi es the data contents. A search
checks the tag of every datum stored in the
cache. If any one of the tags matches the tag
of the requested address, it is a cache hit: the
cache contains the requested data.

The benefi t of a direct-mapped cache is that it is
extremely quick to search and dissipates relatively lit-
tle power, since there can only be one place that any
particular datum can be found. However, this intro-
duces the possibility that several different data might
need to reside in the cache at the same place, caus-
ing what is known as contention for the desired data
entry. This results in poor performance, with entries
in the cache being replaced frequently; these are con-
fl ict misses. The problem can be solved by using a
fully associative cache, a design choice traditionally
avoided due to its high dynamic power dissipation (in
a typical lookup, every single tag is compared to the
search tag). However, as dynamic power decreases
in signifi cance relative to leakage power, this design
choice will become more attractive.

Set-Associative Organization: As a compro-
mise between the two extremes, a set-asso-
ciative cache lies in between direct-mapped
and fully associative designs and often reaps

•

the benefi ts of both designs—fast lookup
and lower contention. Figures 2.5 and 2.6
illustrate two set-associative organizations.
Figure 2.5 shows an implementation built
of a small number of direct-mapped caches,
typically used for low levels of set associativ-
ity, and Figure 2.6 shows an implementation
built of a small number of content-address-
able memories, typically used for higher
degrees of set associativity.

These are the basic choices of organization for
transparently addressed caches. They are applicable
to solid-state implementations (evident from the
diagrams) as well as software implementations. For
instance, an operating system’s buffer cache or distri-
buted memory system’s object cache could be imple-
mented as a large array of blocks, indexed by a hash of
the block ID or object ID, which would correspond to
a direct-mapped organization as in Figure 2.3; it could
be implemented as a binary search tree, which would
correspond to a fully associative organization, because
the search tree is simply software’s way to “search all
tags in parallel” as in Figure 2.4; or it could be imple-
mented as a set of equivalence classes, each of which
maintains its own binary search tree, an arrangement
that would correspond to a set-associative organiza-
tion as in Figure 2.6 (each row in the fi gure is a separate
equivalence class). The last organization of software

Output

Effective Address

PFN,

Word

TLB

VPN set # byte

sense sense

TAG DATA

sense sense

TAG DATA

Byte in Block

Permissions

Cache
Index

Tag contains

One cache block
contains multiple words

PFN, valid bit,

One set

…

coherence bits

Hit?Hit?

FIGURE 2.5: Block diagram for an n-way
set-associative cache. A set-associative
cache can be made of several direct-
mapped caches operated in parallel. Note
that data read-out is controlled by tag
comparison with the TLB output as well
as the block-valid bit (part of the tag or
metadata entry) and the page permissions
(part of the TLB entry). Note also that the
cache column size is equal to the virtual
memory page size (the cache index does
not use bits from the VPN).

ch02_P379751.indd Sec2:84ch02_P379751.indd Sec2:84 8/7/07 11:24:25 AM8/7/07 11:24:25 AM

Logical Organization

Chapter 1 AN OVERVIEW OF CACHE PRINCIPLES 61

Figure 1.1(f) shows another cache maintained
by the operating system. When a translation
is needed from domain name to IP address,
the operating system may or may not actually
ask a DNS server directly. Translations may
be cached locally to avoid network requests.
Similarly, routing information for hosts and
subnets is typically cached locally.
Figure 1.1(g) shows two different types of
caches. First, each web browser typically
maintains its own local cache of down-
loaded web documents. These documents
are usually stored on the local disk and buff-
ered in main memory as part of the operat-
ing system’s buffer cache (Figure 1.1(e)). In
addition, a request that is sent to a particu-
lar web server may or may not actually reach
the web server. A web proxy, which behaves
like the transparent caches in Figures 1.1(a),
(b), and (d), may intercept the request and
reply on behalf of the server [Luotonen &
Altis 1994].

One of the most important distinctions between
different types of cache is their method of address-
ing. Some caches do not hold a copy of a datum;
they hold the datum itself. These are often called
scratch-pad memory and use a separate namespace
from the backing store (i.e., the primary memory).
A scratch-pad is non-transparent in that a program
addresses it explicitly. A datum is brought into
the scratch-pad by an explicit move that does not
destroy the original copy. Therefore, two equal ver-
sions of the data remain; there is no attempt by the
hardware to keep the versions consistent (to ensure
that they always have the same value) because the
semantics of the mechanism suggest that the two
copies are not, in fact, copies of the same datum,
but are instead two independent data. If they are
to remain consistent, it is up to software. By con-
trast, the typical general-purpose cache uses the
same namespace as the primary memory system.
It is transparent in that a program addresses main

•

•

memory to access the cache—a program does not
explicitly access the cache or even need to know
that the cache exists.

How each of these two mechanisms (transparent
cache and scratch-pad memory) fi ts into the micropro-
cessor’s memory model is shown in Figure 1.2, using
solid-state memories (processor caches and tagless
SRAMs) for examples. A general-purpose memory model
has a single namespace1 that is shared by all memory
structures. Any datum from any part of the namespace
can be found in any of the caches. By contrast, a scratch-
pad uses the namespace to directly address the caches.
For instance, the DSP memory model shown on the
right explicitly places the system’s memory structures at
specifi c disjunct locations in the namespace. A particu-
lar address corresponds to a particular physical storage
device, and unlike a transparently addressed cache, a
single address in the scratch-pad’s namespace cannot
refer to both a cached datum and its copy in the back-
ing store.

1Assumes physically indexed caches.

UNIFORM
ADDRESS

SPACE

NON-UNIFORM
ADDRESS

SPACE

I-CACHE

D-CACHE

SRAM0

SRAM1

DRAM

IBUF

FIGURE 1.2: Transparent caches in a uniform space versus
scratch-pad SRAMs in a non-uniform space. Any datum in the
memory space can also reside in a cache (thus the designation
“transparent”). Only items in certain segments of the memory
space can reside in a scratch-pad memory.

ch01_P379751.indd Sec2:61ch01_P379751.indd Sec2:61 8/7/07 9:00:30 PM8/7/07 9:00:30 PM

• Major differentiator
between caches: is it
part of the explicitly
addressable space?

• Secondly, who manages
the movement of data
to/from backing store?
(cache itself, or app?)

transparent non-transparent

Logical Organization: Issues

Chapter 2 LOGICAL ORGANIZATION 93

Note that these mechanisms are not specifi c to
explicit/implicit addressing or explicit/implicit man-
agement. Virtual caches, address-space identifi ers
(ASIDs), and/or protection bits can all be used in any
of the cache organizations described in this chapter.

2.4.1 Virtual Caches
As mentioned earlier, a transparent cache is an

implementation in which the stored object retains
the same identifi er as is used to access it from the
backing store. Virtual caches offer a slight twist on this
idea. The backing store for a processor cache is usu-
ally taken to be main memory, physically addressed;
therefore, one would expect all processor caches to
use the physical address to identify a cached item.
However, virtual memory offers a completely differ-
ent address for use, one which might be even more
convenient to use than the physical address. Recall
that on each cache access, the cache is indexed, and
the tags are compared. For each of these actions,

either the data block’s virtual address or the data
block’s physical address may be used. Thus, we have
four choices for cache organization.

Physically indexed, physically tagged: The
cache is indexed and tagged by its physical
address. Therefore, the virtual address must be
translated before the cache can be accessed. The
advantage of the design is that since the cache
uses the same namespace as physical memory,
it can be entirely controlled by hardware, and
the operating system need not concern itself
with managing the cache. The disadvantage
is that address translation is in the critical
path. This becomes a problem as clock speeds
increase, as application data sets increase with
increasing memory sizes, and as larger TLBs are
needed to map the larger data sets (it is diffi cult
and expensive to make a large TLB fast). Two
 different physically indexed, physically tagged
 organizations are illustrated in Figure 2.10. The
difference between the two is that the second

TLB

Virtual Page Number

ASID

Page Offset

Page Frame Number

Tag: Page Frame Number

Cache Data

Virtual Address

CACHE

Cache Index

Page FrameNumber Page Offset

Physical Address

TLB

Virtual Page Number

ASID

Page Offset

Page Frame Number

Tag: Page Frame Number

Cache Data

Virtual Address

CACHE

Cache Index

FIGURE 2.10: Two physically indexed, physically tagged cache organizations. The cache organization on the right uses only bits from
the page offset to index the cache, and so it is technically still a virtually indexed cache. The benefit of doing so is that its TLB lookup is
not in the critical path for cache indexing (as is the case in the organization on the left). The disadvantage is that the cache index cannot
grow, and so cache capacity can only grow by increasing the size of each cache block and/or increasing set associativity.

ch02_P379751.indd Sec2:93ch02_P379751.indd Sec2:93 8/7/07 11:24:28 AM8/7/07 11:24:28 AM

Windows assumes physical cache (left)
to solve aliasing problem.

Logical Organization: Issues
Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 221

locations in a cache, requiring careful cache manage-
ment to keep data inconsistencies from occurring.

It becomes clear that this feature—shared mem-
ory—breaks the cache model of virtual memory. If
a single datum is allowed to have several equivalent
names, then it is possible for the datum to reside in
a cache at multiple locations. This can easily cause
inconsistencies, for example, when one writes val-
ues to two different locations that map to the same
datum. It is for this reason that virtual memory is
described as a mapping between two namespaces;
one must remember this when dealing with virtual
caches. As long as there is a one-to-one mapping
between data and names, no inconsistencies can
occur, and the entire virtual memory mechanism
behaves no differently than a traditional cache hier-
archy. Thus, virtual caches can be used without fear
of data inconsistencies. As soon as shared memory
is introduced, the simple cache model becomes
diffi cult to maintain, because it is very convenient
for an operating system to allow one-to-many
namespace mappings. However, as we will see in
later chapters, there are many tricks one can play
to keep the cache model and still support shared
memory.

The Consistency Problem of Virtual Caches
A virtually indexed cache allows the processor

to use the untranslated virtual address as an index.
This removes the TLB from the critical path, allow-
ing shorter cycle times and/or a reduced number of
pipeline stages. However, it introduces the possibil-
ity of data-consistency problems occurring when two
processes write to the same physical location through
different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This
is called the virtual cache synonym problem [Good-
man 1987]. The problem is illustrated in Figure 4.2;
a shared physical page maps to different locations
in two different process-address spaces. The virtual
cache is larger than a page, so the pages map to differ-
ent locations in the virtual cache. As far as the cache
is concerned, these are two different pages, not two

different views of the same page. Thus, if the two pro-
cesses write to the same page at the same time, using
two different names, then two different values will be
found in the cache.

Hardware Solutions The synonym problem has
been solved in hardware using schemes such as dual
tag sets [Goodman 1987] or back-pointers [Wang
et al. 1989], but these require complex hardware and
control logic that can impede high clock rates. One
can also restrict the size of the cache to the page size
or, in the case of set-associative caches, similarly
restrict the size of each cache bin (the size of the cache
divided by its associativity [Kessler & Hill 1992]) to the
size of one page. This is illustrated in Figure 4.3; it is
the solution used in many desktop processors such
as various PowerPC and Pentium designs. The dis-
advantages are the limitation in cache size and the
increased access time of a set-associative cache. For
example, the Pentium and PowerPC architectures

Address Space A

BAddress Space B

Physical
Memory

Virtual
Cache

FIGURE 4.2: The synonym problem of virtual caches. If two
processes are allowed to map physical pages at arbitrary loca-
tions in their virtual-address spaces, inconsistencies can occur
in a virtually indexed cache.

ch04_P379751.indd Sec2:221ch04_P379751.indd Sec2:221 8/7/07 1:36:24 PM8/7/07 1:36:24 PM

222 Memory Systems: Cache, DRAM, Disk

must increase associativity to increase the size of
their on-chip caches, and both architectures have
used 8-way set-associative cache designs. Physically
tagged caches guarantee consistency within a single
cache set, but this only applies when the virtual syn-
onyms map to the same set.

Software Solutions Wheeler and Bershad describe
a state-machine approach to reduce the number
of cache fl ushes required to guarantee consistency
[1992]. The mechanism allows a page to be mapped
anywhere in an address space, and the operating sys-
tem maintains correct behavior with respect to cache
aliasing. The aliasing problem can also be solved
through policy, as shown in Figure 4.4. For example,
the SPUR project disallowed virtual aliases altogether
[Hill et al. 1986]. Similarly, OS/2 locates all shared
segments at the same address in all processes [Deitel
1990]. This reduces the amount of virtual memory
available to each process, whether the process uses
the shared segments or not. However, it eliminates
the aliasing problem entirely and allows pointers to

be shared between address spaces. SunOS requires
shared pages to be aligned on cache-size boundar-
ies [Hennessy & Patterson 1990], allowing physical
pages to be mapped into address spaces at almost
any location, but ensuring that virtual aliases align in
the cache. Note that the SunOS scheme only solves
the problem for direct-mapped virtual caches or
set-associative virtual caches with physical tags;
shared data can still exist in two different blocks of
the same set in an associative, virtually indexed, vir-
tually tagged cache. Single address space operating
systems such as Opal [Chase et al. 1992a, 1992b] or
Psyche [Scott et al. 1988] solve the problem by elimi-
nating the concept of individual per-process address
spaces entirely. Like OS/2, they defi ne a one-to-one
correspondence of virtual to physical addresses and
in doing so allow pointers to be freely shared across
process boundaries.

Combined Solutions Note that it is possible, using
a segmented hardware architecture and an appropriate
software organization, to solve the aliasing problem.

Address Space A

Address Space B

Physical
Memory

Direct-Mapped
Virtual Cache

Set-Associative
Virtual Cache

(w/ physical tags)

OR

FIGURE 4.3: Simple hardware solutions to page aliasing. If the cache is no larger than the page size and direct-mapped, then no
aliasing can occur. Set-associative caches can be used, provided they have physical tags.

ch04_P379751.indd Sec2:222ch04_P379751.indd Sec2:222 8/7/07 1:36:24 PM8/7/07 1:36:24 PM

the aliasing problem common solutions

Content Management: What and When?

• On-line Heuristics
(operate at run time)

• Off-line Heuristics
(operate at design/compile time)

• Combined Heuristics
(both: e.g., profile-directed)

• Partitioning Heuristics
(what to cache & not to cache)

• Prefetching Heuristics
(when to cache it, perhaps early)

• Locality Optimizations
(rearranging of code & data)

Content Management: Some Examples

• On-line Partitioning: replacement strategies, victim caches

• Off-line Partitioning: scratch-pad management, sleep-mode analysis

• On-line Prefetching: stream buffers, dynamic predictors

• Off-line Prefetching: software prefetching, jump pointers

• On-line Locality: garbage collection, page coloring, dynamic compression

• Off-line Locality: code- and data-packing algorithms, tiling/blocking

Content Management: IssuesChapter 3 MANAGEMENT OF CACHE CONTENTS 145

cache. A variant hashes the process ID with
the VPN fi rst to ensure that similar, com-
monly referenced address ranges in differ-
ent processes map to different ranges in the
cache (e.g., the beginning of the code sec-
tion, the top of the stack, etc.).
Bin hopping: This uses a round-robin
page assignment in which the operat-
ing system maintains for each process a
separate pointer into the set of bin queues,
facilitating the same separation of process-

•

address spaces as the hashed version of
page coloring, above. For example, the fi rst
virtual page mapped in address space UID
is assigned to a page frame in bin number
(last_bin[UID] ! rand()), meaning that the
initial placement is random. The second
is assigned to a page frame in bin number
(""last_bin[UID]), meaning that the bin
number is one greater than the previous. If
no pages are available in the desired bin, the
next sequential bin is chosen.

32KB Virtual Cache
(maps 8 4K pages)

4KB
region

of cache

40KB Region
of the process’s virtual address space

32KB Physical Cache
(maps 8 4K pages)

192KB Region
of physical memory

This mapping
is entirely OS-dependent
and can vary significantly
from run to run of application

FIGURE 3.17: How virtual mapping can negate page placement. A compiler’s page-placement heuristic ensures that objects
used at the same time are placed in adjacent or non-conflicting locations, e.g., pages that do not map to the same region in a
virtually indexed cache. This is shown on the left side of the Figure. For objects that cannot be placed in adjacent locations, such
as a block of code and the data on which it operates, the page-placement heuristic ensures that even if the objects map to the
same region of the cache, they will not map to the same cache blocks (as shown on the left: two instances where two pages
co-reside in the cache without conflict). However, when a physically indexed cache is used, the compiler’s efforts are completely
undone, unless the kernel preserves contiguity of virtual data in the physical space (which it does not, in general, do). On the right
is shown an arbitrary mapping of virtual pages to physical pages that results in numerous page and cache block conflicts that
would not have occurred in a virtually indexed cache.

ch03_P379751.indd 145ch03_P379751.indd 145 8/7/07 5:29:43 PM8/7/07 5:29:43 PM

Consistency Management

• Consistency with BACKING STORE

• Consistency with SELF

• Consistency with OTHERS

Consistency Management: BACKING STORE
Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 219

4.1.2 Delayed Write, Driven By the Cache
This policy delays writing the data to the backing

store until later, where “later” is determined by the
cache. There are some obvious triggers.

Confl ict-Driven Update
In this policy, the data written into the cache is

written to the backing store when there is a cache
confl ict with that block, i.e., data from a written block
(i.e., a “dirty” block) is written to the backing store
when another block of data is brought into the cache,
displacing the dirty block. This is called the write-
back policy.

There are some obvious benefi ts to using a write-
back policy. The main things are data coalescing
and reduction of write traffi c, meaning that often-
times, an entire block of data will be overwritten,
requiring multiple write operations (a cache block
is usually much larger than the granularity of data
that a load/store instruction handles). Coalescing
the write data into a single transfer to the backing
store is very benefi cial. In addition, studies have
found that application behavior is such that writes
to one location are frequently followed by more

writes to the same location. So, if a location is going
to be overwritten multiple times, one should not
bother sending anything but the fi nal version to the
backing store.

Nonetheless, write-back causes problems in a
multi-user scenario (e.g., multiprocessors). Some-
times you will want all of those little writes to the
same location to be propagated to the rest of the sys-
tem so that the other processors can see your activ-
ity. One can either return to a write-through policy,
or one can create additional update scenarios driven
by the backing store, i.e., in the case that the data is
needed by someone else. This is discussed briefl y in
the next section and in more detail in Section 4.3.

Capacity-Driven Update
Note that there exist caches in which the concept of

cache confl icts is hazy at best. Many software caches
do not implement any organizational structure anal-
ogous to cache sets, and waiting to write data to the
backing store until the cache is totally full (an event
that would be analogous to a cache confl ict) may
be waiting too late. Such a cache might instead use
a capacity-driven update. In this sort of scenario, for

Backing Store

Write Buffer/Cache

CPU

$

CPU

$

C
P

U

$

CPU

$
C

P
U

$
Backing Store

(a) (b)

FIGURE 4.1: The use of write buffers and write caches in a write-through policy. (a) The write buffer or write cache is physi-
cally part of the cache, but logically part of the backing store. (b) Shows the implication as more caches become clients of the
backing store.

ch04_P379751.indd Sec2:219ch04_P379751.indd Sec2:219 8/7/07 1:36:23 PM8/7/07 1:36:23 PM

write buffer “in”
backing store

implications for systems
with multiple clients

Consistency Management: SELF

the aliasing problem

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 221

locations in a cache, requiring careful cache manage-
ment to keep data inconsistencies from occurring.

It becomes clear that this feature—shared mem-
ory—breaks the cache model of virtual memory. If
a single datum is allowed to have several equivalent
names, then it is possible for the datum to reside in
a cache at multiple locations. This can easily cause
inconsistencies, for example, when one writes val-
ues to two different locations that map to the same
datum. It is for this reason that virtual memory is
described as a mapping between two namespaces;
one must remember this when dealing with virtual
caches. As long as there is a one-to-one mapping
between data and names, no inconsistencies can
occur, and the entire virtual memory mechanism
behaves no differently than a traditional cache hier-
archy. Thus, virtual caches can be used without fear
of data inconsistencies. As soon as shared memory
is introduced, the simple cache model becomes
diffi cult to maintain, because it is very convenient
for an operating system to allow one-to-many
namespace mappings. However, as we will see in
later chapters, there are many tricks one can play
to keep the cache model and still support shared
memory.

The Consistency Problem of Virtual Caches
A virtually indexed cache allows the processor

to use the untranslated virtual address as an index.
This removes the TLB from the critical path, allow-
ing shorter cycle times and/or a reduced number of
pipeline stages. However, it introduces the possibil-
ity of data-consistency problems occurring when two
processes write to the same physical location through
different virtual addresses; if the pages align differ-
ently in the cache, erroneous results can occur. This
is called the virtual cache synonym problem [Good-
man 1987]. The problem is illustrated in Figure 4.2;
a shared physical page maps to different locations
in two different process-address spaces. The virtual
cache is larger than a page, so the pages map to differ-
ent locations in the virtual cache. As far as the cache
is concerned, these are two different pages, not two

different views of the same page. Thus, if the two pro-
cesses write to the same page at the same time, using
two different names, then two different values will be
found in the cache.

Hardware Solutions The synonym problem has
been solved in hardware using schemes such as dual
tag sets [Goodman 1987] or back-pointers [Wang
et al. 1989], but these require complex hardware and
control logic that can impede high clock rates. One
can also restrict the size of the cache to the page size
or, in the case of set-associative caches, similarly
restrict the size of each cache bin (the size of the cache
divided by its associativity [Kessler & Hill 1992]) to the
size of one page. This is illustrated in Figure 4.3; it is
the solution used in many desktop processors such
as various PowerPC and Pentium designs. The dis-
advantages are the limitation in cache size and the
increased access time of a set-associative cache. For
example, the Pentium and PowerPC architectures

Address Space A

BAddress Space B

Physical
Memory

Virtual
Cache

FIGURE 4.2: The synonym problem of virtual caches. If two
processes are allowed to map physical pages at arbitrary loca-
tions in their virtual-address spaces, inconsistencies can occur
in a virtually indexed cache.

ch04_P379751.indd Sec2:221ch04_P379751.indd Sec2:221 8/7/07 1:36:24 PM8/7/07 1:36:24 PM

There is also an issue
with ASIDs, which are
used to distinguish the
content that belongs to
different processes. In
general

procs >> # ASIDS

… ergo constant
remapping and reuse.
Implication: the OS
needs to be careful.

Consistency Management: OTHERS

Chapter 4 MANAGEMENT OF CACHE CONSISTENCY 227

Scenario One
Figure 4.6 illustrates an example scenario.

Hardware device A transfers a block of data
into memory (perhaps via a DMA [direct
memory access] controller).
Software process B is A’s controller. It is a
user-level process communicating with
device A via a control link such as a serial
port.
Software process C is a consumer of the data
and waits for B’s signal that the data is ready.

Though the scenario is contrived to have a (poten-
tial) race condition buried within it, this general
structure is representative of many embedded sys-
tems in which software processes interact with hard-
ware devices. The specifi cs of the scenario are as
follows:

•

•

•

 1. B communicates to client processes via a
synchronization variable called “ready” that
indicates when a new block of data is valid
in the memory system. At time 1, B sets
this variable to the value 0 and initiates the
transfer of data from hardware device A to
the memory system.

 2. When the data transfer is complete, the
hardware device signals the controlling
software process via some channel such as
a device interrupt through the operating
system, or perhaps the controlling soft-
ware must continuously poll the hardware
device. Whatever the implementation,
process B is aware that the data transfer has
fi nished at time 2.

 3. At time 3, B updates the synchronization
variable to refl ect the state of the data buf-
fer. It sets the variable to the value 1.

B

A

C

4K data buffer

1

2 B is signaled by A
(e.g., device interrupts the OS)

3 B updates synchronization After sync variable ‘ready’ is set to 0,
device A transfers a large chunk of data

4-byte synchronization
variable ‘ready’

variable ‘ready’ to 1

4 C uses both data buffer and
synchronization variable:

while (!ready) // spin
;

x = data[i]; // read data buffer

Memory

…

into the memory system

…

FIGURE 4.6: Race condition example. At time 1, the synchronization variable “ready” is initialized to 0. Meanwhile, hardware
device A begins to transfer data into the memory system. When this transfer is complete, A sends B a message, whereupon B
updates the synchronization variable. Meanwhile, another software process, C, has been spinning on the synchronization variable
ready waiting for it to become non-zero. When it sees the update, it reads the data buffer.

ch04_P379751.indd Sec2:227ch04_P379751.indd Sec2:227 8/7/07 1:36:26 PM8/7/07 1:36:26 PM

228 Memory Systems: Cache, DRAM, Disk

 4. Meanwhile, process C has been spinning
on the synchronization variable, waiting for
the data to become available. A simple code
block for the client process C could be the
following:

 while (1) {

 // wait for data to become available
 while (!ready)
 ;

 // data is available; process buffer
 for (i=0; i<BUFSIZE; i++) {
 process(data[i]);
 }

 // reset synchronization variable
 ready = 0;

 }

 When the synchronization variable indi-
cates that the data is in memory, the client
process starts reading it. When it fi nishes,
the process begins again. For example, the
server process B could be responsible for
initializing the variable ready at the outset,
starting up C, and, from then on, B spins
on ready to become 0, initiates a new data
transfer, sets ready to 1, and spins again—in
the steady state, B is responsible only for
the 0 -!1 transition, and C is responsible
only for the 1 -!0 transition.

The timing of events is shown in Figure 4.7. In
a simple uniprocessor system, the example has
very straightforward behavior; the memory system
enforces sequentiality of memory references by defi -
nition; the single processor enforces sequentiality of
task execution by defi nition; and the only thing that
could cause a problem is if the software process that
does the transferring of data from A into the memory
system (e.g., perhaps a device driver within the oper-
ating system) takes too long to transfer the data from
its own protected buffer space into the user-readable
target buffer.

In a simple uniprocessor system, causality is pre-
served because the system can only do one thing at
a time: execute one instruction, handle one memory
request. However, once this no longer holds, e.g., if
this example is run on a multiprocessor or networked
multicomputer, then all bets are off. Say, for example,
that the memory system is distributed across many
subsystems and that each of the processes (B, C, and
the data transfer for A) are each running on a differ-
ent subsystem. The question arises in such a sce-
nario: does C get the correct data? This is a perfectly
reasonable question to ask. Which happens fi rst, the
data buffer being available or the synchronization
variable being available? In a complex system, the
answer is not clear.

An Analogy: Distributed Systems Design
Let’s fi rst explore why arbitrary ordering of mem-

ory requests might be a good thing. We have put forth
a scenario in which arbitrary ordering in the memory
system could create a race condition. This happens
because our scenario exhibits a causal relationship
between different, seemingly unrelated, memory loca-
tions, but note that not all applications do. Moreover,
while consistency models exist that make a multipro-
cessor behave like a uniprocessor, their implementa-
tions usually come at the price of lower achievable
performance. A better scheme may be to relax one’s
expectations of the memory system and instead
enforce ordering between events explicitly, when and
where one knows causal relationships to exist.

data

ready

A B C

1 2 3 4

time

FIGURE 4.7: Event timing.

ch04_P379751.indd Sec2:228ch04_P379751.indd Sec2:228 8/7/07 1:36:26 PM8/7/07 1:36:26 PM

DRAM

Perspective

DDRx@800Mbps = 6.4GB/s
(x4 DRAM part: 400MB/s,
100mA, 200mW)

Entry system: 2x 3GHz CPU
(2MB cache each), 1GB DRAM,
80GB disk (7.2K)

CPU = $300
DIMM = $30
DRAM = $3

$CPU

Some Trends

Jean-Luc Gaudiot: Area and System Clock Effects on SMT/CMP Processors, 2002.

(G
b
it
)

Some Trends

• Storage per CPU socket has
been relatively flat for a while

• Note: per-core capacity
decreases as # cores increases

Some Trends

• Required BW per core is
roughly 1 GB/s

• Thread-based load (SPECjbb),
memory set to 52GB/s
sustained

• Saturates around 64 cores/
threads (~1GB/s per core)

• cf. 32-core Sun Niagara:
saturates at 25.6 GB/s

Some Trends

Commodity Systems:

• Low double-digit GB per CPU socket

• $10–100 per DIMM

High End:

• Higher (but still not high)
double-digit GB per CPU socket

• ~ $1000 per DIMM

Fully-Buffered DIMM:

• (largely failed) attempt to bridge the gap …

Fully Buffered DIMM

MC MC

JEDEC DDRx
~10W/DIMM, 20 total

FB-DIMM
~10W/DIMM, ~400W total

The Root of the Problem

Column
Read

tRP = 15ns tRCD = 15ns, tRAS = 37.5ns

CL = 8

Bank
Precharge

Row Activate (15ns)
and Data Restore (another 22ns)

DATA
(on bus)

BL = 8TIME

Cost of access is high; requires significant effort
to amortize this over the (increasingly short) payoff.

CPU/$

“Significant Effort”

CPU/$

Outgoing
bus request

MC

read data
read data

Read B
Write X, data

Read Z
Write Q, data

Read A

Write A, data
Read W
Read Z
Read Y A

C
T

R
D

P
R

E

R
D

R
D

P
R

E

P
R

E
A

C
T

W
R

W
R

A
C

T
R

D

PRE ACTRD
read data

be
at

cm
d

System Level

Memory
Controller

Memory
Controller

Side View

Top View

Package Pins

Edge Connectors

PCB Bus Traces

DIMM 0 DIMM 1 DIMM 2

DRAMs DIMMs

Rank 0, Rank 1
or

Rank 0, Rank 1
or even

Rank 0/1, Rank 2/3
…

One DIMM can have one
RANK, two RANKs, or even
more depending on its
configuration.

I/O

MUX

One DRAM device with eight
internal BANKS, each of which
connects to the shared I/O bus.

One DRAM bank is comprised of many
DRAM ARRAYS, depending on the part’s
configuration. This example shows four
arrays, indicating a x4 part (4 data pins).

DRAM Array

One BANK,
four ARRAYS

Device Level

500

DRAM

… columns …

Data I/Out
Buffers

…
 r

ow
s

…

Memory
Array

Column Decoder

Sense Amps

R
ow

 D
ec

od
er

Storage Cell
and its Access

Word Line

Bit Line
or Digitline a transistor

a capacitor

Issues: Palm HD

• 1920 x 1080 x 36b
x 60fps = 560MB/s (~1GB/s
incl. ovhd)

• 3 x4 DDR800 = 1.2GB/s,
600mW

• Power budget = 500mW total
(DRAM 10–20%)

Issues

Cache-Bound ≤ 10M*
Much SPECint (not all), etc.
Embedded: mp3 playback

DRAM-Bound ≤ 10G*
SpecJBB, SPECfp, SAP, etc.
Embedded: HD video

Disk-Bound ≥ 10G*
TPCC, Google

* Desktop; scale down for embedded
Intel Technology Journal:11(3), August 2007

Issues: Cost is Primary Limiter

• CPUs: die area (& power)
Systems: pins & power
 (desktop: power is cost
 embedded: power is limit)

• FB-DIMM (Intel’s solution to the
capacity problem) observed
former at cost
of latter … R.I.P. FBD

• Whither PERFORMANCE w/o
limits? 10x at least

Issues: Education

• Because modeling the memory
system is hard,
few people do it;
because few do it,
few understand it

• Memory-system analysis
domain of architecture (not
circuits)

• Computer designers are
enamored w/ CPU
… R.I.P. [insert company]

if (L1(addr) != HIT) {
if (L2(addr) != HIT) {

sim += DRAM_LATENCY;

}
}

How It Is Represented

if (cache_miss(addr)) {

 cycle_count += DRAM_LATENCY;

}

… even in simulators with “cycle accurate” memory systems—no lie

Issues: Accuracy

• Graphs compare
- fixed latency
- queueing model
 (from industry)
- “real” model

• Using simple models gives
inaccurate insights, leads to
poor design

• Inaccuracies scale with
workload (this is bad)

!"

!"#$%&'()*+)',&%-.%/012&'2./30%"4.1'.-'50%".$4'/&/.%6'/.7&84'9":;'3%&-&:2;"1#)'

#$%&' ()*+$&' &$,-&' .$/' 012' 3%44/)/56/' 5,)7*8%9/3' .,' *66:)*./' 7/7,);' 6,5.),88/)' 4,)

+)/4/.6$%5(' &6$/7/' <&.)/*7' +)/4/.6$/)'-%.$' *' 3/+.$' ,4' =>?' #$/' +/)4,)7*56/' 3%44/)/56/

@/.-//5'.$/'&%7+8%&.%6'7,3/8&'*53'AB2'%56)/*&/&'-%.$'.$/'6,)/&'*53'%&'()/*./)'.$*5'.$/

5,C+)/4/.6$%5('&6$/7/?

DEFF

#122

Issues: Accuracy

SAP w/ prefetching

!"

!"#$%&'()*+)',&%-.%/012&'2./30%"4.1'.-'50%".$4'/&/.%6'/.7&84'9":;'3%&-&:2;"1#)'

#$%&' ()*+$&' &$,-&' .$/' 012' 3%44/)/56/' 5,)7*8%9/3' .,' *66:)*./' 7/7,);' 6,5.),88/)' 4,)

+)/4/.6$%5(' &6$/7/' <&.)/*7' +)/4/.6$/)'-%.$' *' 3/+.$' ,4' =>?' #$/' +/)4,)7*56/' 3%44/)/56/

@/.-//5'.$/'&%7+8%&.%6'7,3/8&'*53'AB2'%56)/*&/&'-%.$'.$/'6,)/&'*53'%&'()/*./)'.$*5'.$/

5,C+)/4/.6$%5('&6$/7/?

DEFF

#122

Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.

Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.

(for DRAMs)

Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.

Trends …

Jacob, Ng, & Wang: Memory Systems, 2007.

Trends …

tFAW (& tRRD & tDQS) vs. bandwidth (Dave Wang’s thesis)

DISK & FLASH

Disk

Chapter 17 THE PHYSICAL LAYER 621

RAMAC to the washing machine-size disk drives of
the 1970s and 1980s and, fi nally, to the palm-size disk
drives of the 1990s and today. Today’s disk drives all
have their working components sealed inside an alu-
minum case, with an electronics card attached to one
side. The components must be sealed because, with
the very low fl ying height of the head over the disk
surface, just a tiny amount of contaminant can spell
disaster for the drive.

This section very briefl y describes the various
mechanical and magnetic components of a hard disk
drive [Sierra 1990, Wang & Taratorin 1999, Ashar 1997,
Mee & Daniel 1996, Mamun et al. 2006, Schwaderer
& Wilson 1996]. The desirable characteristics of each
of these components are discussed. The major physi-
cal components are illustrated in Figure 17.8, which
shows an exposed view of a disk drive with the cover
removed. The principles of operation for most com-
ponents can be fully explained within this chapter.
For the servo system, additional information will be
required, and it will be described in Chapter 18.

17.2.1 Disks
The recording medium for hard disk drives is

 basically a very thin layer of magnetically hard mate-
rial on a rigid circular substrate [Mee & Daniel 1996].
A fl exible substrate is used for a fl exible, or fl oppy,
disk. Some of the desirable characteristics of record-
ing media are the following:

Thin substrate so that it takes up less space
Light substrate so that it requires less power
to spin
High rigidity for low mechanical resonance
and distortion under high rotational speed;
needed for servo to accurately follow very
narrow tracks
Flat and smooth surface to allow the head
to fl y very low without ever making contact
with the disk surface
High coercivity (Hc) so that the magnetic
recording is stable, even as areal density is
increased

•
•

•

•

•

Actuator

Flex cable

Load/Unload
Ramp

Disk

Spindle & Motor

Head Disk Assembly

Magnet structure
of Voice

Coil Motor

Case

FIGURE 17.8: Major components of today’s typical disk drive. The cover of a Hitachi Global Storage Technologies UltraStarTM
15K147 is removed to show the inside of a head-disk assembly. The actuator is parked in the load/unload ramp.

ch17_P379751.indd 621ch17_P379751.indd 621 8/8/07 3:55:16 PM8/8/07 3:55:16 PM

Flash SSD

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Magnet structure of

voice coil motor

Spindle & Motor

Disk

Actuator

Flash

Memory Arrays

Load / Unload

Mechanism

(a) HDD (b) SSD

Flash memory
arrays

Circuit board

ATA Interface

Disk Issues

• Keeping ahead of Flash in price-per-GB is difficult (and expensive)

• Dealing with timing in a polar-coordinate system is non-trivial

• OS schedules disk requests to optimize both linear & rotational latencies;
ideally, OS should not have to become involved at that level

• Tolerating long-latency operations creates fun problems

• E.g., block-fill not atomic; must reserve buffer for duration; Belady’s MIN
designed for disks & thus does not consider incoming block in analysis

• Internal cache & prefetch mechanisms are slightly behind the times

Flash SSD Issues

• Flash does not allow in-place update of data (must block-erase first);
implication is significant amount of garbage collection & storage management

• Asymmetric read [1x] & program times [10x] (plus erase time [100x])

• Proprietary firmware (heavily IP-oriented, not public, little published)

• Lack of models: timing/performance & power, notably
Flash Translation Layer is a black box (both good & bad)
Ditto with garbage collection heuristics, wear leveling, ECC, etc.

• Result: poorly researched (potentially?)
E.g., heuristics? how to best organize concurrency? etc.

SanDisk SSD Ultra ATA 2.5” Block Diagram

Flash SSD Organization & Operation

Ctrl

IDE

ATA

SCSI

Host

x16

S
R

A
M

MPU

ECC
D

at
a

B
u

ff
er

x32

Flash Translation

Layer

Data

&

Ctrl

x32

F
la

sh
 C

o
n

tr
o

ll
er

x16

x8

x8

x16

x8

x8

Flash

Array

Flash

Array

Flash

Array
Flash

Array

Host I/F

Layer
NAND I/F

Layer

• Numerous Flash arrays

• Arrays controlled externally
(controller rel. simple, but can
stripe or interleave requests)

• Ganging is device-specific

• FTL manages mapping (VM),
ECC, scheduling, wear
leveling, data movement

• Host interface emulates HDD

Flash SSD Organization & Operation

Ctrl

IDE

ATA

SCSI

Host

x16

S
R

A
M

MPU

ECC
D

at
a

B
u

ff
er

x32

Flash Translation

Layer

Data

&

Ctrl

x32

F
la

sh
 C

o
n

tr
o

ll
er

x16

x8

x8

x16

x8

x8

Flash

Array

Flash

Array

Flash

Array
Flash

Array

Host I/F

Layer
NAND I/F

Layer

I/
O

 C
o
n
tr

o
l

I/O

Column

R
o
w

Data Reg

Cache Reg

Control

Logic

Cmd Reg

Status Reg

Addr Reg

CE#
W#

R#

Flash Memory Bank

Data Reg

Cache Reg

2K bytes

1 Block

1 Page = 2 K bytes

1 Blk = 64 Pages

1024 Blocks per Device (1 Gb)

Flash

Array

• 2 KB Page

• 128 KB Block

• 2 μs page read

• 200 μs page program

• 3 ms block erase

• 32 GB total storage

Flash SSD Timing

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array into
data register

Xfer from data to
cache register

Subsequent page is
accessed while data is read
out from cache register

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed while
data for subsequent page is
written into cache register200 us

Read 8 KB
(4 Pages)

Write 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

disk-interface speeds are scaling up with serial interface and fiber channel, SSD’s performance is

expected to be limited by the media transfer rate. We have measured the effect of media transfer rate on

the performance of NAND Flash SSD by scaling I/O bus bandwidth from 25 MB/s (8-bit wide bus at 25

MHz) up to 400 MB/s (32-bit wide bus at 100 MHz). As shown in Figure 7, performance does not

improve significantly beyond 100 MB/s.

However, note that, even when performance saturates at high bandwidths, it is still possible to

achieve significant performance gains by increasing the level of concurrency by either banking or

implementing superblocks. Performance saturates at 100MB/s because the real limitation to NAND Flash

memory performance is the device’s core interface—the requirement to read and write the flash storage

array through what is effectively a single port (the read/cache registers)—and this is a limitation that

concurrency overcomes.

5.4. Increasing the Degree of Concurrency

As shown previously, flash memory performance can be improved significantly if request latency is

reduced by dividing the flash array into independent banks and utilizing concurrency. The flash controller

can support these concurrent requests through multiple flash memory banks via the same channel or

through multiple independent channels to different banks, or through a combination of two. To get a

better idea of the shape of the design space, we have focused on changing the degree of concurrency one

I/O bandwidth at a time. Figure 8 shows example configurations modeled in our simulations with

bandwidths ranging from 25 MB/s to 400 MB/s. This is equivalent to saying, “I have 4 50 MHz 8-bit I/O

channels... what should I do? Gang them together, use them as independent channels, or a combination of

the two?”

The performance results are shown in Figure 9. Though increasing the number of available

concurrency in the storage sub-system (number of banks x number of channels) typically increases

16

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

kH
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

(a) Single channel (b) Dedicated channel for each bank (c) Multiple shared channels

Figure 8: Flash SSD Organizations. (a) Single I/O bus is shared - 1, 2, or 4 banks; (b) dedicated I/O bus: 1, 2, or 4

buses and single bank per bus; (c) multiple shared I/O channels - 2 or 4 channels with 2 or 4 banks per channel.

Some Performance Studies

0

1

2

3

4

1
x 8

 x
25

1
x 8

 x
50

2
x 8

 x
25

1
x 1

6
x 5

0

1
x 8

 x
10

0

2
x 8

 x
50

1
x 1

6
x 5

0

4
x 8

 x
25

2
x 1

6
x 2

5

1
x 3

2
x 2

5

2
x 8

 x
10

0

1
x 1

6
x 1

00

4
x 8

 x
50

2
x 1

6
x 5

0

1
x 3

2
x 5

0

4
x 1

6
x 2

5

2
x 3

2
x 2

5

4
x 8

 x
10

0

2
x 1

6
x 1

00

1
x 3

2
x 1

00

4
x 1

6
x 5

0

2
x 3

2
x 5

0

4
x 3

2
x 2

5

4
x 1

6
x 1

00

2
x 3

2
x 1

00

4
x 3

2
x 5

0

4
x 3

2
x 1

00

Read Response Time vs. Organization

Re
sp

on
se

 T
im

e
(m

se
c)

Configuration

I/O Access Optimization

• Access time increasing with level of banking on single channel

• Increase cache register size

• Reduce # of I/O access requests

F
la

sh
 C

o
n
tr

o
ll

er

Data Reg

Cache Reg

Data Reg

Cache Reg

Data Reg
Cache Reg

Data Reg
Cache Reg

Independent

Banks

Flash

Array

Flash

Array

Flash

Array

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed while data for
subsequent page is transferred200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Cache Reg

Data Reg

1 Block

1 Page

64 Pages

Flash

Array

2 K bytes

1 Page
Cache Reg

Data Reg

1 Block

1 Page

64 Pages

2 K bytes

4 Pages

Cmd

5 cycles
0.2 us

3 us

8192 cycles
327.68 us

I/O [7:0]

R/W

Xfer from cache to
data register Page is programmed200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3 (d) Write

using 8 KB

cache register

(a) 2 KB Cache Register (b) 8 KB Cache Register

(c) Write

using 2 KB

cache register

F
la

sh
 C

o
n

tr
o

ll
er

Data Reg

Cache Reg

Data Reg

Cache Reg

Data Reg
Cache Reg

Data Reg
Cache Reg

Independent

Banks

Flash

Array

Flash

Array

Flash

Array

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed while data for
subsequent page is transferred200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Cache Reg

Data Reg

1 Block

1 Page

64 Pages

Flash

Array

2 K bytes

1 Page
Cache Reg

Data Reg

1 Block

1 Page

64 Pages

2 K bytes

4 Pages

Cmd

5 cycles
0.2 us

3 us

8192 cycles
327.68 us

I/O [7:0]

R/W

Xfer from cache to
data register Page is programmed200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3 (d) Write

using 8 KB

cache register

(a) 2 KB Cache Register (b) 8 KB Cache Register

(c) Write

using 2 KB

cache register

8 KB Write, 2 KB reg. - 4 I/O accesses

8 KB reg. - Single I/O access

I/O Access Optimization

• Implement different bus-access policies for reads and writes

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed
while data for
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Access to I/O bus is not needed for 3 us and bus
can be released if another memory bank asks for it.
However, at the end of 3 us, it has to be acquired
again.

Writes do not need I/O access as frequently as
reads. I/O bus access is required between
programming pages - 200us

(a) Release bus when it is not needed

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Hold I/O bus between data burst even if it is not needed

(b) Reads hold bus during entire data transfer

Writes do not need I/O access
as frequently as reads

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed
while data for
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Access to I/O bus is not needed for 3 us and bus
can be released if another memory bank asks for it.
However, at the end of 3 us, it has to be acquired
again.

Writes do not need I/O access as frequently as
reads. I/O bus access is required between
programming pages - 200us

(a) Release bus when it is not needed

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Hold I/O bus between data burst even if it is not needed

(b) Reads hold bus during entire data transfer

Reads: Hold I/O bus between data bursts

