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To make the common case fast, most studies focus on the computation phase of 

applications in which most instructions are executed. However, many programs spend 

significant time in the I/O intensive phase due to the I/O latency. To obtain a system 

with more balanced phases, we require greater insight into the effects of the I/O 

configurations to the entire system in both performance and power dissipation 

domains.  

Due to lack of public tools with the complete picture of the entire memory hierarchy, 

we developed SYSim. SYSim is a complete-system simulator aiming at complete 

memory hierarchy studies in both performance and power consumption domains.  

In this dissertation, we used SYSim to investigate the system-level impacts of several 

disk enhancements and technology improvements to the detailed interaction in 



  

memory hierarchy during the I/O-intensive phase. The experimental results are 

reported in terms of both total system performance and power/energy consumption. 

With SYSim, we conducted the complete-system experiments and revealed intriguing 

behaviors including, but not limited to, the following:  

• During the I/O intensive phase which consists of both disk reads and writes, 

the average system CPI tracks only average disk read response time, and not 

overall average disk response time, which is the widely-accepted metric in 

disk drive research. 

• In disk read-dominating applications, Disk Prefetching is more important than 

increasing the disk RPM. On the other hand, in applications with both disk 

reads and writes, the disk RPM matters.  

• The execution time can be improved to an order of magnitude by applying 

some disk enhancements. Using disk caching and prefetching can improve the 

performance by the factor of 2, and write-buffering can improve the 

performance by the factor of 10. Moreover, using disk caching/prefetching 

and the write-buffering techniques in conjunction can improve the total 

system performance by at least an order of magnitude.  

• Increasing the disk RPM and the number of disks in RAID disk system also 

have an impressive improvement over the total system performance. 

However, employing such techniques requires careful consideration for trade-

offs in power/energy consumption. 
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CHAPTER 1:   INTRODUCTION

1.1. Problem Description

The 90/10 rule states that 90% of the execution time is spent in 10% of the code. Most

studies, therefore, focus on the computation phase which contains the most repeated number

of instructions--i.e. the main loops, are executed, believing that it is the most important part

in the entire course of execution. The argument for this is to make the most repeated case

fast. However, this dissertation takes a different path. We are not looking at the duration that

the most repeated instructions are executed; we are looking at the duration that the most time

spent in the execution. 

Run # User (s) Kernel (s) I/O stall (s) Total (s)

1 (cold cache) 93.11 15.06 600.83 709

2 (warm cache) 92.7 16.3 397.00 506

3 (warm cache) 92.8 14.3 425.90 533

4 (warm cache) 93.3 14.3 460.40 568

5 (warm cache) 93.6 14.3 441.10 549

Table 1.1: Execution Time Breakdown for System #1: 750MHz CPU with 96MB 
memory

Run # User (s) Kernel (s) I/O stall (s) Total (s)

1 (cold cache) 90.4 6.4 164.20 261

2 (warm cache) 90.1 6 126.90 223

3 (warm cache) 89.8 5.7 129.50 225

4 (warm cache) 90.5 5.5 121.00 217

5 (warm cache) 90.3 6.1 168.60 265

Table 1.2: Execution Time Breakdown for System #2: 750MHz CPU with 128MB of 
memory



 2

Table 1.1 shows the execution time breakdown for gzip in a real system. The system has

a 750MHz CPU with 96MB of the system memory and runs Fedora Core 3. Table 1.2 shows

the execution time breakdown for gzip in another real system. The second system is the

same system as the first system, but the system memory is set to 128MB. One would expect

that the memory in both systems should be large enough to run a SPEC benchmark Though

the systems spent significant amount of time executing the user code, they also spent more

time stalling for I/O. 

Figure 1.1 shows the simulation results of an entire execution of gzip, a spec benchmark,

on our complete-system simulator--SYSim, in a single-processing environment. The system

configuration used in this example is a 2-GHz Pentium processor, 128MB of main memory,

and a 12k-RPM disk drive with built-in disk cache. The figure shows the interaction

between all components of the entire memory hierarchy, including the level-1 instruction

cache, the level-1 data cache, the level-2 unified cache, the DRAM, and the disk drive. All

graphs use the same x-axis, which represents the execution time in seconds. The x-axis does

not start at zero since the system boot time is excluded. Each data point is collected for every

10 milliseconds epoch. The CPI graph shows 2 system CPI values: one is the average CPI

for any 10 milliseconds epoch, the other is the accumulated average CPI. The duration with

no data point displaying means no instructions are executed due to the I/O latency. The

application is run in single-user mode to make accurate calculation of execution time.

Otherwise, the kernel would swap to other processes on a system call to read from disk.

Therefore, disk delay shows up as stall time. The course of execution when the accumulated

average CPI is over 100 is the I/O intensive phase (i.e. before the 140th second), while the
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Figure 1.1: The System CPI. The figure shows the System CPI over the entire run of gzip. The system configuration is a 2-GHz processor
with 128MB of memory and a 12k-RPM disk. The CPI graph shows 2 CPI values: one is the instant CPI for every 10ms, another is the
accumulated average CPI. The duration having no data point means no instructions are executed due to the I/O latency. The course of
execution when the accumulated CPI is over 100 is the I/O intensive phase, and the course of execution when the CPI is below 100 is the
computation phase.
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course of execution when the CPI is below 100 is the computation phase. Note that the CPI,

the DRAM accesses, and the Disk accesses are in log scale.

During the course of the execution, there are I/O intensive phase and steady or main

computation phase. The figure shows that the program spent a significant amount of the

time, if not most, in the I/O intensive phase due to the I/O activities. Unlike the disk, the

other components in the memory hierarchy cause very little activity during the I/O intensive

phase. On the other hand, those components are accessed regularly during the computation

phase which is where the most instructions are executed, and a phase during which the disk

is mostly idle. Therefore, the I/O intensive phase has been exposed as a significant

component due to the I/O latency with respect to the total execution time.

Most studies skip the I/O intensive phase due to the claim that it is unimportant as it is

only executed once. However, despite being run only once, the I/O intensive phase takes far

longer than other phases. The underlying reason for the lack of attention to this issue is that

the I/O intensive phase is dealing with I/O activities which only a small number of tools

implement due to the complexity and time-consuming experimentation. These tools can take

years to develop, and a single data point on an experiment can take weeks or even months to

execute. For these reasons, most publications conduct an experiment only on the

computation phase and claim a single digit CPI value. Unfortunately, they entirely ignore

the effects of the I/O intensive phase. As figure 1.1 shows, the CPI value can vary by many

orders of magnitude due to the I/O activities during the long I/O intensive phase. CPI finally

reduces to a single-digit number during the computation phase as portrayed by many

studies. Therefore, the techniques that simply ignore the I/O intensive phase and claim 10%

or even a factor of 2 improvement over only computation phase, as exhibited in most
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processor, cache, and DRAM enhancements, may have only minor impact for the entire

course of execution.

The solution to this problem is to investigate the I/O. To obtain a system with more

balanced phases, we require more understanding of the effects of the parameter

configurations of the I/O to the entire system, especially during the I/O intensive phase. A

variety of disk optimization techniques including caching, write buffering, prefetching, and

parallel I/O have been invented to optimize I/O operations. These techniques have been in

place in the server-classed disk drives for over 10 years. As the technology is getting

cheaper with the time, there is a shift to using these techniques in PC disk drives as well. For

example, in general, an optimizing technique would be first introduced in server drives.

Then, a few years later, the technique will be implemented in desktop drives. After widely

used in desktops for another few years, it would be applied in mobile drives. As a result, an

optimization technique would take approximately 10 years to shift from server class disks to

mobile drives. In addition, with better technology, the disk physical characteristics are also

improved, including the RPM (rotational speed in term of round-per-minute), the seek time,

and the disk drive interface. 

The effectiveness of these techniques in term of total system performance, however, is

not clear because they have been studied in isolation by different researchers using different

methodologies. As the performance gap between the processor and disk-based storage

continues to widen, increasingly aggressive optimization of the storage system is needed.

This requires a good understanding of the real potential of the various I/O optimization

techniques and how they work together. Therefore, we are required to study the effects in the

full-system scale.
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To our knowledge, this dissertation is the first to explore disk design space during the

I/O intensive phase, and the results are reported in both total system performance and the

power/energy consumption. We will show later that the overall system performance can be

improved greatly by the enhancements in the disk drives, i.e. using disk caching and

prefetching can improve the performance by the factor of 2, and write-buffering techniques

can improve the performance by the factor of 10. Moreover, the combination of disk

caching/prefetching and the write-buffering technique is the most important enhancement to

focus on since the enhancement can improve the total system performance over an order of

magnitude without increasing the energy consumption significantly. Increasing the disk

RPM and the number of disks in RAID disk system also have an impressive improvement

over the total system performance. However, since such techniques can consume significant

energy, they have trade-off to be considered carefully. Our studies also revealed that as the

capacity of the main memory decreases to the capacity which causes memory page

swapping during the I/O intensive phase, the overall system performance decreases greatly.

This type of behavior will also continue to show as the size of application’s memory

footprint grows, which is the trend for the future applications. Therefore, increasing the

memory size will only solve the problem in the short term. The long-term solution is to

improve the disk system performance.

Recently, the design trade-off of performance versus power consumption has received

much attention because of the following [36]: 

1. the ever-growing number of disk-based mobile systems that need to provide 

services with the energy supplied by a battery of limited weight and size; 

2. the technical feasibility of high performance computation due to heat extraction; and
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3. concerns about the operating costs of large systems caused by electric power 

consumption as well as the dependency of systems operating at high temperatures 

because of power dissipation. For example, a data warehouse of an Internet service 

provider with 8000 servers requires 2 MW [36].

Thus, the demand for low-power systems is increasing not only for mobile systems but

also for general-purpose systems. Additionally, the energy consumption of the computer

systems will scale up as they become more complex.

In general, optimization techniques aiming at performance do not necessarily optimize

power consumption and can often lead to more power consumed. An et al. [33] demonstrate

this fact with spatial database application. They evaluate three spatial indexing methods for

memory resident database in embedded systems from both the energy and performance

angles. Their experimental results show that one indexing method is superior to others in

performance angle while aggravating the power dissipation. Other publications also exhibit

that performance optimization techniques can aggravate the power dissipation. For example,

in [34], the simulation results of an embedded system running an MPEG video show that

using a 4-way set-associative, burst SDRAM L2 cache in addition to the L1 cache improves

performance by approximately 10% but almost doubles the total energy consumption.

Therefore, since there are trade-offs in the performance and energy consumption, care must

be taken to apply the performance optimizations. 

Energy-efficient design requires reducing power dissipation in all parts of the design.

Design decisions in a part of a system (e.g., the micro-architecture of a computing element)

can affect the energy consumption in another part (e.g., memory and/or memory-processor

busses), or even affect the energy consumption in many parts. For example, reducing miss
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rates in L1 cache can reduce the access and power consumption in other lower-level

memory. Another example is that a power reduction technique in the memory can be

responsible for increasing the power consumption in the processor as demonstrated by

Kandemir et al. [40]. They evaluate five state-of-the-art high-level compiler optimizations

on energy consumption, considering both the processor core (datapath) and memory system.

They found that, while most performance oriented optimizations reduce the overall energy

consumption, they also increase the energy consumption in the datapath. As a result, energy-

efficient system-level design must address the reduction and balance of power consumption

in all constituents. 

Nowadays, the cost per memory bit is extremely low, and sheer memory size is rarely

the main issue in system design. In stead, memory performance and power are now the key

challenges. Memory accesses become slower with respect to the processor and consume

more power with increasing memory size. Many studies show that memory power and

access time dominate over 50% of the total power and performance for computations with

large storage requirements[37, 38, 1]. As a result, memory becomes the main bottleneck.

All advanced memory organizations rely on the concept of memory hierarchy. High

hierarchy levels are made of small memories, close to computation units, and tightly

coupled with them. Low hierarchy levels are made of increasingly large memories, far from

computation units, and shared. Hierarchical organizations reduce memory power by

exploiting non-uniformities in access frequencies. Most applications access a relatively

small area in memory with high frequency, while most memory locations are accessed a

small number of times. In a hierarchical memory, frequently-accessed locations should be
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placed in high hierarchy levels, closer to the processor, thereby minimizing average cost per

access.

One technique which is implemented in many levels of memory hierarchy is caching.

Caching temporarily holds data that is likely to be utilized in a faster memory, called cache.

The term “cache” is used in every level in the memory hierarchy where the technique is

applied. Therefore, terms, such as Memory Cache, Disk Cache, and File System Cache,

confuse most people, even the people in Operating Systems and disk research. Sometimes

they use these terms interchangeably. To clarify the terms used in this dissertation, the terms

are defined as following. All Memory Cache, Disk Cache, and File System Cache serve the

same purpose, which is to hide the disk latency by caching the data in the location closer to

the processor. In this dissertation, Memory Cache indicates the level-1 data cache, level-1

instruction cache, level-2 cache, and so on. Disk Cache, sometimes called Disk Buffer, is a

set of memory chips physically located in a disk drive. Disk Cache usually exists without the

knowledge of the operating system, and it is controlled by the processing unit embedded in

the disk drive. The File System Cache is a part of the system memory, managed by the

operating system and reserved for files which are read from the disk system. Therefore, the

File System Cache is physically located in the main memory which is usually in the DRAM,

but it can be anywhere in the memory hierarchy.

Approaches to memory optimization considering both power and performance in the

literature can be grouped into three classes [36]: 

1. Memory hierarchy design assumes a given dynamic trace of memory access, 

obtained by profiling an application, and produces a customized memory 

hierarchy. Many publications present strategies for the optimal cache 
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configuration [43, 44, 45, 46, 47], and others partition each memory level into 

subbanks to be able to put into low-power mode when not used [47, 49, 50, 51]. 

Many recent publications insert specialized buffers in the hierarchy [52, 53, 54, 55, 

56, 57] to improve data locality in each memory level and/or to reduce traffic 

between them. These specialized buffers are also used as instruction compression 

buffers [58, 59, 60, 60]. 

2. Computation transformations for memory optimization assumes a fixed memory 

hierarchy and tries to modify the storage requirements and access patterns of the 

target computation to optimally match the given hierarchy. For example, data 

structure selection [63, 64], register and memory allocation [65, 66], dynamically 

switching devices to low-power mode [67, 68], extending the low-power duration of 

a device by code transformation [69, 70], and reducing memory address bus 

transitions [71, 72, 73, 74]. 

3. Synergic memory and computation optimization tries to concurrently optimize 

memory access patterns and memory architecture [41, 42, 62].

In this dissertation, we explore the disk drive optimization techniques, which are

physical improvements and enhancements with additional hardware. Since we only

concentrate on customizing a level in memory hierarchy without attempts to modify the

access pattern, our approach can be classified into the first group, Memory hierarchy

design.

A magnetic disk has been considered a fundamental component in a computer system

since 1965 [39]. It primarily serves as long-term, non-volatile storage for files, and as a level

of the memory hierarchy below main memory. Disk is included in the virtual memory
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implemented in most popular operating systems as a slow memory during program

execution. Though disk is an indispensable part of general-purpose computer systems, so far

no literature addresses the complete picture of the memory hierarchy including disk, or how

memory systems (caches and DRAM) interact with disk in both performance and power

dissipation. As we will show in the next section, one reason is that there are no proper tools

available in the public domain for such studies. Such a tool would have to demonstrate

accurate interactions between the caches, the main memory, and the disk via I/O requests

from the operating system. The components must be implemented in detail to capture the

systemic interactions between them. Furthermore, as low-power consumption is another

system requirement, the tool needs to estimate the instantaneous power dissipation in each

component to reflect the efficiency in power consumption. Such tools are considered very

complex to implement. 

Therefore, SYSim was created to be a complete-system simulator aiming at complete

memory hierarchy studies. SYSim focuses on demonstrating the detailed interaction in

memory hierarchy in both performance and power domains. In this dissertation, we

employed SYSim to explore several disk enhancements and the disk physical technology

improvements during the I/O intensive phase. The experimental results were reported in

both total system performance domain and the power/energy consumption domain. 
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1.2. Contribution and Significance

The contribution in this dissertation is two-fold. First, we explore several disk

enhancements and disk physical technology improvements in both isolation and in

combination, considering both total system performance and the power/energy

consumption, focusing on the I/O intensive phase. Secondly, we create a complete-system

simulator, SYSim, to demonstrate the detailed interaction in memory hierarchy in both

performance and power domains.

With SYSim, we are able to conduct the complete-system experiments to evaluate the

disk optimization techniques effect on actual total system performance and power/energy

consumption. To our knowledge, this dissertation is the first to explore several disk

enhancements and technology improvements both in isolation and in combination during

the I/O intensive phase of applications. The disk enhancements we studied include disk

caching, prefetching, write buffering, and parallel I/O. In addition, the disk technology

improvements we explored include the disk seek time, rotational speed, and interface data

rate. The results are reported in terms of both total system performance and the

power/energy consumption. We captured the following intriguing behaviors:

• During the I/O intensive phase which consists of both disk reads and writes, average 

CPI tracks only average disk read response time not overall average disk response 

time, which includes both disk read/write response time. This is important because 

most disk studies report performance in terms of average disk response time.

• The effect of the size of the disk cache is limited to the presence of the cache with a 

particular size. That is increasing the size of the disk cache will not result in better 

performance if the disk cache is already large enough. This behavior is also agreed 
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with the file system cache size and disk cache size exploration by Zhu and Hu 

in [75].

• In the disk read-dominating benchmarks, Disk Prefetching is more important than 

increasing the disk RPM. That is rotational latency and bandwidth can be overcome 

by simple prefetching during disk read phase.

• In the benchmarks containing both disk reads and writes, the disk RPM matters. This 

is because the disk maintains the concepts of non-volatile storage, so disk write 

requests must be processed to the disk immediately. The experiment shows that 

using some techniques, such as, NVRAM to buffer the writes, may improve the 

performance significantly.

• Increasing the number of disks in a RAID system does not proportionally translate 

into better performance. For instance, increase number of disks form one to eight 

does not improve performance by the factor of 8. Worse, the power/energy 

consumption does increases proportionally by the number of disks: a system with 8 

disks dissipates roughly 8 times the power of a single-disk system.

• The cost of writing in RAID system is significant as the RAID systems usually 

suffer from small writes [80]. If the cost of a write is reduced, such as by 

implementing write buffer mechanism, the overall system performance will be 

improved significantly.

• Individual DRAM chips dissipate little power, but a system must have a substantial 

amount of DRAM to keep the disk from dissipating significant power. Moreover, 

when there is sufficient DRAM capacity in the system, the total DRAM power can 

be significant.
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• The energy consumption seems to have more significance than the power 

dissipation. The energy consumed can grow significantly with different disk 

parameters because the I/O latency substantially prolongs the program execution 

time.

• In the systems with fast disks, increasing the system bandwidth alone fails to 

improve performance directly. To significantly improve total system performance 

further, disk enhancement techniques are required.

1.3. Organization of Dissertation

The dissertation is organized as follows: Chapter 2 provides an overview of the memory

hierarchy. Both Caches and DRAM-based memory systems from the system level down to

the circuit level are discussed to provide the reader fundamental insights about the memory

hierarchy. Chapter3 gives a background about disk drives in computer systems, and

describes a drive’s physical components, data organization, and interfaces. Chapter 4

discusses related works in the literature for the dissertation. It consists of insight about

system simulators in the research community, disk drive enhancements, and disk drive

technology improvement that we considered in this dissertation. Methodology for proposing

simulator, SYSim, is discussed in Chapter 5. It details the parameter settings in our

experiments, the simulator implementation details, and sample output to provide more

insight in our proposed complete-system simulator. Chapter 6 presents the experiments and

results for the memory system studies, mainly about system-level behaviors focusing on the

disk system configuration. Finally, we end the dissertation with the conclusions.
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CHAPTER 2:   MEMORY HIERARCHY

In this chapter, we will be providing background information regarding the memory

hierarchy in a general-purpose computer system, primarily focusing on the cache and main

memory. The chapter will consist of detailing the memory hierarchy in general. Other topics

discussed will be the first level in the memory hierarchy and cache. A detailed background

on cache design is given to serve as the foundation while discussing concepts used in cache

tools. We also include the basics of cache design. The cache tools we used in our

experiment, CACTI and Wattch, are also introduced, as well as a general explanation of

how the selections have been made for the cache configuration and power dissipation

calculation. After that, we discuss the main memory included in a general-purpose

computer, based on DRAM (Dynamic Random Access Memory). Then, the basic structures

of DRAM devices and memory system organizations are described in some detail. The

section starts with the description of the smallest unit of the DRAM, a memory cell, moves

upward to the DRAM device, and then to DRAM system organization. Next, the DRAM

memory access protocol is discussed to provide an explanation of fundamental DRAM

operations and interactions between them. Finally, the chapter concludes with abstracted

concepts of DRAM memory controller design.
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2.1. Memory Hierarchy

A relatively unlimited amount of fast memory with low cost is always a requirement for

future computer systems. Memory hierarchies have been invented to support this

requirement. A memory hierarchy is defined as the hierarchical arrangement of storage in

computer architecture. The hierarchy takes into consideration the advantage of both locality

of accesses and the cost-performance ratio of memory technologies. The principle of locality

states that most programs do not access all code or data in well-distributed spatial or

temporal distributions. The programs have some forms of locality in their accesses. Another

principle is the memory hierarchy organization. Each level of the hierarchy is organized in

such a way that it can be accessed with higher speed and lower latency than lower levels.

These two principles are the basis of the hierarchy, which is based on memories of different

speeds and sizes. Since fast memory technology is expensive, a memory hierarchy organizes

different speeds and sizes of memory into several levels, with the smaller, faster, and more

expensive memory placed closer to the processor. The goal is to provide a memory system

with cost comparable to the cheapest level of memory and speed comparable to the fastest

level of memory. The levels of the hierarchy usually are inclusive, meaning that data located

in the upper levels are also included in the levels below. The data in the memory hierarchy

may also be exclusive, which means data is allocated in only one level at a time among

Microprocessor

Level 1
Cache

Level 2-N
Cache

MemoryCPU
fastest fast slow

Figure 2.1: Memory Hierarchy in Typical Computer Systems. 
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multi-level caches. Note that each level maps addresses from a larger memory to a smaller

but faster memory that is placed closer to the processor in the hierarchy. As part of address

mapping, the memory hierarchy also provides address checking and protection schemes

preventing harmful address accesses.

2.2. Virtual Memory

Virtual memory allows programs to run in a memory address space whose size and

addressing are independent from the computer's physical memory. If a program exceeds the

physical memory capacity, virtual memory automatically loads or unloads pages without the

user program knowing. A page is simply a chunk of memory that is loaded or unloaded as a

single unit. Therefore, virtual memory reduces the startup time for a program since only the

necessary pages are loaded at startup. On the other hand, in a multiprocessing environment,

multiple processes can run simultaneously with their own independent address spaces.

Virtual memory divides physical memory into pages and allocates them among different

processes. It locates the unnecessary pages in some secondary storage and loads only pages

necessary for multiple processes at a given moment. It automatically manages the two levels

of the memory hierarchy, which are main memory and secondary storage. Virtual memory

also protects the processes’ address spaces by restricting the processes to only the address

spaces to which they belong. 

With virtual memory, the address referenced by the processor is called a virtual address.

The virtual addresses are translated by a combination of hardware and software to physical

addresses, which are used to access main memory. This process is called memory mapping

or address translation. A data structure called a page table is used in address translation.
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Each page table entry is indexed by the virtual page number and contains the physical page

address. Two virtual page numbers can map to the same physical page frame. However, the

size of the page table is quite large compared with the size of the system memory: the page

table can occupy approximately 0.1 -1% of the system memory. Additionally, the address

translation process would deteriorate the system performance if every memory access

required another access for address translation. 

The TLB (translation look-aside buffer) is introduced to mitigate the cost of the address

translation process. Since the address translations for accesses have spatial locality, the TLB

is used to improve address translation by caching recently accessed page table entries. The

process of address translation via TLB can be placed before or after the cache depending on

what scheme is used. Therefore, address translation is directly related to caching, and it will

be discussed further in the next section regarding cache operations. The page table entries

cached by TLB have been recently referred to by the processor and therefore their physical

pages are located in main memory. When the processor refers to an address, the system

looks it up in TLB first. If the entry is found in the TLB, the referring virtual address is

translated to a physical address accordingly. This process eliminates the need to look up the

address in the actual page table located in main memory. Therefore, accessing memory to

look up a page table entry for address translation is not necessary in this case. However,

when a TLB miss occurs, which is when the referring page table entry is not found in the

TLB, the system unavoidably accesses the page table for the entry. The TLB misses may

cause a series of activities to allocate a new page for the entry, including memory page

allocation, page table entry creation, and TLB entry insertion, depending on the status of the

page. 
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The TLB miss is handled by the operating system or hardware. If the memory page was

previously allocated, the operating system would only require looking up of the page table

entry in the page table and inserting it into the TLB. Then the access can be restarted. In the

process of scanning through the page table, the operating system may find that the referring

entry is actually unmapped. A mapped virtual page is defined as a virtual page previously

allocated by the operating system, and whose mapping information is currently maintained

under the operating system’s awareness. In contrast, an unmapped page can occur in two

situations which are (1) it has not been previously allocated by the operating system, or (2) it

has been de-allocated. In either situation, its mapping information is discarded, and the

system initiates the page allocation process mentioned above. Virtual memory systems can

be categorized into two classes: those with fixed-size blocks, called pages, and those with

variable-size blocks, called segments.

2.3. Caches

The term cache is applied to the techniques buffering reusable data since locality exists

in the reference stream. Caching can improve the performance in many computer system

levels. Examples include file caches, disk caches, name caches, web caches, etc. Generally,

caches in computer architecture refer to the first levels of the memory hierarchy. Caches

have been an integral and ever-growing part of modern microprocessors. Approximately

half of a modern microprocessor’s die area is allocated for caches and the number of

transistors dedicated to caches is still growing. They are usually implemented with a number

of arrays of SRAM cells because an SRAM cell is superior in terms of performance versus a

DRAM cell. Caches also use the same fabrication process as the processor core. 
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2.3.1.Cache Memory Cell

Figure 2.2 shows the basic SRAM cell, which is an implementation of a six-transistor

memory cell (6T MC). This 6T MC cell is connected in a way that it restores the charge

back into the memory cell, so the charge does not decrease and the need for refreshing the

cell is eliminated. The 6T MC has only one port, which can be used to either read or write a

values. When there is a read access, the wordline (WL) is asserted and the voltage difference

between the bitline pair is detected. The pair of cross-coupled transistors and the access

transistors pull the voltage all the way up to Vdd or down to the ground according to the bit

data value. After that, the bitlines are precharged to the original voltage for the next access.

In the case of a write, the bitline is driven with a differential voltage from an external source

according to the new data to be written. The wordline WL is then asserted and the value that

is to be stored is latched into the memory cell. Most conventional designs use this full-

CMOS six-transistor memory cell with different variations including sizing, physical layout,

and transistor threshold voltages for low power.

word line

bit line bit line

word line

bit line bit line

Figure 2.2: The basic SRAM cell--six-transistor memory cell(6T MC). 
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2.3.2.Cache Operations

A cache consists of multiple blocks of data. Data blocks are usually organized in a set-

associative manner. For example, a cache with four sets and two blocks per set is called two-

way set associative. A data block mapped onto a particular set can be freely placed in any of

those two blocks in the set. The one-way set associative cache is called a direct-mapped

cache and the cache with one set is called fully-associative. Intuitively, more blocks per set

translate into more freedom to place the data block to any available blocks in the set, but, as

a result, more time and/or power is taken to process the lookup. A cache consists of two

arrays, which are the tag array and the data array. The tag array contains an address tag on

each block frame that gives the address the data block contains. It also contains a valid bit to

identify the validity of the tag entry. 

Figure 2.3 shows the read operation to a cache. The virtual address from the processor is

divided into virtual page number and page offset. The virtual page number is translated to a

physical page address via a page table entry in the TLB. Then, the physical page address is

combined with the page offset to produce a physical address. Next, the physical address is

divided into tag, index, and block offset. The block offset field selects the desired bytes from

the block, the index field selects the set in the cache, and the tag field is compared in parallel

against the tags of a selected cache set for a hit. If the address tag is matched with any of the

tags from the selected cache set, it is called a cache hit. If it is not a match, it is called a cache

miss, and the physical address is forwarded to the next level of memory hierarchy. Note,
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accessing the cache and address translation at the TLB can be done simultaneously

depending on how the virtual address is divided and translated.

The address translation process can be different than the process described above. It

depends on whether the virtual address or the physical address is used to tag and index the

cache. The virtual address referred to by the processor core is not the same as the physical

address which is used to refer to the location physically in memory, so the system requires

address translation. Modern processors handle the address translation with the cooperation

between the TLB and the operating system. The differences in caches and TLB placement in

VIRTUAL ADDRESS

TAG DATA TAG DATA
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Figure 2.3: Block Diagram of a 2-way set associative cache organization, 
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the memory hierarchy create different address translation schemes. These different address

translation schemes are described below.

The first scheme is physically indexed, physically tagged (PIPT). In PIPT caches, both

the tag and index of the cache are in the form of physical addresses. Meaning that the tag and

index are identified after the completion of the address translation. Therefore, the TLB

lookup process has to be completed before the cache can be accessed, which can slow down

the system. However, if the referring page table entry is not a valid entry in the TLB, the

system has to access the memory for the entry, translate the address, and then access the

cache sequentially. As a result, the benefit of using TLB can be overshadowed by sequential

memory accesses for the TLB miss process followed by the actual memory access. 

The second scheme is virtually indexed, virtually tagged (VIVT). In VIVT caches,

unlike PIPT, both the index and tag are identified from the virtual address directly from the

processor without the translation. This VIVT scheme improves the speed of cache access

significantly by eliminating the address translation. However, the scheme suffers from

several problems, including: 

1. Care must be taken to changes in TLB entries and changes in address space since 

virtual address translations usually are changed as part of normal kernel operation. 

Cache lines must be flushed if the cache lines’ translations have changed.

2. Cache line Aliasing Problem: multiple virtual addresses may exist for the same 

physical address, even in a single address space. Each of these virtual addresses 

should never be in the cache at the same time, even though they represent the same 

data. 
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To solve mentioned problems in VIVT, the virtually indexed, physically tagged (VIPT)

scheme is introduced. The VIPT scheme can maintain the speed of cache accesses

comparable to VIVT. The scheme is as described in the previous section. The index is

identified in the virtual address, but the tag is identified in the physical address. VIPT can

solve the aliasing problem because the tag refers to the physical address. Therefore, VIPT

can detect aliasing when two identical tags exist in the cache. Depending on OS page

mapping and shared memory protocol, a VIPT cache can be constructed in such a way that

cache-line aliasing will never occur.

Since, in VIPT, the process of cache lookup and TLB lookup can be processed

simultaneously, the cache access speed of VIPT is improved versus PIPT. However, the

processor can not acknowledge a cache miss until the address translation is complete.

Finally, the last scheme, physically indexed, virtually tagged (PIVT), is basically not

used and is not discussed further.

When a cache miss occurs, a block must be selected to be replaced with the referring

data. A direct-mapped cache selects the block specified by the address, since there is only

one location that the data can go. On the other hand, the set-associative and fully-associative

caches have many blocks to select from. There are a number of strategies employed for

selecting the block to be replaced, which are collectively called the cache replacement

policy. The most common policy is called least-recently used (LRU), which selects the

block that has not been accessed for the longest time.

There are two basic options when writing data to the cache, which are write back and

write through. Write back writes the data to the block in the cache. The modified cache

block is written to a lower level of the memory only when it is replaced. On the other hand,
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write through writes to both the block in the cache and to the block in the lower-level

memory. Since the data are not needed on a write, there are two common options on a write

miss, which are write allocate and no-write allocate. Write allocate loads the block to the

cache on a write miss, and then restarts the write which causes a write hit. In contrast, no-

write allocate does not load the data in the cache, but modifies the block in the lower level

where the data is located.

To allow concurrent accesses, a cache can be given multiple ports. Multiported caches

can be implemented using different methods. The most common methods are true

multiporting and creating multiple independent banks. True multiported caches include

additional access transistors for each port, which cause a significant increase in memory area

and wire length within the cache. On the other hand, multiple independent banks divide the

cache into small banks, where each bank is a simple single-ported cache. Multiple

concurrent accesses can be satisfied if the accesses are to different banks. The disadvantage

of multiple independent banks is that the cache controller requires additional complexity and

intelligence to control each individual bank.

The cache controller functionality includes controlling cache operations and accesses to

comply with cache strategies mentioned above. Its function also includes effectively

managing other functions, such as multiporting with multiple banks which requires

intelligence to control accesses and prevent bank conflicts. Lastly, the cache controller

controls the interfacing mechanism to the lower level of memory when a miss occurs.

Although caches can be implemented in many different ways, the simple cache

implementation described in this section serves as a fundamental cache design.
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One approach to improve cache performance is to reduce the cache miss rate. All misses

can be sorted into three categories: compulsory, capacity, and conflict. Compulsory misses

are misses caused by accessing the blocks for the first time. These misses occur to bring the

blocks into the cache. Capacity misses are misses due to the limitation in the size of the

cache because the cache can not hold all the blocks. Conflict misses are misses caused by

multiple blocks mapped to the same set, but the set cannot hold all blocks mapped to it. To

reduce the misses, there are three common cache organization strategies: increasing the

cache size, increasing the cache associativity, and increasing the block size. While

increasing the cache size is a costly fool-proof method, increasing the cache associativity

and the block size have their optimal points. Increasing both cache associativity and the

block size too aggressively can cause the miss rate to increase.

2.3.3.CACTI: An Integrated Cache Timing, Power, and Area 
Model

CACTI [12] is a widely-accepted analytical model for the access and cycle times of on-

chip direct-mapped and set-associative caches. The inputs to the model are the cache size,

block size, and associativity, as well as array organization and process parameters. CACTI

was originally written by Wilton and Norm Jouppi at DEC WRL. It is available publicly for

academic purposes. 

Figure 2.4 shows the organization of the SRAM cache being considered in CACTI.

First, the decoder decodes the address, then the appropriate row is selected according to the

decoded address by driving one wordline in the data array and the corresponding wordline in

the tag array. Only one wordline in each array can be asserted at a time. Along the selected
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wordline, each memory cell is associated with a pair of bitlines, which are initially

precharged high. Then, each memory cell in that row pulls down one of its two bitlines

according to the value stored in the memory cell.

Each sense amplifier detects the changes in multiple pairs of bitlines, whose number

depends on the layout parameter. The sense amplifier determines the value of the memory

cell by detecting which bitline in a pair is pulled down. Multiple pairs of bitlines can share

one sense amplifier by inserting a multiplexor before the sense amps. To specify the pair of

bitlines to be detected, the select signals from the decoder are fed to the multiplexor.

Figure 2.4: Cache structure. 
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The data from the tag array is compared with the tag bits of the address. The number of

comparators required depends on the number of associativity of the cache, for example an

N-way set-associative cache requires N comparators. The comparison results, whether a hit

or a miss, drive valid output to the output multiplexors. These output multiplexors select the

appropriate data from the data array in the case of a set-associative cache or a cache in which

the data array is wider than the output width. Additionally, the output multiplexors drive the

selected data out of the cache.

Table 2.1 and Table 2.2 show the input and output parameters of CACTI.

Input 
Parameter Use

C Cache size in bytes

B Block size in byes signifying the number of bytes in a single cache 
entry

A Cache associativity

TECH Technology node in micrometers

Nsubbanks Number of cache subbanks

b0 Number of bits of output data

baddr Number of bits of system address

Table 2.1: CACTI input parameters

Output 
Parameter Use

Ndwl Number of segmentations of the wordline (Data)

Nspd Aspect ratio control parameter (Data)

Ndbl Number of segmentations of the bitline (Data)

Ntwl Number of segmentations of the wordline (Tag)

Ntspd Aspect ratio control parameter (Tag)

Ntbl Number of segmentations of the bitline (Tag)

Table 2.2: CACTI output implementation parameters
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CACTI calculates the access and cycle times by estimating delays of the cache

components, including:

• decoder

• wordlines (in both the data and tag array)

• bitlines (in both the data and tag array)

• sense amplifiers (in both the data and tag arrays)

• comparators

• multiplexor drivers

• output drivers (data output and valid signal output)

The delay of each of these components is estimated separately and the results combined

to estimate the access and cycle time of the entire cache. The delay of each component is

estimated by decomposing each component into several equivalent RC circuits, and using

simple RC equations to estimate the delay of each stage. 

There are two potential critical paths in a cache read access. One is the time to access the

tag array and the other is the time to access the data array. The time to read the tag array,

perform the comparison, and drive the multiplexor select signals is compared with the time

to read the data array. If the former is larger, then the tag array is the critical path. Otherwise,

the data array is the critical path. Despite the cache designer’s attempts for faster tag path

compared with the data path, it is not always possible to do this. Therefore, both sides must

be modeled in detail to determine the critical path.

The cycle time is calculated by adding the access time and the precharge delay together.

The precharge delay is assumed to be dominated by the wordline fall time and bitline rise

time in the data array. The wordline fall time is approximately equal to the wordline rise
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time and a constant bitline rise time is assumed to be equal to four inverter delays (each with

a fan-out of four).

To determine the optimal configuration, CACTI performs an exhaustive search over all

combinations of the output parameters corresponding to the specified input parameters. The

implementation with the best behavior among all criteria is considered the optimal based on

the CACTI’s optimization algorithm, which is different for each version of CACTI.

CACTI 2.0 is an extension of the first version of CACTI with support for fully-

associative caches, multiported caches, feature size scaling, and power modeling. The inputs

are the cache capacity, associativity, cacheline size, number of read/write ports, and feature

size. Its analytical models compute the access time and the energy consumption of the cache

for all combinations of possible configurations. The calculation for each configuration

divides the data and tag array into smaller subarrays. Finally, CACTI returns the

configuration that has the best access time and energy consumption as determined by its

optimization function as mentioned above. 

The CACTI 2.0 optimizing function takes into account only the access time of the cache

and the energy consumption. CACTI 2.0 does not have a concept of the total area or the

efficiency (percentage of area occupied by the bits alone) of each configuration. It

approximates the wire capacitance and resistance that is associated with the wires in many

parts of the cache because it does not have a detailed area model. Additionally, since the

optimizing function considers only the access time and the energy consumption, the cache

configuration output may not be efficient in area or aspect ratio.

CACTI 3.0 adds a detailed cache area model to CACTI 2.0. CACTI 3.0 calculates the

area occupied by each component of the cache for each possible configuration. The model
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produces both the efficiency in performance and the aspect ratio of the entire cache for each

configuration. To determine the best configuration, the optimizing function considers access

time, power consumption, efficiency of the layout, and aspect ratio. The detailed area model

accurately calculates the wire lengths and the associated capacitance and resistance of the

address and data routing tracks. This results in more realistic power estimates. Finally,

CACTI 3.0 also supports fully independent banking of caches.

2.3.4.Wattch

Wattch [19] is a framework for analyzing and optimizing microprocessor power

dissipation at the architecture-level. Wattch is claimed to be 1000 times or more faster than

existing layout-level power tools, and yet maintains accuracy within 10% of their estimates

as verified by using industry tools on leading-edge designs. It provides a power evaluation

methodology within the popular SimpleScalar framework. Since, in this dissertation, Wattch

is used as a power estimation tool for caches, this section will discuss Wattch only in the

context of cache power estimation.

Wattch calculates the dynamic power consumption (Pd) as: 

Pd = CVdd
2af

where

C is the load capacitance,

Vdd is the supply voltage, 

f is the clock frequency, and

a is the activity factor.
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The activity factor a is a fraction between 0 and 1 that represents the average switching

activity on each clock cycle. Wattch estimates C based on the circuit and the transistor sizing

as described below. Vdd and f depend on the assumed process technology as defined in the

header file power.h. The user can choose among 0.10, 0.18, 0.25, 0.35, 0.40, and 0.80

micron technology, and Wattch will automatically resize the transistor accordingly.

Wattch calculates the power consumption based on only the capacitance of each stage,

rather than both R and C. Additionally, Wattch analyzes and sums the power consumption

of all paths, not only the critical path. In Wattch, certain critical transistors are automatically

sized based on the model parameters to achieve reasonable delays. 

Figure 2.5: Schematic of wordlines and bitlines in Wattch array structure [19]. 
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A cache in Wattch was implemented as an array structure. The power model of the cache

is based on the number of rows, columns, and the number of read/write ports. These

parameters affect the size and number of decoders, the number of wordlines, and the number

of bitlines. In addition, these parameters are used to estimate the length of the pre-decode

wires and the lengths of the array’s wordlines and bitlines. The wordline and bitline

capacitance are computed in a similar way. The wordline capacitance includes the

capacitance of the wordline driver, the gate capacitance of the cell access transistor

multiplied by the number of bitlines, and the capacitance of the wordline’s metal wire. The

bitline capacitance includes the diffusion capacitance of the pre-charge transistor, the

diffusion capacitance of the cell access transistor multiplied by the number of word lines,

and the metal capacitance of the bitline. The number of ports also affects the power

consumption due to additional transistor connections on wordlines, two additional bitlines,

and longer wires on both wordlines and bitlines. 

Wattch authors estimate the physical implementations for cache structures using the help

of the CACTI tools [12]. As described in the previous section, CACTI takes the cache size,

block size and associativity as inputs, and chooses the organization that gives the smallest

access time. 

Wattch considers three different options for clock gating to disable unused resources in a

multi-ported cache. 

1. All-or-nothing approach. The full modeled power will be consumed if any 

accesses occur in a given cycle, and zero power consumption otherwise.

2. Scaled linearly. If only a portion of a cache’s ports are accessed, the power is scaled 

linearly with the number of accessed port(s).
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3. Scaled linearly with 10 per cent. It is the same as the second option except that 

unused units dissipate 10% of their maximum power, rather than drawing zero 

power.

To interface with SimpleScalar, the Wattch power model tracks which units are accessed

on each cycle and how. The power model also varies the estimated power based on the

number of ports used and which clock-gating scheme is used.

2.4. Main Memory: DRAM

The next level down in the memory hierarchy is the main memory. Main memory

functions include servicing requests from the cache and interfacing with the I/O. Main

memory is usually made up of a set of DRAM chips organized in a way that the memory

requests can be sent in interleaving manners. It has been widely accepted that the computer

system performance is mostly limited by the performance of DRAM-based memory

systems. The reason is that the gap between the rate of DRAM memory system performance

improvement and the rate of processor performance improvement has been continuously

increasing during the past thirty years. This phenomenon is well-known as the memory gap.

There are two main reasons in this phenomenon. First reason is the slow improvement in the

interface between the processor and the DRAM due to off-chip location of DRAM. The

second reason is the decision of implementing enhancements in DRAM chips relies heavily

on the manufacturing costs. Therefore, only enhancements with significant performance

improvements for minimal manufacturing cost are considered for standard DRAM devices.
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This section discusses DRAM devices and the memory systems organizations. The content

of this section is summarized from a part of David Wang’s Ph.D. dissertation [17].

2.4.1.DRAM Memory Cell

Figure 2.6 shows the basic DRAM cell, which is implemented as a one transistor and

one capacitor (1T1C) memory cell. This memory cell, widely used in modern DRAM

devices, contains one data bit. The memory consists of one transistor as an access transistor

and one capacitor to hold the charge according to the data of one bit. Before a memory cell

can be read, the bitlines have to be precharged to Vdd/2. The memory cell is read by

asserting the wordline to turn on the access transistor, and then the voltage representing the

data value is placed on the bitline via the access transistor. The bitline voltage changes are

only minimal, but can be detected by the sense amplifier. Then, the sense amplifier senses

the value of the data and amplifies the signal up or down. Finally, the charges are restored

into the capacitor and the access transistor is turned off by removing the voltage at the

word line

bit line

word line

bit line
Figure 2.6: a DRAM memory cell--one transistor one capacity (1T1C). 



 36

wordline. In the write process, only two steps are required. First, the bitline is driven with

the new data value. Then, the row select is asserted on a wordline to turn on the access

transistor and the data bit is latched into the memory cell. Therefore, the read process is

essentially a read with a restoring write.

However, the charges stored in the memory cell capacitor leak through the access

transistor. As a result, data stored in DRAM cells must be periodically read-out and written

back to restore the charges representing the data value. Otherwise, the charges stored in the

capacitor will no longer represent the originally stored data bit. This process is called

refresh. The DRAM device is usually refreshed every 32 or 64 milliseconds to maintain the

usability of the data.

In a DRAM array, the capacitance of a storage capacitor is much smaller than the

capacitance of the bitline. Therefore, when the voltage representing the data value is placed

on the bitline via the access transistor, the voltage on the bitline is changed minimally. This

minimal voltage change on the bitline is difficult to measure in an absolute sense. Therefore,

a differential sense amplifier is added in DRAM devices to detect the minimal voltage

change by comparing the bitline voltage to a reference voltage.

2.4.2.Standard DRAM Device

Figure 2.7 shows a block diagram for a Fast-Page-Mode (FPM) DRAM device. The

description of the standard DRAM device in this section will be based on this diagram. All

DRAM devices consist of one or more arrays of DRAM cells, which are organized into a

number of rows and columns. A column represents the smallest unit of addressable memory

on that device, which can contain multiple bits of data. In this figure, the DRAM cell
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consists of 4096 rows, 1024 columns per row, and 16 bits of data per column. Modern

DRAM devices can have multiple arrays in each device. These arrays are referred to as

banks. A number of logic circuits are also included in a DRAM device to control the timing

and sequence of the device operation, such as the clock generator and the refresh controller.

To access a row in a data array, the memory controller places the row address on the

address bus and asserts the row address strobe (RAS) signal. The DRAM device buffers the

address on the address bus in the row address buffer and then forwards the address to the

row decoder. After that, the row address decoder asserts the specific row of the data arrays

according to the accepted address. The data bits in memory cells along the selected row are

Figure 2.7: 64 Mbit Fast Page Mode DRAM Device (4096 x 1024 x 16) [17]. 
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placed on their corresponding bitlines and then they are sensed and remain in the array of

sense amplifiers.

Generally, one or more column accesses follow a row access. After the row access is

completed, a number of bits remaining in the sense amplifiers are accessed according to the

column access command. Like the row access, the memory controller places a column

address on the address bus. Meanwhile, the memory controller also asserts the appropriate

column access strobe (CAS#) signals. The DRAM device then accepts the column address,

decodes it and selects one column in the sense amplifiers according to the decoded column

address. If the command is for a read, the data for that column is then placed onto the data

bus and sent to the memory controller. On the other hand, if the command is for a write

specified by the write enable (WE) signal, the data are overwritten with data from the data

bus.

A DRAM device with a particular capacity can be manufactured in different

configurations. For example, a 1 Gbit DRAM device can be configured into 8 banks x

16384 rows x 2048 columns x 4 bits/column, 8 banks x 16384 rows x 1024 columns x 8

bits/column or 8 banks x 8192 rows x 1024 columns x 16 bits/column. However, the larger

row size means that the device with more bits per row consumes significantly more current

per row activation than the configuration with less bits per row. The larger bitline also

translates into more time to complete the refresh process for the entire array. Therefore, the

different configurations cause differences in current consumption in DRAM devices. With

the differences in current consumption, the DRAM devices require different timing

parameters to limit peak power consumption of DRAM devices.
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Finally, a set of DRAM devices can be organized to process a request together as a rank.

A set of DRAM devices can be connected for a particular size of data bus. For example, 8

DRAM devices with 8-bit column can be connected together to create a rank for 64-bit wide

data bus to form a single rank of memory.

In SDRAM and DDRx SDRAM devices, a column read command transports the data

out from the DRAM devices in burst manner. The column read command moves a variable

number of columns, called a burst, as specified on the programmable mode register. The

burst mode is possible in these DRAM devices because each column of the device is

uniquely identifiable. Given a column address of a multiple-column burst, the SDRAM-

based device rearranges the data in the burst and places the data of the requested address

first. This capability is known as critical-word forwarding.

In DDRx SDRAM burst mode, multiple columns are moved concurrently from the sense

amplifiers to the read latch. Then, the data is pipelined through a multiplexor to the external

data bus. This process is called prefetching. With the burst mode, the operating data rate of

DDRx SDRAM devices can be improved significantly compared to SDRAM devices.

However, the disadvantage of the prefetch architecture is that short-burst accesses are no

longer available.

2.4.3.DRAM-Based Memory System Organization

This section discusses how to organize multiple DRAM devices to create a memory

system. First, we would like to clarify the terms using in the DRAM research community

and also in this dissertation. A channel is an interconnection that DRAM devices are

connected to and these devices operate in lockstep with respect to each other. Usually, one
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channel is controlled by one DRAM memory controller. However, one DRAM controller

can control more than one channel in concert to create a more efficient memory system. For

example, the multiple channels in FPM DRAM were invented to sustain throughput

required by high performance workstations and servers prior to SDRAM. The word bank is

currently used by DRAM device manufacturers to describe the number of independent

DRAM arrays within a DRAM device. Multiple banks in a DRAM device support more

parallel accesses to the data in the different banks simultaneously. Read requests can be

processed simultaneously if they access different banks. The word rank is now used to

denote a set of DRAM devices that operate in lockstep fashion to commands in a memory

system. In DRAM devices, a row is simply the group of storage cells that are activated in

parallel in response to a row activation command. In general, DRAM devices are connected

as ranks of DRAM devices operating in lockstep. This organization causes a specific row in

all DRAM devices in a rank to be activated concurrently with a single row activation

command. This means that a DRAM row actually spans multiple DRAM devices of a given

rank of memory. A column of data is the smallest independently addressable unit of memory

in a DRAM device.

Memory system organizations in many computer systems are typically non-uniform.

The system can contain different sizes and organizations of DRAM devices. The reason for

non-uniformity in a memory system is flexibility. Most computer systems are designed to

allow end users to arbitrarily upgrade the capacity of the memory system by inserting and

removing commodity memory modules. To support upgrades by the end user, DRAM

controllers have to be flexible and handle different configurations of DRAM devices and

modules that the end user could place into the computer system.
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The memory module was created to alleviate the cumbersome memory upgrade process.

Essentially, memory modules are made of small electronic boards that contain a number of

DRAM devices so that multiple DRAM devices can be inserted and removed from the

system board conveniently. Memory modules also provide a standard interface so that

different manufacturers can conform to produce compatible memory upgrades for different

computer systems. Memory modules have been developed progressively over decades to

provide flexibility and compatibility between different systems. Modern memory modules

also include an extra DRAM device to serve as an ECC check bit.

Different memory modules have different configurations and timing parameters. To

provide the memory controller with necessary information, a small flash memory device is

integrated onto the memory module. This small flash memory device is known as a Serial

Presence Detect (SPD) device. SPD provides the configuration parameters and timing

characteristics of the memory module to the memory controller at system initialization. With

SPD, the memory controller can obtain the memory module information required to

effectively access the DRAM devices on the module.

The 30 pin Single In-line Memory Module (SIMM) was first standardized in the late

1980’s. Then, the advent of 72 pin SIMMs made the 30-pin SIMMs obsolete. SIMMs are

single-inline, which mean both sides of the module’s contacts represent the same electrical

contacts. In the late 1990’s, 72 pin SIMMs were obsolete due to the arrival of dual in-line

memory modules (DIMMs). DIMMs are larger in dimension than SIMMs and provide a 64

or 72 bit wide data bus interface. Unlike a SIMM, a DIMM has electrically different

contacts on different sides of the DIMM.
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Registered memory modules have been introduced to reduce electrical loads of a

memory system with large numbers of DRAM devices. In a large memory system, the

electrical loads are segmented through the use of registers that (1) separate the loads of the

DRAM devices on the module from the system and (2) buffer the address and control

signals at the interface of the memory module. The load segmentation limits the number of

electrical loads and shortens the control signal paths of the memory system. However,

registered memory modules introduce longer delays to memory access. 

The topology and organization of the DRAM memory system are important because

memory system topology determines the signal path lengths and electrical loading

characteristics of the memory system. However, due to the sensitivity of memory systems to

the manufacturing costs, the memory system topology has remained essentially unchanged

since the Fast Page Mode DRAM (FPM) era. Synchronous DRAM (SDRAM) and Dual

Data Rate SDRAM (DDR) also employ this memory system topology. The later memory

systems also adopt the topology with the trend of fewer ranks.

Figure 2.8: The Classic Memory Topology [17]. 
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Figure 2.8 shows an example of the classic memory topology. The figure shows a

memory system of 16 DRAM devices are organized into four separate ranks of memory,

which are connected to a single DRAM controller. The bi-directional data bus is divided

into the size of column in a DRAM device and connected to one device in each rank. The

uni-directional address and command bus also connects to every DRAM device in the

system. In this topology, a command is sent via the address and command busses to all

DRAM devices in the memory system. Specified by the chip-select signal, one a selected

rank is activated to process a read command or receive the data for a write command.

Therefore, the rest of the DRAM devices in the system ignore the data and command being

sent by the memory controller.

2.4.4.DRAM Commands

The DRAM memory access protocol is difficult to analyze in detail and is considered to

be a complex task. The large number of combinations of commands in modern memory

systems causes the analysis of the DRAM access protocol to be complex. This section

provides an introduction to basic DRAM commands and their functions. A more detailed

analysis of the DRAM memory access protocol interacting with various DRAM commands

can be found in [17].

Figure 2.9 shows the data movement caused by different DRAM commands. The figure

is used throughout this section as a generic DRAM device to define the basic memory access

commands. The generic DRAM access protocol described by Wang [17] is based on a

resource usage model. The resource usage model holds the condition that two different

commands can be processed concurrently if they do not require the access to the same
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resource at the same moment. However, there are other parameters which must be satisfied,

such as timing parameters to limit the power dissipation of the DRAM systems. Figure 2.9

illustrates four interleaving operational phases for a DRAM command. 

1. the command is transported through the address and command busses and decoded 

by the DRAM device. 

2. data are moved within a bank. The data can be moved in two directions: either from 

the cells to the sense amplifiers for a read request, or from the sense amplifiers back 

into the DRAM arrays for a write command. 

3. the data is moved through the shared I/O gating, read latches and write drivers. 

4. the DRAM device transports the data between the host’s memory controller. The 

data is placed onto the data bus by the DRAM device in case of a read command or 

Figure 2.9: Command and data movement on generic SDRAM device. [17]. 
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by the memory controller in case of a write command. Since the data bus may be 

connected to multiple ranks of memory, multiple commands to different ranks can 

cause conflicts on the data bus.

To operate the DRAM memory systems, there are five generic DRAM commands to be

discussed. Each command associates with a number of timing parameters, which are usually

defined in the DRAM device data sheet to describe the specific command behaviors. The

five commands include row activation commands, column read commands, column write

commands, precharge commands, and refresh commands. A row activation command

moves data from the DRAM cells to the sense amplifiers. The data remain in the sense

amplifiers for the following column read/write access commands to access multiple columns

of data. A precharge command resets the array of sense amplifiers and the bitlines and

prepares the sense amplifiers for the next row access command. Finally, a refresh command

retains the electrical charges in the memory cells of a particular row.

Additionally, some modern DRAM devices also support commands involving complex

actions, for example, a compound column read and precharge command, posted-CAS

command in DDR2 SDRAM, and additional complex commands to manage specialized

hardware. However, we introduce only generic commands in this section as a background

for DRAM operations.

2.4.4.1. Row Activation Command

To access data from the DRAM arrays, the first step is to move the entire row of data to

the sense amplifiers. A row activation command moves data from the DRAM arrays to the

sense amplifiers. To access another row of data, the charges must be restored from the sense
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amplifiers. Therefore, the row activation command is associated with two timing

parameters: tRCD and tRAS. The Row Column (Command) Delay or tRCD is the time for the

row activation command to move data from the DRAM cell arrays to the sense amplifiers.

Then, a column read access command or a column write access commands can transport the

data from the sense amplifiers to the memory controller via the data bus.

The second timing parameters tRAS deals with the charge restoration process to the

DRAM cells. Due to the data movement to the sense amplifier, a row activation command

discharges the DRAM cells of the accessed row. As a result, To prepare the sense amplifiers

for the subsequent access to a different row, the data charges must be restored from the sense

amplifiers back into the DRAM cells. The Row Access Strobe latency or tRAS is defined as

the time that a row access command discharges and restores data from the row of DRAM

cells. After tRAS, the data restoration process is completed, the sense amplifiers are ready,

and the DRAM array can be precharged for another row access to the same bank.

2.4.4.2. Column Read Command 

The function of a column read command is to move particular columns of data from the

array of sense amplifiers to the memory controller via the data buses. The column read

command consists of four different but overlapping phases. 

1. The column address and command are transported through the address and 

command bus, and then decoded by the DRAM device.

2. The specific data columns are accessed at the sense amplifier array of the specific 

bank and moved to the I/O gating. 

3. The data are transported out to the data bus via the I/O gating.
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4. The data are transported on the data bus for the time duration of tBurst or the data 

burst duration.

A column read command is associated with two timing parameters: tCAS and tBurst. The

Column Access Strobe Latency (tCAS or tCL) is the time for the DRAM device to place the

first chunk of the requested data onto the data bus after the moment that memory controller

sends the column read command. tCAS includes step 1 through 3 until the first chunk of the

requested data has finished the movement from the sense amplifiers onto the data bus. In

modern memory systems, data are sent over the data bus in bursts, usually in terms of 2, 4 or

8 beats on the data bus. One beat in Dual Data Rate systems usually means a half clock

cycle. The tBurst or the data burst duration is conventionally defined in terms of a unit of time

instead of a unit of clock cycles. 

2.4.4.3. Column Write Command

The function of a column write command is to move data from the memory controller to

sense amplifiers of a specific bank. The column write command is quite similar to the

column read command with different direction in data movement. Therefore, the same set of

operating phases are repeated here with reversed sequence. 

1. The column address and column write command are transported through the 

address and command bus. 

2. The memory controller places the data onto the data bus. 

3. The data are transported from the data bus through the I/O gating, 

4. The data arrive at the sense amplifiers of the appropriate bank. 
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A column write command is associated with only one timing parameter, tCWD. Column

write delay or tCWD is the time the memory controller waits before placing the data onto the

data bus, after it issues the write command. tCWD is defined differently in different memory

systems. In earlier DRAM and SDRAM, memory controllers place both the write data and

the command at the same time; as a result, tCWD is equal to zero. In DDR SDRAM, write

data is delayed one full clock cycle, and in DDR2, the write delay is one cycle less than

tCAS. Another timing parameter to be introduced is the write recovery time. The write

recovery time or tWR is defined as the time between the moment the data burst ends and the

moment the data complete their movement into the DRAM arrays.

2.4.4.4. Precharge Command

There are two steps in the process of accessing data on a DRAM device. First, data are

moved from the DRAM cells to the sense amplifiers by a row access command. Second, a

number of column access commands move the data in the sense amplifiers to/from the

DRAM devices from/to the DRAM controller. Before the data from a new row can be

accessed, a precharge command prepares the DRAM device. The precharge command resets

the array of sense amplifiers and the bitlines to the original state. The precharge command

also consists of two different phases.

1. The precharge command is transported to the DRAM device, 

2. The selected bank is precharged. 

The precharge command is associated with one timing parameter tRP. The row cycle

time tRC is summation of two row-access related timing parameters, tRP and tRAS. Usually,
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the row cycle time of a DRAM device is an indicator for the speed of the DRAM device to

access data, including, 

1. Moving data from the DRAM cell arrays into the sense amplifiers,

2. Restoring the data to the DRAM cells, and

3. Precharging the bitlines to the reference voltage level and making ready for another 

row access command. 

Therefore, the row cycle time restricts the data retrieval speed of the DRAM device

when accessed to different rows in the same DRAM bank.

2.4.4.5. Refresh Command

A refresh command is used to periodically retain the data value in the DRAM cells

because the electrical charges in the storage capacitor gradually dissipate through the access

transistor. Therefore, to retain the data value, the data stored in DRAM memory cells must

be periodically read out and written to the full value. This can be done by a refresh

command. The time interval between refresh commands must be shorter than the time

period in which data in storage cells deteriorate to indistinguishable values. The refresh

command also has disadvantages of consuming bank bandwidth and power. Therefore,

varieties of different refresh mechanisms are used by different systems to reduce controller

complexity and/or bandwidth impact.

A refresh command reads the row address from an internal register, and then the DRAM

device sends all banks the row address. After that, each bank refreshes that row

concurrently. The refresh command is associated with a timing parameter tRFC. The refresh

cycle time or tRFC is at least equal to or longer than the row cycle time tRC. In modern
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DRAM memory systems, the memory controller typically issues a refresh command once

every 32 or 64 milliseconds for each row in a bank.

The sequence of DRAM commands can vary in different systems depending on the

policy of the memory controller. For example, it is more beneficial to remain an active row

of data at the sense amplifiers in case of applications with high locality in memory accesses.

The reason is the subsequent memory accesses can retrieve data from the same row directly

without accessing another row. This can save both latency and energy. On the other hand,

applications with low locality of accesses would favor memory systems that immediately

precharge the DRAM array and prepare the DRAM bank for another row access. The

memory systems in the former case that keep rows active at the sense-amplifiers are called

open-page memory systems, and the memory systems in the later case that precharge a bank

right after a column access are called close-page memory systems. 

2.4.5.Memory Controller

The system controller correctly and efficiently manages the flow of data among the

processors, I/O devices, and the memory system. The DRAM memory controller is located

inside the system controller. The function of the DRAM memory controller is a subset of the

system controller: to manage the flow of data to and from DRAM devices. The interface

protocol of a DRAM memory controller is characterized by the DRAM access protocol and

timing parameters.

Most DRAM devices are manufactured without any intelligence. The devices only

operate when the commands are sent to them. The data sheets are provided by DRAM

manufacturers to specify the timing constraints for individual DRAM commands. To
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maintain the correctness of DRAM operations, the DRAM controller must operate within

the timing parameters defined in the datasheet.

This section provides an overview for a number of important issues to the design and

implementation of modern DRAM memory controllers. Specifically, following items are

particularly important to the design and implementation of a DRAM memory controller:

• Row-buffer Management Policy

• Address Mapping Scheme

• Memory Transaction and DRAM Command Ordering Scheme

2.4.5.1. Row-buffer Management Policy

Row buffer management policies are the policies that manage the operation of sense

amplifiers. In modern DRAM devices, arrays of sense amplifiers act as temporary buffers

for a previously-accessed row of data. Modern memory controllers typically employ the

following two policies to manage the operations of sense amplifiers in DRAM devices: the

open-page policy and the close-page policy. Different row-buffer management policies also

exist. The row-buffer management policy impacts the selection of the address mapping

scheme, the memory command re-ordering mechanism and the transaction re-ordering

mechanism for DRAM memory controllers.

The open-page row-buffer management policy is aimed at favoring memory access

sequences directed at the same row of memory. The open-page row-buffer management

policy keeps sense amplifiers open, meaning the sense amplifiers are not immediately

precharged. So, each sense amplifier holds an entire row of data for subsequent access. This

policy assumes that different columns of the previously accessed row may be accessed again
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in the near future. If the subsequent memory read access is to access the same row as the

previous memory access, the read access could take the minimal latency of tCAS. The reason

is that only a column access command is needed to satisfy the access. However, if the access

is directed to a different row of the same bank, the memory controller would perform a

series of actions, including precharge the DRAM array, perform another row access, then

perform the column access.

Unlike the open-page policy, the close-page row-buffer management policy is aimed at

favoring random accesses, which tend to map to different rows of memory. It is adopted in

memory systems designed for large-scale multiprocessor systems or some specialty

embedded systems. Due to the combination of memory request sequences, the spatial

locality of the resulting memory access sequence is greatly reduced. Additionally, with

different timings due to the different command combinations, the resulting sequence of

DRAM commands in an open-page system is very difficult to schedule efficiently, as

compared to the same memory access sequence in a close-page memory system.

2.4.5.2. Address Mapping Scheme

The purpose of an address mapping scheme is to reduce bank conflicts and increase

parallelism in the memory system. In a DRAM memory system with an open-page row-

buffer management policy, a sequence of consecutive read requests to the same row of data

can be performed in pipelined fashion, while a similar sequence of read requests with close-

page row-buffer management policy causes longer latency. In a memory system that utilizes

the close-page row-buffer management policy, the latency of each access remains relatively
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the same. With the difference in the access preferences, optimal address mapping schemes

are different for open-page and close-page memory systems.

Open-page Baseline Address Mapping Scheme

In a system that utilizes the open-page row-buffer management policy, consecutive

cacheline addresses should be placed into different channels, then adjacent cachelines

should be mapped into the same row, same bank, and same rank. The baseline address

ordering is as follows: row, rank, bank, cachelines per row, channel, and cacheline offset,

respectively from most significant bit to least significant bit.

Close-page Baseline Address Mapping Scheme

The key assumption of the close-page row-buffer management policy is that there is

little spatial locality in the sequence of memory accesses. In close-page memory systems,

mapping in a similar manner as with open-page would result in a bank conflict, which

greatly under-utilizes available memory bandwidth. To avoid bank conflicts, adjacent lines

are mapped to different channels, then to different banks, then to different ranks. The

baseline ordering is as follows: row, cachelines per row, rank, bank, channel and cacheline

offset, respectively from most significant bit to least significant bit.

In addition to considering row-management policies and due to flexibility and

scalability, memory system organization parameters that can be varied are typically assigned

to the highest address range. For example, rank and channel, which can be changed by user

upgrades. Therefore, the lower-order address assignment can remain unchanged while the

memory modules are altered in the system. However, this mapping scheme allows an

application to utilize only a subset of the memory address space and would limit the
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availability of the memory to fewer ranks. An address mapping scheme with more

scalability would have less rank or channel parallelism to memory accesses.

2.4.5.3. Memory Transactions and DRAM Commands

A design engineer must consider the additional complexity of a high-performance

DRAM memory controller. The DRAM controller design must take into account the specific

DRAM memory system behaviors, application specific requirements, and the type and

number of processing elements in the system. Fortunately, some basic strategies have been

invented to aid in the design of a high performance DRAM memory controller. To name a

few, the strategies are: bank-centric organization, write caching, and seniors first. These are

common to many high-performance DRAM controllers. Also, specific adaptive arbitration

algorithms are unique in specific DRAM controllers.

Write Caching

Write Caching has been used in many levels of memory hierarchy. The basic idea of

write caching is that write requests are typically non-critical, but read requests may be

critical in terms of performance. Additionally, DRAM devices perform poorly in cases of

consecutive read and write requests. Therefore, caching write requests and allowing read

requests to proceed ahead are beneficial to performance. 

DRAM-Bank-Centric Request Queuing Organization

One approach that can benefit when multiple commands are processed in a DRAM

memory controller is multiple queues arranged in a per bank basis. In this approach, DRAM

commands that access the same bank are sent to the same queue. The per-bank queuing

approach allows a memory controller to efficiently schedule requests to the same bank,
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either to the same row or different rows of the same bank. Additionally, bank-centric

organization with a bank-rotation mechanism can process concurrent requests to different

banks, which results in greater utilization of the memory system.

Feedback Directed Scheduling

Typically, the transaction requests do not contain priority information that allows a

memory controller to schedule the transactions more effectively. With direct

communication between a processor and an integrated DRAM memory controller, the

DRAM memory controller can schedule DRAM commands based on the availability of

resources and the DRAM command access history. To achieve the high performance, these

integrated DRAM memory controllers have to be aware of state and access history of the

processor contexts.
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CHAPTER 3:   OVERVIEW OF DISKS

The disk drive is a highly complex electro-mechanical system developed over decades

of research and experimentation. To name a few, the disk drive system incorporates many

disciplines , including physics for magnetic recording and the read/write heads, material

science for various materials used in the disk platter and coating, mechanical engineering for

the actuator and the slider carrying the recording head, electrical engineering for the spindle

motor, its control and the servo mechanism of the actuator, electronics for the read/write

channel and the various control electronics and computer science for architecture of the

drive controller and its cache, firmware and algorithms that controls the operation of the disk

drive.

A magnetic disk has been considered a fundamental component in a computer system

since 1965 [39]. Magnetic hard disk drives will continue to be the dominant form of

secondary storage for the foreseeable future. These drives primarily serve as long-term, non-

volatile storage for files and as a level of the memory hierarchy below main memory. The

disk is included in the virtual memory system implemented in many popular operating

systems as a slower form of memory during program execution.

The performance gap between the processor and the disk drive is greater than the

processor and the DRAM gap. The processor performance has doubled approximately every

two years, and DRAM device data rates are increasing at a rate of 100% every three

years [17] with each new generation of DRAM devices. Unfortunately, the disk drive access
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time improves only 10-15% a year [78]. The solution to this ever-growing problem is to

investigate the I/O. 

A variety of disk optimization techniques including caching, write buffering,

prefetching, and parallel I/O have been invented. These techniques were introduced in

server-class disk drives over a decade ago. As technology becomes less expensive with time,

these techniques are increasingly applied to workstation disk drives as well. In addition,

with better technology, the characteristics of the physical disk are also improved, including

the RPM (rotational speed in rotations-per-minute), the seek time and the disk drive

interface. As the performance gap between the processor and disk-based storage continues

to widen, increasingly aggressive optimization of the storage system is needed. This requires

a profound understanding of the real potential of the various I/O optimization techniques

and how they work together. Therefore, we must study the effects of an entire system.

This chapter presents a high-level discussion of disk drive technology. It also includes an

explanation on how a disk drive works. This background will serve as the foundation for

better understanding of the other parts of the dissertation. This fundamental understanding

will help clarify a number of the design issues and trade-offs that can affect the performance

and power consumption of a disk drive and the disk-based storage subsystems discussed

later. The content of this chapter derives greatly from the Disk section in [102].

3.1. Classifications of Disk Drives

Disk Drives can be classified by a variety of methods. One way to classify disk drives is

by the drive’s form factor. Modern disk drives are usually manufactured in one of four form

factors, namely 3.5”, 2.5”, 1.8” and 1”. These numbers indicate the width of the sealed disk
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drive unit. However, form factors alone are not an effective manner to classify a disk drive.

The reason is that form factors do not indicate the underlying technologies inside the disk

drives. Disk drives with similar form factors can be equipped with very different

functionality, performance and reliability.

A more conventional way to classify a disk drive is according to the application

platforms, which traditionally are:

• The server class drives to be used in high-end or enterprise systems, 

• The desktop class drives to be used in personal computers and low-end workstations

• The mobile class drives to be used in laptop or notebook computers. 

The disk drive’s characteristics and the requirements of each class are specified by the

application environment in which the disk drive is being used. Server drives require high

reliability and performance. Desktop drives require low cost due to the highly price-

competitive personal computer market. Mobile drives require low power consumption.

Today, the boundaries for these classifications have become unclear. The reason is that some

features in a class start to drift to other classes. For example, reliability is required for all

disk drives and there has been an ever-growing trend that some higher-end systems are

beginning to use desktop drives in some applications to take advantage of their low cost.

Another disk drive classification is the type of interface the drive provides. Current

interfaces in modern disk drives are: Fiber Optic Channel (FC), parallel SCSI (Small

Computer System Interface), parallel ATA (Advanced Technology Attachment) and the

emerging serial ATA (SATA) and serial attached SCSI (SAS). Server class drives are

commonly available in either FC or SCSI interface. Desktop, mobile and consumer

electronics drives invariably come with an ATA interface. Since server class drives which
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use a SCSI interface are more than twice as expensive as desktop drives, people often

mistakenly think that SCSI interface is expensive. However, the cost of server class drives is

mostly due to expensive technologies that are implemented in server class drives to give

high reliability and performance, not the SCSI interface. Nevertheless, some high-end

storage systems are starting to use ATA desktop drives in certain applications to achieve a

lower system cost.

3.2. Areal Density Growth Trend

Areal density is measured in terms of the number of bits that can be recorded per square

inch. It is one of the most important parameters a disk drive. This parameter determines the

amount of data that can be stored on each platter for a given disk diameter. Areal density

specifies the total storage capacity of a disk drive given the number of platters it contains.

Even though there are many other contributing factors, ultimately this is the one single most

important parameter that governs the cost per megabyte of a disk drive. The rapid growth

rate of areal density over the past thirty years has driven the storage cost of disk drives down

to the level that makes it the technology of choice for online data storage. Recently, areal

density has reached the point where it has become economically feasible to miniaturize disk

drives. This technology improvement opens the consumer electronics opportunity for such

small disk drives. Areal density also has a profound influence on performance.

Areal density consists of two components, namely tpi and bpi. The recording density in

the radial direction of a disk is measured in terms of the number of tracks per inch, or tpi.

The recording density along a track is measured in terms of bits per inch, or bpi. However,

there are many factors that cause the disk drive to be unable to utilize the maximum areal
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density it can provide. For a rotating storage device spinning at a constant angular speed, the

highest bpi is at the innermost diameter, or ID, of the recording area, while the outer track

may utilize less bpi due to the limitation in data organization.

Some of the technology improvements that have enabled areal density growth include:

• thinner magnetic coating - improved magnetic properties

• better head design

• fabrication for smaller heads/sliders

• flying height - spacing between head and magnetic material, resulting in higher 

linear bit density or bpi

• accuracy of head positioning servo, enabling narrower track pitch or tpi

Hsu and Smith [78] reported that, for IBM 3.5-inch server class disks, the linear density

has been increasing by approximately 21% per year, while the track density has been going

up by around 24% per year since 1988. In the last few years, areal density has increased

especially sharply, so that with a least-squares estimate (no weighting), the compound

growth rate is as high as 62%. With only the areal density increasing, the average disk

response and service times are improving by about 9% per year. This performance

improvement is due to areal density increasing. The data is packed more closely together

and can be accessed with a smaller physical movement. 

On the other hand, Hitachi GST's areal density growth rate is reported to be 60% per

year since 1991, and the rate has further accelerated to an incredible 100% per year since

1997 [98]. This acceleration is the result of the introduction of MR read heads in 1991,

GMR read heads in 1997, and AFC media in 2001. Since 1997, track densities have been

increasing faster than linear densities, which is the principal factor for the continuing
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increase in areal density. The track density growth rate is reported at 50% per year while the

linear density compound growth rate is around 30%. However, to achieve the areal density

in the range of terabits per square inch in 2010, both tpi and bpi growth rate have to be

scaled to 25% and 14%, respectively, and a compound growth rate of 46%.

3.3. Performance Metrics

The two widely used measurements of disk drive performance include response time

and throughput. The response time is defined as the amount of time starting from the time a

request is sent to the disk drive system until the moment the disk drive completes the data

transfer. Requests to a disk drive system are usually referred to as I/Os, an abbreviation for

input/output. Response time measures the speed of a drive to service a single request. On the

other hand, throughput measures the disk drive’s ability to serve an amount of data or a

number of requests in a unit of time. Throughput is usually defined in terms of one of two

units: number of I/Os per second (IOPS) or an amount of data transferred per second

(MB/s). Both units are equivalent to each other as they can be converted to the other through

the unit of each I/O request. Response time and throughput are closely related and are

usually closely correlated. As a result, a drive with fast response time will generally also

have high throughput.

For a given disk drive system, the characteristics of a workload can directly affect the

performance of the disk drive system in terms of both response time and throughput. The

characteristics of a workload that can influence performance include:

• Block size – a large block size takes longer time to transfer than a small block size.

• Access pattern – how much sequentiality or randomness does the sequence of 
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accesses have?

• Footprint - the size of the accessed disk area can affect the performance. Accessing 

only a small area of the disk translates into smaller seek distances between I/Os.

• Command type - performance of a read request and a write request can be different 

due to the disk enhancements equipped in the system.

• Command queue depth - the size of the queue can affect the performance. With a 

deeper queue, the request scheduler has more options to improve the disk 

performance by intelligent scheduling.

• Command arrival rate - since both read requests and write requests are sent to the 

disk system in the form of bursts, the longer the bursts, the longer the request wait 

time.

One fundamental element that determines both response time and throughput of a disk

drive is the I/O completion time, which is defined as the time a disk drive requires to process

and complete a user request. The I/O completion time consists of four major components:

command overhead, seek time, rotational latency, and data transfer time,

3.3.1.Command overhead

Command overhead is defined as the time the disk drive’s controller and electronics take

to process an I/O request before the request is sent to the disk’s mechanical parts. The

command overhead at the disk drive’s controller includes the time the controller interprets

the command and allocates the necessary resources to service the request. This controller

overhead is the major portion in command overhead. Another portion of the command

overhead is spent at the end of the I/O request including sending a completion signal to the
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host and cleaning up unused resources. With better technology, command overhead has been

steadily decreasing over the years. The main reason is that the hard drive’s microcontroller

and function-specific hardware have become faster.

3.3.2.Seek time

Seek time is defined as the duration of the disk drive to move the read-write head from

its current track to the destination track to service the next request. Seek time consists of two

components: 

1. A travel time for the actuator to move from its current track to the destination track 

2. A settle time for centering the decelerating head over the destination track and 

maintaining the center position of the track until data access process starts. 

Since seek time deals with mechanical parts in the disk drive, it is one of the largest

components of an I/O access. As a result, the disk research community usually considers

seek time to be very significant. However, we will show later that, with single-user

environment, seek time is unimportant in our experiments due to the application’s

behavior.Despite the fact that today’s disk drives implement zone bit recording (ZBR),

which makes the data organization different on the disk from zone to zone, treating ZBR

disks as non-ZBR disks is in general an acceptably close approximation for seek time

studies. The historical rate of increase in seek time is 8% per year [78].
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3.3.3.Rotational latency

After seeking and settling the head, the disk rotates the platters to position the head at the

destination sector. Rotational latency is defined as the time the disk rotates to position the

head to the start of the destination sector. Disk manufacturers report the average rotational

latency for a disk as half the amount of time of one revolution. A more conventional

parameter to specify the disk rotational latency is by specifying rotational speed. The

rotational speed is usually reported in terms of RPM or revolutions per minute. Therefore,

the rotational speed is simply an inverse proportion to the rotation latency. The historical

rate of rotational speed increase is 9% per year [78]. Like seek time, the rotational latency is

one of the largest components of I/O because it is dealing with moving mechanical parts in

the disk, which are relatively slow as compared with electronic components.

3.3.4.Data transfer time

Data transfer time is defined as the time the data is transferred to/from a disk drive

from/to the host system. Data transfer time is proportional to transfer size and inversely

proportional to data rate. The average transfer size is specified by the operating system and

is determined by the application characteristics. The data rate of a disk drive can be

generally be categorized into two types: (1) the media data rate and (2) the interface data

rate. Media data rate or the internal datarate (IDR) is defined as the rate that data may be

transferred in and out of the magnetic recording media. Generally, the media data rate

depends mainly on bpi and RPM. The internal or maximum media data rate of Hitachi GST

hard drives [98] increased at about 40 per cent per year. Today's server class hard disk drives

have the internal data rates beyond 100 MBytes/s. The increase in internal data rate is mostly
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due to increasing bpi and disk RPM to 10,000-15,000 RPM. However, an increasing internal

data rate comes with the cost of increasing power consumption. To mitigate the effects of

this, disk drive designers have reduced the disk diameter.

On the other hand, the interface data rate is defined as the rate that data is transferred

between the disk drive and the host. The transfer is via an interface. The interface is defined

as the communication channel, which I/O requests and the data are sent from/to the host to

the disk drive. There are several most common standard interfaces for disk drives today. For

example, the parallel and serial versions of ATA in the personal computer realm, and parallel

and serial versions of SCSI and the serial Fibre Channel in the server realm. Though ATA

disks are usually used in personal computers, ATA disks are also deployed as RAID disk

systems in some server applications to lower the overall cost.

3.4. The Physical Layer

3.4.1.Principles of Rotating Storage Devices

All rotating storage devices, with different recording methods and media, are based on

common features and principles, including platter, read and write head concepts. Those

rotating storage devices have a number of platters which hold recording material on their

surfaces. The storage devices also have heads, which are transducers for detecting,

extracting, and converting the signal on the recorded media into electrical signals and vice

versa. The detailed functionality of the heads differs due to the different types of storage

mechanisms and media. A read head is used to detect and retrieve the recorded data.

Therefore, only the read head is required for read-only types of storage devices, such as a
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DVD-ROM. On the other hand, recordable devices, such as magnetic disks and DVD-RW,

require a write head in addition to record the data to the recording media. 

The location of a specific block of data on a disk can be specified by radial and the

angular coordinates. A disk drive with many platters also adds another dimension to the data

coordinates, which is the surface number or the head number. To access data, the head must

be positioned at the data location intended to be accessed. The mechanical parts on which

the head is mounted move the head to the destination radial position. This process of

positioning the head at a particular radial coordinate is called “seek”. The seek process ends

when the head reaches the destination radial position and maintains position at the center of

the track. Then, the disk is rotated to bring the destination data location under the head. The

common approach is to rotate the disk with constant rotational speed rather than spin the

disk from stationary state when needed. The reason for this is rotating the disk from a

stationary state to a constant rotational speed takes a long time and much energy because the

process involves moving mechanical parts. Therefore, rotating the disk with constant speed

does not harm the performance as much as having the disk rotate starting from a stationary

state. Additionally, since a disk request accesses many sequential bits at a time, rotating the

disk at a constant speed will continuously bring many data bits under the head. Separate

electronics participate in rotating storage devices; specific electronics control the rotation of

the disks and the others control the servo mechanism of the head radial positioning. The

servo directly affects the seek time, which is an important factor in performance. 

Additionally, rotating storage devices have electronics to perform as the interface

between the storage device and the host system. As discussed previously, the storage devices

can have multiple platters, which are mounted on the same motor spindle to increase
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capacity. A disk drive with many platters also adds another dimension to the data

coordinates, which is the surface number or the head number. Each surface usually has one

dedicated head for it, so the positioning in this dimension is only a process of electronically

switching to the right head on the destination surface. 

3.4.2.Magnetic Recording

Magnetic recording is founded on materials that can be permanently magnetized,

magnetic fields, and the interaction between them. Permanently magnetizable materials are

called ferromagnetic materials and they are often used as the storage media for recording

since they can provide non-volatility of magnetization. To record data onto the magnetized

storage media, external magnetic fields are applied to induce magnetism in ferromagnetic

materials in the specified direction. To detect and retrieve the recorded data, the magnetic

fields of magnetized ferromagnetic material must be detected. 

Ferromagnetic materials can be classified according to their magnetic behavior exhibited

in hysteresis loops, into a hard magnetic material and a soft magnetic material. A hard or

permanent magnetic material has high magnetic coercivity and high remanence, which is

suitable for magnetic recording media. In contrast, a soft magnetic material is a material

with low magnetic coercivity and low remanence, which is suitable for magnetic recording

head.

The transitions in magnetic orientation between adjacent magnetized grains on the

magnetic recording media are used to represent binary data. By convention, the presence of

a magnetic field reversal represents a digital 1 and the absence of a field reversal represents
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a 0. This data representation has been used conventionally since the beginning of magnetic

recording.

3.4.2.1. Writing

Writing is the process of recording magnetic transition patterns onto a recording

medium. Theoretically, the process of writing requires applying sufficiently strong magnetic

field to the designated magnetized grains to induce saturation magnetization onto the media.

This process changes the transitions in magnetic orientation between adjacent magnetized

grains. In other words, a magnetic recording of digital data storage employs saturated

recording. Since the data is either a digital 1 or a 0, only the polarity of magnetization is

required to determine the digital value. Therefore, to obtain the strongest signal possible, the

recording medium is magnetized to saturation. As a result, saturation magnetization

maximizes the signal-to-noise ratio in the magnetic recording media.

The write head and the write channel electronics perform signal conversion that encode

the user’s data to the appropriate magnetic fields to be applied to the magnetic grains on the

recording media.

3.4.2.2. Reading

Reading is the process of detecting and retrieving the data located on the media by

determining the magnetic pattern recorded the in magnetic grains. The different transitions

in adjacent magnetic grains represent a 1 or a 0. Therefore, the magnetic pattern represents a

set of sequential data on the media. The magnetic pattern is detected by sensing the

transition in adjacent magnetic grains. 
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The read head is the transducer that detects magnetic field transitions. The read head

converts the magnetic field transitions to electrical signals that can be processed and

interpreted by the drive’s electronics. The details regarding the mechanism employed by the

read head detection and conversion process is varied with the type of read head.

3.4.3.Mechanical and Magnetic Components

3.4.3.1. Disks

The recording medium for hard disk drives is basically a very thin layer of magnetically

hard material on a rigid circular substrate. Some of the required characteristics of recording

media include:

• A thin substrate to use less space

• A lightweight substrate use less power while spinning

• High rigidity for low mechanical resonance and distortion under high rotational 

speeds

• Flat and smooth surface to allow the head fly very low without making contact 

• High coercivity (Hc) for the stable magnetic recording 

• High remanence (Mr) for good signal-to-noise ratio

• A square hysteresis loop for sharp transitions between compartments

Magnetic material is composed of numerous grains of magnetic domains, whose size

directly affects the material’s magnetic properties and the media transition noise. Meaning

that more grains are required at a grain transition boundary to reduce noise. This can be
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accomplished by reducing the grain size. However, decrease in grains size for higher TPI

causes the grains become magnetically unstable.

3.4.3.2. Substrates

Recently, glass has been used as substrate materials in disk drives. Though brittle, glass

has become widely used due to reduced disk diameters. Glass can be polished to produce a

surface finish with high level of smoothness. This property makes glass more attractive than

aluminum, even though the cost of glass is higher. Additionally, glass is more attractive

because glass is hard and has better durability against head-contact damage. Therefore, it is

a better solution for mobile applications. With higher tensile strength, glass can be

manufactured in thinner and lighter forms.

3.4.3.3. Magnetic Layer

Originally, particulate media was used as the magnetic layer. However, thin film media

is widely used currently, and the originally-used particulate media have become obsolete.

Thin film media have a layer of magnetic metal deposited directly onto the substrate and

bound there. Unlike particulate media, thin film media eliminate the need to use polymers to

bind the magnetic layer to the substrate. Therefore, magnetic material in thin film media is

not diluted by the nonmagnetic binder, i.e. polymers. This allows for a thinner layer of

magnetic material and results in shorter magnetic transitions between adjacent magnetic

grains. With narrower transitions, thin film media can provide higher areal density. Thin film

media can be produced by a sputtering method. In a sputtering method, a low pressure gas,

such as argon, is accelerated with a high voltage towards the surface of the target magnetic
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material. Then, the surface atoms of the target magnetic material are displaced by the

energized argon ions accelerating toward them. As a result, the magnetic material atoms are

ejected to bond with the substrate, resulting in the thin film of magnetic material on the

substrate.

3.4.3.4. Disk Structure

Besides the substrate and magnetic layer, a magnetic disk is composed of multiple layers

of a variety of materials. Starting from the substrate, there are layers of nickel-phosphorus,

chromium, magnetic media, wear-resistant overcoat, and lubricant. The first layer above the

substrate is nickel-phosphorus. Nickel-phosphorus provides a much harder surface

protecting the disk from damage and can be polished to a very fine surface finish. Above

that is a layer of chromium. Chromium provides a basic microstructure foundation for the

magnetic layer material to be deposited on. Next is the magnetic layer, for which a cobalt

alloy is normally used. A layer of hard-but-not-brittle overcoat is atop the magnetic layer to

protect it from wear and tear and other damages. Hard carbon is usually used as the overcoat

since it satisfies the requirements of being a chemically inert material while still having the

ability to bond well with the magnetic layer. Hard carbon is sputtered onto the disk to

produce the overcoat layer protecting the magnetic layer of the disk. Finally, a layer of

lubricant is placed on the top to prevent possible damages from the contact between the head

and the disk.
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3.4.3.5. Spindle Motor

Modern disk drives use compact and efficient DC motors, such as the three-phase, eight-

pole motor. The motor drives the spindle directly, whose stator is fixed to the bottom of the

disk drive case. A part of the outer sleeve of the motor, the rotor, establishes the spindle.

Disk platters are mounted on to the spindle. Speed of the spindle is electronically controlled

by a servo system.

3.4.3.6. Bearings

To maintain smooth and quiet disk drive operations, disk drives are equipped with

bearings to separate the rotating parts from the stationary parts. The function of bearings is

to support and separate the spindle hub from the stator shaft. Originally, disk drives were

equipped with metal ball bearings. Recently, fluid dynamic bearings (FDBs) have

increasingly been used as a replacement for ball bearings. FDBs produce quiet disk drives

by replacing the ball bearings with a thin layer of lubrication oil. The oil is high in viscosity,

and it resides in a specifically-manufactured container. FBD contains no ball bearings to

cause contact since it utilizes the liquid movement of a lubricant film. As a result, the FDB

spindle motors can produce a quieter and smoother solution, compared to ball bearings, due

to softer impacts between the parts, such as part contact, wobble, and shock. Recently, FDB

motor costs have been decreasing due to mass production and improvement in

manufacturing techniques. It will eventually cost less than a ball bearing motor due to

relative scarcity of parts required.
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3.4.3.7. Heads

Heads are the most important element of a disk drive. There are two types of heads in

disk drives, which are read and write. The write head generates a magnetic field to change

the magnetization direction on the magnetic media. On the other hand, the read head detects

the magnetic recording pattern and retrieves the data from the media.

Write Heads

A basic inductive write head consists of a ring core and a coil of wire wrapped around

the core. Ferrite is normally used as a magnetically soft material for a ring core. There is a

short gap in the core to expose magnetic flux to the media. The head moves very closely

above the magnetic recording media and the core gap is positioned just next to the media.

Similar to electromagnets, which work by applying current through the coil, the current

induces a magnetic field inside the core, whose direction depends on the direction of the

applied current. Therefore, the head is called the inductive head. At the core gap, the two

ends forming the gap establish two opposite magnetic poles. The magnetic flux moves

outside the core from this gap. The magnetic flux from the gap magnetizes the media, which

is a magnetically hard material. The result of magnetization is according to the material

hysteresis loop characteristics or the media and the amount of magnetic flux applied from

the core gap. The distance between the write head and the media has to be shorter than the

write bubble, which is defined as the space which the magnetic field of the write head is

strong enough for writing. After the write process, the resulting magnetization remains in

the magnetically hard media, due to its non-volatile nature. 

Digital magnetic recording uses saturation magnetization to record data. To change the

orientation of the magnetic field in the media, controlled current is applied via the head. The
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direction and magnitude of the magnetic flux leaking to the media is the result of different

directions and the magnitude of the applied current. Regardless of the previous orientation,

the magnitude of the exposed magnetic flux has to be sufficient to completely change the

orientation of the magnetic field of the grains next to the head to the desired orientation. For

instance, to change the orientation of the media grain to the opposite, the current is applied

to the head in the opposite direction of the grain’s magnetic field orientation, and the

magnitude of the magnetic flux from the core is sufficient to reverse the direction. As a

result, saturated magnetization in the opposite orientation is established in the magnetic

media at the designated grains. The process creates a transition in the media where

magnetization changes to the opposite orientation. To create immediate transition in the

process, the media must have a sharp hysteresis loop. This sharp transition in the media

translates into closer grains and higher in linear recording density (bpi). 

Another important factor to increase the areal density is the size of the head. With better

technology, a head dimension can be precisely manufactured. Lithography is used to define

the features of the head, and thin film process is used to construct all its components,

including the core, the gap and the copper windings. While the dimension of the head is

much more compact, the functionality of the head remains exactly the same as an inductive

head.

Read Heads

The read head detects and retrieves the magnetic transitions that are recorded in the

media in order to read the data located in magnetic recording. Unlike the inductive read

head, magnetoresistive (MR) heads sense the flux directly from the media, not the changes

in the flux. As a result, the MR sensor generates high peak differential voltage signals during
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the transition phase. The MR sensors are shielded at the front and back to prevent the MR

sensor from detecting unwanted magnetic fields from adjacent transitions. Therefore, it

detects the magnetic field from the transition right beneath it.

The the main reason for the rapid increase in areal density after the MR head was

introduced in 1991 is the MR head can generate a signal many times larger than an inductive

read head can do. An MR head has low inductance; therefore, MR head is applicable to high

frequency systems. It is also independent from the rotational speed of the disk, since it

detects magnetic flux rather than the rate of change of flux, which is how an inductive read

head operates. The last feature is beneficial to small diameter drives with low RPM.

In the early 1990’s, a sensor with giant magnetoresistance (GMR) was invented. GMR is

a composite sensor with multiple thin layers of different ferromagnetic and anti-

ferromagnetic materials. The GMR manufacturing process is a result of molecular beam

epitaxy process.

Read/Write Heads

The head or read/write head is referring to the transducers for both reading and writing

because the earlier disk drive models had only one inductive head used for both reading and

writing. However, to improve the performance, modern disk drives have separated the read

and write heads. The reason is that each type of head can be customized to suit its specific

purpose better.

Currently, the head is a composition of an inductive write transducer and the MR (or

GMR) read transducer placed on the same arm. The write head is placed behind the read

head, but both move in tandem. Since the read head is not required to be located at the exact

center of the track, a technique called “write wide, read narrow” is applied to today’s disk
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heads. The technique is based on the narrower MR read sensor but wider write pole tip.

Therefore, the write head writes a wider track than the width of the read head. This

technique allows tracks to be packed together closer and results in increasing tpi.

3.4.4.Electronics

The physical components of a disk drive that directly relate to the total system

performance are the electronics that control its operation. Most of the disk drive electronics

are in the form of a set of IC chips on a small circuit board located outside the sealed HDA

chassis. Only the arm electronics module is located inside. 

3.4.4.1. Controller

The controller is composed of a variety of electronic components, including a processor,

ROM, memory controller, host interface, data formatter, ECC & CRC encoder/decoder. It is

consider the center intelligence of the disk drive. Its function is either to perform a disk drive

task itself, or control other components to accomplish the task. The major functions of the

controller include:

• Receive and schedule commands (I/O requests) from the user and report completion of

a command back to the user.

• Manage the built-in disk cache.

• Control the HDA operations, including seek and data access.

• Manage policies including error recovery, fault, and power.

• Start up and shut down the disk drive.
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3.4.4.2. Memory

The functions of memory in the disk drive include:

1. The controller uses a part of the memory as a scratch pad memory.

2. The interface uses a part of memory for speed-matching between the media data 

transfer rate and the data rate of the interface of the disk drive. 

3. A part of memory is used to perform caching for fast data access.

3.4.4.3. Recording Channel

The recording channel receives control signals from the controller and then generates

appropriate process for writing or reading the data from the media. It decides either read or

write head and circuitry to activate. For write data, the recording channel applies the

appropriate direction and magnitude of the voltage to the write head according to the control

signal from the controller. Additionally, the recording channel interprets the data retrieved

from the media by the read head. 

• Write Channel

The write channel is a set of electronics, which is a part of the recording channel. It

translates the user data from their digital format into the required magnitude and direction of

currents to be sent to the write head. Then, the write head manipulates the magnetic

transition in the media according to these currents.

• Read Channel

The read channel is a set of electronics, which is also another part of the recording

channel. It translates the magnetic signals retrieved by the read head to the digital data
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originally recorded. The function of read channel circuit also includes error recovery by a

modulation code decoder to recover the original user data and ECC/CRC information.

3.4.4.4. Motor Controls

Motor Controls have the function to control two disk drive motors: the spindle motor

and the actuator voice coil motor (VCM). These motors are different in both the form of

motion and the mechanical functions. The spindle motor spins the disk platters with a

constant rotational speed. On the other hand, the actuator VCM accurately moves the

actuator to position the head at the destination radial coordinate. Both motors can be

controlled by changing either the amplitude or direction of the current to the motor. 

The actuator servo control system requires special servo patterns, which are written on

the disks at manufacturing time. These servo patterns provide accurate positioning

information on the radial location of a surface. The actuator servo control system uses close-

loop feedback control. The servo patterns are detected by the read channel and then they are

forwarded to the decoding circuit. The decoding circuit decodes the signals into positioning

information, which is fed to the servo control logic. The servo control logic compares the

positioning information with the request’s destination track position, sent by the disk drive’s

controller. The difference between the positioning information from the servo patterns and

the request’s track position is calculated and is used to generate a corrective action signal fed

back to the VCM driver to adjust the position of the head. In today’s disk drives, the actuator

servo control includes a digital signal processor (DSP), an analog to digital converter

(ADC), and a digital to analog converter (DAC). A DSP is used to perform the main

functions of the control. An ADC is used for converting the analog servo signals to digital
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form, while a DAC is used for converting the digital correction signal into analog input for

the power amplifier of the VCM driver.

For the spindle motor, the EMF voltage from the motor coil, generated by the spinning

motor, is monitored to measure the motor’s rotational speed in today’s disk drives. Then, a

close-loop control adjusts the rotational speed accordingly to keep it spinning at a constant

rate.

3.5. The Data Layer

platter 

cylinder 

track 
sector 

Figure 3.1: Basic Data Organization of a disk drive. 
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3.5.1.Disk Blocks or Sectors

Today, all disk drives use a fixed-size block formatting. The blocks are called sectors.

Most disk drives, if not all, specify a sector size of 512 bytes for data. Each sector is

separated from adjacent sectors by physical gaps, which have no recording data. The

presence of a physical gap is to provide the read/write head with extra time and buffering

while accessing an individual sector. Figure 3.2 illustrates the basic fields in a sector. A

sector is composed of a preamble field, data address mark field, data field, ECC, CRC and a

flush pad field. The first field of a sector is a preamble field or the sync field. The preamble

field is approximately 10 bytes long. It defines the frequency and amplitude used to write the

sector. The read channel uses this information to adjust its phase locked loop (PLL) and its

automatic gain control (AGC) circuits. Located next to the preamble field is the data sync or

data address mark. The data address mark contains a few bytes which is used to separate the

preamble and the data. The third field is the data field. Currently, the size of data field is

usually set to 512 bytes. However, people in the disk drive community are attempting to

push the data field to 4KBytes for compatibility and performance reasons. For data recovery,

error correcting codes (ECC) are attached to a sector. Finally, a cyclic redundancy checksum

(CRC) is also included as a part of a sector to further ensure data integrity. The size of CRC

is product dependent.
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ECC and CRC are included to increase reliability. The difference between them is that

the CRC of a sector is calculated over the sector’s data while the ECC is computed over a set

of individual sector information that includes the sector’s data, the CRC, and the implied

logical block address (LBA) of the sector. The hard error rate in a sector with ECC is

reduced to 1 in 1014 for typical desktop drives and 1 in 1015 for typical server class drives.

The last field in a sector is padding. The padding contains a few bytes to facilitate the

process of flushing data through the read channel and other circuits. The padding field helps

maintain the clock while the data is being flushed.

As areal density increases, data becomes more sensitive to errors due to a lower signal-

to-noise ratio and the fact that the same size physical damage can affect more bits. More

redundancy bits per sector in ECC are required to maintain the data integrity. Therefore, the

disk drive industry is under pressure to increase the sector size.

Data

Preamble

Address mark

ECC CRC

flush
pad

Figure 3.2: Components of a sector. 
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3.5.2.Tracks

A platter of magnetic hard disk drives is composed of a group of concentric circles. This

characteristic has been defined as a standard feature for magnetic hard disk drives from the

start. Each circle is commonly known as a track. A location on each track is assigned as the

beginning of the track. Since a track is a circle the beginning of the track is also the end of

the track. A track contains many sectors, which are evenly spaced along each track and

numbered accordingly, starting with one. Each track is also numbered with the outermost

diameter (OD) being the first track (track 0) and the innermost diameter (ID) being the last

track.

3.5.3.Cylinders

A disk drive has multiple surfaces with multiple tracks on each surface. Tracks with the

same track number, one on each surface, form a cylinder. The disk drive generally reserves a

number of outermost cylinders for internal uses, such as disk physical address mapping

information. This information is not accessible by end-users. Those reserved cylinders are

sometimes called the negative cylinders since cylinder 0 is the first user data cylinder.

3.5.4.Address Mapping

To be accessed by the host system, an individual sector in a disk drive is uniquely

identified by an addressing scheme. The host system informs the disk drive which sector to

be accessed by specifying the host sector address. Inside the disk drive, the disk drive maps

the host sector address to disk physical address and then the correct destination sector is
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accessed. Therefore, there are two addressing schemes involved in disk drive address

mapping: internal addressing and external addressing.

3.5.5.Internal Addressing

There are two addressing schemes generally used internally in a disk drive to map a

physical address to a physical sector on a disk drive. First, a disk drive identifies a physical

sector by using a physical block address (PBA) or absolute block address (ABA). The PBA

or ABA is ranged between 0 and N-1 where N is the total number of sectors in the disk

drive. Another scheme commonly used in disk drives is CHS or cylinder-head-sector

addressing. CHS identifies a physical sector with 3 numbers, which include a cylinder

number, a head number or surface number, and a sector number on the track. 

3.5.6.External Addressing

The host commonly uses an addressing scheme called LBA or Logical Block Address to

identify a sector in the host aspect. Unlike CHS consisting of three numbers, LBA simply

specifies the sector with only one number. Even though the previously-introduced logical

addressing is limited by the number of sector, track, and head, LBA is not. Additionally,

LBA allows the ATA disk drive to recognize the address for a capacity over 8.4 GB.

3.5.7.Logical Address to Physical Location Mapping

When a request is sent from the host to the disk drive, the address of the request is

converted from logical address in terms of LBA to physical address in terms of PBA. Then,
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the request PBA is mapped to the physical CHS address to identify the destination head,

track, and sector. When the disk head reaches the end of the currently accessed track, it

moves to the next track. Two approaches are generally used to decide which track the head

should move to. One is to move to the next track on the same platter, and the other is to

move to the next track located on different platters but the same cylinder.

3.5.7.1. Cylinder Mode

Cylinder mode moves the head to the next track on different platters but on the same

cylinder. The benefit of this approach is it eliminates the need to reposition the actuator

causing the head to seek. However, as the tpi rapidly grows, the actuator repositioning

process to move to the next track on the same surface may not take as long as the process to

move to the next surface. Therefore, with today’s ever-increasing track density, it is likely

that the actuator can reposition to the next track on the same surface more easily than if it

switch to the next surface. Therefore, the other approach, Serpentine Format is more

commonly used than Cylinder Mode in modern disk drives.

3.5.7.2. Serpentine Format

As we discussed earlier, today’s disk drive have the ability to move the head to the next

track on the same surface more easily than to move the head to the next surface. This is due

to the rapid increase in tpi in the disk drive. Therefore, the next track on the same surface is

physically located closer than the next track on the next surface. Additionally, the exact

location of the destination sector is also unknown after switching the head to the next

surface. The head needs to read the servo information to locate the current position before
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the destination sector is located. To prevent the problems, serpentine format is used to move

the head to the next track on the same surface.

Compared with cylinder mode, serpentine formatting performs better in random disk

access streams. However, cylinder mode outperforms serpentine formatting in the disk

access streams with high locality. In those access streams, the average seek time in

serpentine formatting is increased. To assure the performance in both types of access

streams, a combination approach, called banded serpentine formatting, is introduced. The

approach limits the serpentine formatting within a group of tracks, called a band, and the

cylinder mode is used in the head movement between the bands. 

3.5.7.3. Skewing

If all tracks on the same surface have their beginning position at the same angular

position, when the head moves from the end of one track to the beginning of the next track,

the beginning of the next track would pass the head already. Therefore, the head has to wait

for a full rotation to access the beginning of the track. To prevent the performance loss due

to the full rotation wait for the beginning of the track, skewing is introducing. In skewing,

the beginning of each track is placed in different locations, depending on the head switching

time. Therefore, when the head switches to the next track, the beginning of the next track

comes after the head finishes switching.

3.5.8.Zoned Bit Recording

If all tracks on a disk surface have the same number of sectors, the surface doesn’t utilize

all the capacity it can provide. The reason is only the innermost track would utilize the
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highest bpi. On the other hand, the other tracks would contain the same amount of data as

the innermost track, even though they occupy more area on the surface. Therefore, most of

the disk surface area is under-utilized. To utilize the surface area as much as possible, Zoned

Bit Recording (ZBR) is introduced. ZBR divides tracks into groups, called zones. In each

zone, the tracks have the same number of sectors. The tracks in the outer zone have more

sectors than the tracks in the inner zone. Today’s drives tend to have 3 or more zones.

Therefore, the original data formatting can be considered as a special case of ZBR where the

number of zones is one. 

In ZBR, since the number of sectors per track is changed from zone to zone, the disk

drive has to deal with variable data rates.

3.5.8.1. Variable Data Rate

Variable Data Rate occurs when the disk applies ZBR, and it is also called CAV

(constant angular velocity) recording. With constant disk rotational speed, ZBR varies the

number of sectors per zone; therefore, the data rate of the disk varies from zone to zone. The

read/write electronics take care of variable data rate. This approach has advantages,

including: 

1. More data is stored at outer diameter (OD) tracks compared with the amount of 

data stored at inner diameter (ID) tracks. 

2. The performance of the OD tracks is better than the performance on the ID tracks 

because the data rate on the OD tracks is higher. Therefore, most accesses occur at 

the OD with higher data rate. As a result, the overall performance of the disk is 

improved.
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3.5.9.Servo

The function of the servo system in a disk drive is to control the movement of the

read/write head. It has to maintain accuracy in the head movement in both the movement

between the track and along the track. The servo system’s function includes:

1. Controlling the movement of the head actuator from the current track to the

destination track including the movement on the same surface and the movement to another

surface (switching head). These movements are collectively known as seek. One parameter

that affects the performance of the seek operation is the seek distance. The seek distance is

the distance in terms of number of tracks that the head has to move from the current track to

the destination track.

2. Maintaining the correct position of the read/write head along the track at the center of

the track. When the head is accessing the data on a track, the servo system continues making

corrective adjustments to maintain the position of the head on the track. This is to prevent

the head from drifting off the center of the track. This process is called track following. 

With ever-increasing tpi in modern disk drives, high accuracy in servo system is

required. The servo system in modern disk drives is generally implemented with closed-loop

control to accomplish the high accuracy in both of the previously mentioned functions. To

provide the accurate position information of the sector on a disk to the read head, the servo

information is written onto the disk surface directly. There are two approaches to place the

servo information, which are dedicated servo and embedded servo.
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3.5.9.1. Dedicated Servo

In the dedicated servo approach, the servo information is written on one of the surfaces

in a multiple-platter disk drive. The servo information is usually written onto the middle

surface in the disk stack at the manufacturing time. The head on that surface is only a read

head and is called a dedicated servo head. Since all the heads in a multiple-platter disk drive

are connected to the same actuator and move together, the dedicated servo head plays the

master role for all heads. However, since modern disk drives tend to have only a few platters

due to power consumption, dedicating one surface for servo information is considered too

costly. Additionally, temperature can cause different physical changes in arms and disks on

different platters. Therefore, the servo information on the dedicated surface may be

displaced with respect to other surfaces. This problem can be solved by periodically

calibrate the servo information with respect to other surfaces due to the temperature

changes. This calibration process causes significant performance degradation, and the

process is more complicated as the tpi increases. As a result, the dedicated servo has been

obsolete since the mid 1990’s.

3.5.9.2. Embedded Servo

Unlike the dedicated servo, the servo information in embedded servo is written with the

data on the surface. Therefore, there is no dedicated surface or dedicated head in the

embedded servo approach. The head on each surface performs both read/write data on the

surface and reads the servo information on the surface. The servo information in the

embedded servo is in the form of wedges on a disk surface. The wedge area is specifically

reserved for servo information, written at disk manufacturing time. The wedges are evenly
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spaced around the disk. The embedded servo also provides two types of servo information,

which are referred to as servo bursts and track id. The servo bursts are provided to prevent

the head drifting off the center of the track. On the other hand, the track id is the servo

information for seek operations. Since there are both a read head and a write head on every

surface, care should be taken not to allow the write head to overwrite the servo information

on the surface. Some problems should be mentioned in using embedded servo, including: 

• The servo wedges should be placed closely to prevent the head drifting off the center 

of the track.

• The head requires servo information to determine the current track number and the 

destination track number. When seeking, the head must read the servo information as 

soon as possible to determine the track number. Therefore, there should be enough 

servo wedges on the surface, so the head does not have to wait for a long time to read 

the servo information to determine the track number.

Both problems suggest that there should be as many servo wedges as possible on a

surface. However, the area containing user data is reduced when increasing the number of

servo wedges. Additionally, the benefit of having many servo wedges is dependent on the

disk access pattern; meaning, having many servo wedges improves the performance in case

of a random access pattern, but degrades the performance in case of sequential access

pattern. Modern disk drives typically have approximately 100 to 200 servos per track, and

the servo information takes up space of approximately 8% to 12% of the total disk capacity.
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3.5.9.3. Servo ID and Seek

In each servo sector, there are two servo coordinates: the radial coordinate and the

angular coordinate. However, to seek, the servo system only requires the radial information

to move the head to the destination track. The radial information is recorded in the form of

the cylinder number, and it is repeated for all servo sectors on the same cylinder. The

cylinder number is implemented as a Gray code, in which any two adjacent cylinder

numbers will differ by only one bit. This is to guarantee the cylinder number value to be one

of the two valid adjacent values rather than a totally different, unrelated value, which would

be harder to distinguish from an erroneous value

3.5.9.4. Servo Burst and Track Following

As discussed earlier, the servo bursts are provided and are used to prevent the head

drifting off from the center of the track. The process is conducted in two situations: at the

end of seek operation and while the head is moved along the track. At the end of seek

operation, the process is called settle and the time to settle is called settling time. On the

other hand, the process in the second situation is called track following. Both settling and

track following require servo bursts to maintain the head position at the center of the track.

There are four special magnetic patterns encircling each track on a surface at a servo

wedge. They are called A, B, C, and D bursts. The A burst and the B burst are placed

adjacent to a track but on different sides of the track. The A burst generates a signal called

VA and B burst generates a signal called VB. If the read/write head is at the center of the

track, VA and VB signal amplitude are equal. On the other hand, if the head is off the center

of the track, either VA or VB signal amplitude is higher than the other to indicate which
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direction the head is off the center and how far. Then the servo control can adjust the head

position accordingly to maintain the head at the center of the track. However, C and D bursts

are required for the case that the head is located between two adjacent track, which causes

both the VA and VB signal to go flat. Likewise, the signal generated from the C bursts is

called VC and one generated from D bursts is called VD. The C and D bursts are placed

immediately after the A and B bursts, but the C and D bursts’ alignments are shifted from A

and B’s by the half of the servo burst width. Therefore, if the head is at the flat part of the

servo bursts, the amplitude of VC and VD are used to identify the location of the head. As a

result, the servo control can use these signals to adjust the head position accordingly to

maintain the head at the center of the track.

3.5.9.5. Components of a Servo

Each servo sector is composed of a preamble field, an address mark field, a servo index

field, the track id, and the four servo bursts. Servo sectors are also separated from user data

by a gap. The first field in a servo sector is the preamble. Like the preamble in a data sector,

the preamble of a servo sector is used to synchronize the read channel’s PLL with servo’s

clock. Next is the servo address mark or the servo sync mark. The address mark informs the

head that the servo information is next. The third field, the servo index field, provides the

coordinates of the servo. The fourth field, the track id field, provides the track number in the

form of a Gray code. Finally, the four servo bursts provide the signals to maintain the head at

the center of the track as explained in the previous section.
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3.5.9.6. ZBR and Embedded Servo

Embedded servo causes more difficulty to the sector placement on a disk with zoned bit

recording (ZBR). Without ZBR, the embedded servo wedges can simply be placed between

sectors split spaced evenly around the surface. However, ZBR causes the sectors with the

same sector number but on different tracks not to align on the same angular position.

Therefore, to place the embedded servo wedges on a disk surface, sectors at the wedges are

split. Due to splitting data sectors, two additional overheads are introduced for embedded

servo, which are extra fields and extra gaps. First, each split sector requires its own preamble

field and address mark field. Second, extra gaps are also required both before and after the

split part. Those gaps are required for the process of switching heads from write head to read

head when the head is entering the servo sector during write (writing the first split part of the

sector and then reading the adjacent servo sector). Also, the gaps are needed to switch from

read head to write head when the head finishes reading the servo sector and then continues

to write the sector. These extra gaps and fields can be significant depending on the number

of split data sectors.

Servo Bursts

Preamble

Address mark

servo index

Track ID

Figure 3.3: Components of a servo sector. 
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3.5.10.Sector ID and No-ID Formatting

The information on an individual data sector was originally stored at a field referred to

as a header or sector id. The header was placed just before the corresponding data sector. It

contained (1) the sector’s physical address (in CHS format), (2) a split flag whether the

sector is split by the servo sector, (3) defective flag, and (4) the location whose data is

moved to if the sector is defective. However, modern disk drives generally adopt the no-ID

format. The no-ID format or headerless format eliminates the header physically placed

along with the data. It utilizes the servo information to provide the sector’s physical address,

and stores other information at a no-ID table. The no-ID table is stored at the protected area

of the disk, and it is loaded into the disk controller’s memory at startup.

The no-ID format advantages include:

• Each track can contain more user data since the ID fields and their corresponding 

overheads are eliminated.

• tpi is increased because tracks can be placed closer. The ID-fields require wider 

tracks.

• Reliability is improved because there are no ID-fields which may get corrupted.

• Performance is improved as the total results because of the increase in tpi and track 

capacity.

3.5.11.Defect Management

Defects can occur due to multiple causes at the time of manufacturing or during daily

usages. Different schemes are used to relocate the data due to defects depending on when the

defects occur.
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Relocation Schemes utilize logical block address (LBA) and allocate a different sector to

that defective LBA. Mapping is done by the disk drive controller. The host does not have the

knowledge of the LBA to physical disk address mapping or the defected LBA. As a result,

the host believes that all of a disk drive’s LBAs are usable for data storage. There are

basically two common methods for re-allocating a new sector to replace one that is

defective:

3.5.11.1.Relocation Schemes

Sector Slipping

Sector Slipping makes use of the very next good sector; if the sector after a defective

sector is not defective, then the LBA of the defective sector is assigned to the following

sector. In general, sector slipping does not directly degrade the performance. The reason is

there is no interruption to the flow of sequential accessing. Only marginal extra time is

required to skip the defective sector and access the immediate subsequent sector

sequentially. Therefore, sector slipping is a preferable method for relocating defective

sectors in case of minimal data storing on the disk. Otherwise, sector slipping has a

disadvantage if data has already been stored on a disk. It must slip all data sectors after the

defective sector, which requires the disk to read and re-write all sectors to their new assigned

locations. 

Sector Sparing

Instead of slipping all data to the next good location, sector sparing allocates a number

of spare sectors in the disk drive for defective sectors. When a defect occurs, a defective

sector can be allocated to a spare sector. For better performance, it is preferable to scatter
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these spare sectors around the disk drive. Therefore, a defective sector can be relocated to

the closest spare sector. However, the performance might be degraded if the spare sector

location causes the drive to move the mechanical parts resulting in significant delay.

A number of schemes are also used in modern disk drives. They are mostly based on

these two basic schemes.

3.5.11.2.Types of Defects

There are two types of defects as mentioned earlier:

1. the defects that occur at the manufacturing time, called primary defects, and 

2. the defects that occur later after leaving the factory, during daily usages, which is 

called grown defects. 

These two types of defects are handled differently.

Primary Defects.

Before a disk drive leaves the factory, every sector of the disk drive has to be scanned for

defective sectors. If found, those defects are called primary defects. The process of scanning

sectors for defects is accomplished by reading and writing each sector in the disk drive.

Usually, since there is no data stored on the disk drive to be slipped, the defective sectors are

relocated by the sector slipping method. Finally, a list of defective sectors in the form of

ABAs (absolute block addresses) are generated and stored in the P-List or Primary List.

These ABAs in P-List are skipped during the disk drive maps LBA to ABA.

Grown Defects.

In contrast, grown defects or non-recoverable errors are defined as the defects that

develop after a disk drive has left the factory. Usually, the defective sectors are discovered
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during the disk drive’s daily usages. The grown defects, unlike primary defects, are handled

by the sector sparing method because user data has already been stored in the disk drive. A

list of grown defects is called the G-List. Each entry in the G-List is a tuple of the defective

sector address and the corresponding relocated sector address. 

3.6. File System Caching

In the operating system point of view, the most important factor in I/O performance is

not the speed of the disk, or how efficiently it is used, but whether it is used. To hide the I/O

latency, caching, which is widely used in many levels of memory hierarchy to hide the

latency of the lower memory level, is also applied in UNIX-based operating systems. This

type of caching under the control of the operating system is called file system caching.

Originally, the technique used to be called file caching and disk caching, depending on

whether the logical disk address or physical disk address is used. File caching uses logical

address, while disk caching uses physical address. However, researchers simply use the term

file system cache in general for such techniques, and usually use the term disk cache to refer

to a memory physically built into a disk drive.

In the operating system, file system caching uses main memory as a cache for disk data

to improve I/O performance. Since main memory is much faster than disks, file caches

significantly improve performance. Therefore, a file system cache is generally implemented

in every UNIX-based operating system. However, different systems have very different I/O

policies, and the performance of some I/O policies can differ by many orders of magnitude.

These policies can be even more important than the underlying hardware. 
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I/O performance is limited to the interaction between the disk and the operating system.

The hardware may determine the potential performance of the I/O, but the operating system

determines how much potential is delivered. In particular, the file cache is critical to I/O

performance for UNIX systems. File caching policy is important since file caches in high-

end computers with better hardware can perform comparably to file caches in workstations

with better file caching policies. Even though optimizations in memory systems can

improve disk read performance, the operating system policy on writes can improve the file

cache performance by many orders of magnitude.

Like processor caches, write back and write through are applied to file system caches on

writes as well. The operating systems community uses the term asynchronous writes to refer

to writes that allow the processor to continue after transferring data to a write buffer. This

approach improves the performance if writes occur infrequently. Like writer-buffering in

other levels of the memory, if writes are too frequent, then the processor may eventually stall

until the write buffer is flushed. This situation limits the system speed to the speed of the

I/O, which is the slowest level of the memory hierarchy. Note that a write buffer does not

directly reduce the number of writes to the next level. Writes can be merged or overwritten

to reduce the number of writes when they are waiting in the queue. However, a write buffer

only allows the processor to continue while I/O is in progress if the write buffer is not full.

The effectiveness of caches for writes also depends on the policy of flushing dirty data to

the disk, i.e. how often to flush and which data to be flushed. To protect against losing

information in case of failures, applications will occasionally flush dirty data out of the

cache in the main memory to the disk. Most UNIX operating systems have a policy of
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periodically writing dirty data to disk. By default, a safety window is typically set for all

applications to 30 seconds. We will see this behavior first hand in our experiments.
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CHAPTER 4:   RELATED WORK

The contribution made in this dissertation is in two parts. First, we created a complete-

system simulator, SYSim, to demonstrate the detailed interaction of a memory hierarchy in

both the performance and power domains. Secondly, to study the I/O behavior during the

I/O intensive phase of applications, we explored several disk enhancements and physical

disk technology improvements in both isolation and combination. We studied the systems in

terms of total system performance and the power/energy consumption. Therefore, this

chapter consists of two parts: one is for Complete-System Simulations, and the other is the

Disk Enhancements and Physical Technology Improvements.

4.1. Complete-System Simulations

Simulation is the most widely accepted approach in computer architecture, as

information is obtained in simulations that is impossible to obtain in a real system. Unlike an

experiment in a real system, the system in a simulation is not perturbed during an

experiment by an attempt to measure statistical information.

Simulation can occur at various levels of abstraction. Cain et al. [3] compares various

approaches of simulations as shown in Table 4.1. The Analytical models and CPI equations

are fast, but they lack detail, which costs them precision. The precision of Trace-driven

Simulation mainly depends on how the traces are collected. The software trace collection

schemes pollute the traces due to software overhead. The hardware schemes require
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expensive investment in proprietary hardware and are probably not feasible for multi

gigahertz processors. Trace collection also records only committed instructions, which do

not reflect the inaccuracies created by speculative instructions. Cain et al. conclude that the

complete-system (or full-system in their words) execution-driven simulation is the most

precise and accurate. 

Complete-system simulation means a system simulation that includes I/O, especially

disk and OS effects in the simulation. Gurumurthi et al. [1] pointed out that the features of a

low-power disk can also influence operating system routines such as the idle process

running on the processor core. Hence, a model which includes the disk helps to characterize

the processor power more accurately. During I/O operations, energy is consumed by the

Modeling 
Techniques Inputs Benefits Drawbacks

Analytical models Cache miss rates; I/O 
rates

Flexible, fast, 
convenient, provide 
intuition

Cannot model 
concurrency; lack of 
precision

CPI Equations Core CPI, cache miss 
rates

Simple, intuitive, 
reasonably accurate

Cannot model 
concurrency; lack of 
precision

Trace-driven 
Simulation

Hardware traces; 
software traces Detailed, precise

Trace collection 
challenges; lack of 
speculative effects; 
implementation 
complexity

Execution-driven 
Simulation Programs, input sets Detailed, precise, 

speculative paths

Implementation 
complexity; simulation 
time overhead; 
correctness 
requirement; lack of OS 
and system effects

Full-system, 
execution-driven 
simulation

Operating system, 
programs, input sets, 
disk images

Detailed, precise, 
accurate

Implementation 
complexity, simulation 
time overhead, 
correctness requirement

Table 4.1: Attributes of various performance modeling techniques [3].
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disk. Further, as the process requesting the I/O is blocked, the operating system schedules

the idle process to execute. Therefore, energy is also consumed in both the processor and the

memory subsystem. The cycles due to disk activity are accounted for as idle-cycles in the

execution profile, which can take up to 10% of the execution cycles and up to 7% of the

power in the processor and memory. Cain et al. [3] demonstrate that correct simulation of

I/O behavior can significantly affect simulator accuracy. They demonstrate that the majority

(50.9%) of the executed instructions in some benchmarks are the operating system’s. The

operating system causes the IPC to be different from the user-level simulation as much as

20%, which translates into over 100% difference in energy consumption. The authors in

both [2] and [3] agree that omitting operating system activities can introduce errors that can

exceed 100%. Chen et al. [2] reason that: 

1. The operating system code has distinctive behavior, different from user code. 

2. The state of the micro-architecture after the OS call is different from the state of the 

microarchitecture before the call was made.

3. The timing of activities scheduled in an OS call may affect the behavior of the 

microarchitecture.

Therefore, they emphasize that all architecture researchers should seriously consider

adoption of full-system simulation, despite the up-front cost of doing so.

Many simulators that can estimate the power/energy numbers are in the area of

embedded systems or specific environments [22, 23, 24, 25, 26, 27, 29, 30, 31], as the

power-consumption is obviously more important to such systems. Most of them have an

application to mobile systems for which the energy source is very limited or less likely to be
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replaced. However, none of them includes a disk model since a disk is not a standard

component for such systems.

The development of complete system simulators in general-purpose systems has been

directly motivated by the inability of user-level simulators to target complex workloads, i.e.

database or network workloads. Their benefits are diverse and significant; including

evaluation of hardware design, development of operating systems, and performance tuning

of workloads. There are also many complete-system simulators, e.g. SimOS [4], Simics [5],

g88 [6], gsim [7], Talisman [8], Pharmsim [3], and TFsim [9]. g88, gsim, and Talisman are

in-order functional simulators for the 88000 processor, which can simulate a modified

version of UNIX. SimOS is a dynamic full-system simulator that supports out-of-order

processor models for the MIPS and Alpha instruction sets. Pharmsim is a dynamic full-

system simulator based on SimOS and SimpleMP with an out-of-order processor model for

the PowerPC instruction set. Simics is a commercial simulator that supports system-level

simulation of five target architectures: Alpha, IA-32 (x86), PowerPC, SPARC, and x86-64.

Simics can boot unmodified operating systems and it can be extended for cache timing

simulations, but it only models simple (scalar, in-order) instruction execution. TFsim is the

timing-first simulation which its timing simulator executes each dynamic instruction ahead

of the functional simulator. It uses Simics as its functional component. However, no power

consumption is reported by these simulators.

A handful of publications are focused on architecture-level power estimation tools for

processors, i.e. Wattch [19], SimplePower [20], Architecture-level power estimation in

[32], and Architectural Power Evaluation [21]. These simulators focus only on CPU power

consumption; neither memory nor disk is included in their power estimation systems.
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Additionally, they are user-level simulators which do not include the operating system

effects.

Only a small number of publications actually implement complete-system simulators

with power estimation. To our knowledge, the execution-driven, power estimation,

complete-system simulators, which can run operating system on top and include the concept

of disk, are SimWattch [2], SoftWatt [1], and Mambo [10].

SimWattch is a complete-system simulator that estimates performance and power

consumption of an out-of-order issue superscalar microprocessors. It is based on Simics for

performance simulation and on Wattch for power estimation. SimWattch takes the

advantage of fast simulation in Simics by letting Simics fill an instruction trace at full speed

into a FIFO queue and letting the instructions be consumed by Wattch at a slower pace.

Wattch is employed as an architectural simulator that estimates CPU power consumption.

One of the important steps is to convert the Simics instructions (SPARC-V9 instructions) to

corresponding Wattch instructions (SimpleScalar’s PISA instructions). Even though

SimWattch can run an unmodified OS and it includes multiple I/O devices, the power

consumption reported includes only the processor.

SoftWatt is based on SimOS. SimOS has three CPU models, namely, Embra, Mipsy, and

MXS. Embra employs dynamic binary translation and provides a rough characterization of

the workload. Mipsy provides emulation of a MIPS R4000-like architecture. It consists of a

simple pipeline with blocking caches. MXS emulates a MIPS R10000-like superscalar

architecture. SoftWatt use MXS to obtained detailed information about only the processor

and disk, and use Mipsy simulator to run the operating system and obtain cache and memory

system profiles. After the simulation, the simulation log files are fed into the analytical
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power models to generate power values. Therefore, SoftWatt does not reflect the actual

interaction between memory and disk since the memory system statistics and the disk

statistics are the product derived from disjoint simulations. Also, there is a per-cycle power

information loss due to post-processing approach.

IBM’s Mambo is a complete-system simulator modeling PowerPC based systems. It

provides building blocks for creating simulators that range from purely functional to timing-

accurate. Functional versions support fast emulation of individual PowerPC instructions and

the devices necessary for executing operating systems. Timing-accurate versions include the

ability to account for device timing delays, and support the modeling of the PowerPC

processor microarchitecture. While it has been used widely in IBM, it is not an open-source

software available to the public.

All of these simulators dedicate more details to the processor side than the memory side.

For simplicity, some implement the memory as a constant time and constant energy per

access. Some implement the memory as banks, but are not very detailed. Some, using two

disjoint processor simulators produce disjoint levels of memory accesses, may cause

discrepancy in the memory. SYSim is proposed to fill this gap in the memory system

research community. It is intended to be an open-source, complete-system simulator that can

demonstrate the systemic behaviors of entire memory hierarchy. It also includes both

performance and energy models. We hope that SYSim will be a better option for the

research community.
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4.2. Magnetic Disk Drive Enhancements and Physical 
Improvements

The performance of magnetic disk storage systems has improved only 10-15% per year,

while the performance of processors has roughly doubled every two years. Over time, the

performance gap between those two components continues to grow. To narrow the

performance gap, more aggressive optimization of the storage system is required. The main

reason for the slow growth in disk drive performance is the slow mechanical parts of storage

devices. Since these slow mechanical parts can degrade the total system performance

significantly, the importance of I/O optimization techniques has been widely acknowledged.

As a result, many disk drive enhancements have been invented, including caching, write

buffering, prefetching, request scheduling, and parallel I/O. 

Many efforts have also been made to improve the underlying technology of the disk

drive’s physical characteristics. These physical characteristics, continuously improved over

the years, include the tracks or bits per inch, average seek time, and rotational speed. These

improvements are usually defined by using physical metrics, which is difficult to relate

directly to the total system performance of real workloads. Therefore, using physical

metrics, it is complicated to compare different physical improvements, since they are not

directly related to the total system performance. 

Unfortunately, the relative effectiveness of these techniques and technology

improvements is ambiguous since they have been investigated in isolation by different

researchers using different methodologies. Some use discrete event simulation and

analytical modeling. The others use trace-driven simulations. In some cases, the simulations

are based on traces of real workloads and in others, randomly generated synthetic
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workloads. For example, Zhu and Hu [75] evaluate a built-in disk cache using both real and

synthetic workloads, and report the results in term of response time. Smith [81] evaluates a

disk cache mechanism with real traces collected in real IBM mainframes on a disk cache

simulator. He reports the results in terms of miss rate ratio. Huh and Chang [77] evaluate

their RAID controller cache organization with a synthetic trace, and Varma and

Jacobson [94] and Solworth and Orji [95] evaluate destage algorithms and write cache,

respectively, with synthetic workloads. SPEC2000 is also used, for instance, to evaluate a

energy-aware, compiler-controlled disk prefetching in [91]. The most widely-used

benchmarks in disk drive research would be hplajw, cello, snake [99], and TPC [100]. These

are workloads which are used to evaluate many aspects of large-scale disk systems. Since

many of the techniques have not been evaluated with real workloads on the same basis, their

actual effect is not known. To effectively optimize the system performance, the actual

advantage of the disk enhancements and physical improvements must be analyzed both in

isolation and in combination especially in system-level points of view.

In this dissertation, we investigate how different techniques affect total system-level

performance and power/energy consumption by using a complete-system simulation. The

most similar work to ours is by Hsu and Smith [78]. They use a variety of workloads,

including server and personal computer workloads, to systematically analyze the actual

performance impact of various I/O optimization techniques by using trace-driven

simulation. However, they evaluated each technique in isolation and neither in terms of total

system performance nor in terms of power/energy consumption. Additionally, we focus on

the I/O intensive phase on a single processing environment, widely used in personal

computer systems. Therefore, we selectively studied the techniques aiming at improving the
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disk systems for future personal computer workloads. For instance, unlike large-scale

database systems with hundreds of RAID disks, we investigate the RAID system with only

small number of disks, i.e. 4 and 8 disks. Also, we investigate the disk cache located inside

individual disk drives, rather than the cache in RAID controllers or the cache in the file

system. The reason is that we would like to make an impartial comparison between the disk

systems equipped with selected disk enhancements and a single disk system, which is

widely used in personal computers. Therefore, it would be unreasonable to make

comparisons against sophisticated and complex techniques, which exist only to improve

large-scale server applications. 

The selected disk enhancement techniques and the physical technology improvements

we studied are described in detail as follows.

4.2.1.Disk Drive Enhancements

4.2.1.1. Disk Caching

Caching is a general technique for improving performance in many levels of computer

systems. It temporarily holds data that is likely to be utilized in faster memory. The faster

memory is called the cache. In this section, the data refers to disk blocks requested from the

storage system, and the faster memory refers to dynamic random access memory (DRAM)

built into the disk drive. We refer to this as disk cache, which is different from file system

cache and processor cache as described in Chapter 1. Disk cache is a general term

introduced in [81] as a buffer used to hold portions of the disk address space contents,

which can be placed at many levels along the data path. The disk cache as a small piece of
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memory specifically built into a disk drive was first referred to as disk buffer in [83].

Today, the term disk buffer and disk cache are used to refer to the same entity.

The disk cache’s specific function is to support I/O operations, which occur only

through I/O requests via the operating system. Unlike the processor’s cache, disk cache does

not connect to the processor directly. Therefore, it is not considered as a part of the memory

hierarchy directly, but it is added as a special feature in a disk drive for performance

optimization. When an I/O request is sent to the disk system, the request either finds the

requested data in the disk cache or is sent to the physical disk mechanism. Like in the

processor cache, the hit ratio is defined as the ratio of the number of requests satisfied by the

cache to the number of total requests, and the miss ratio is the ratio of the number of requests

sent to the physical disk mechanism to the number of total requests. The data can be brought

to the cache in two ways, which are (1) they are fetched by reference, referred to as caching,

or (2) they are anticipated to be referenced in the near future, referred to as prefetching. In

“Memory Systems” [102], Jacob et al. notes that disk caching is claimed to be a key factor

in a disk drive’s performance whose importance is comparable to other basic drive attributes

such as seek time, rotational speed, and data rate.

Originally, disk cache was used as a speed matching buffer between the disk drive and

the interface. The buffer is useful in two situations, one is because the disk drive and the

interface operate at different speeds, and the other is when the host or the interface is not

ready to receive the data. DRAM is usually used as this buffer memory. Since the data is

already stored in the disk cache due to buffering, the function of disk cache extends to

support caching and prefetching as well. When a request is sent to the disk system, the cache

checks whether it holds the requested data. The data may remain in the cache since they
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have been referred to by the previous requests. Instead of sending the request to the physical

disk, the request can be satisfied by the cache. Therefore, the need to move the mechanical

parts in the disk drive is eliminated and results in performance improvement. Therefore, the

performance improvement depends on the amount of data to be reused in the cache. Today’s

commercially available disk drives are generally equipped with a built-in cache as part of

the drive controller electronics. The cache size ranges from 512KB for micro-drives to

16MB for the largest server drives, and is still growing. With ever-growing disk cache size,

only a small fraction of the disk cache is used for speed matching buffer, while most of the

disk cache is occupied by the caching data.

In “Memory Systems”[102], Jacob et al. pointed out that the effectiveness of a disk

cache depends on two aspects: the disk cache organization and the disk cache algorithm.

The first aspect, the disk cache organization, defines how the disk cache and its data are

structured, including how the disk cache is organized and allocated, and how data are stored

and identified in the disk cache memory. The second aspect of disk cache is the algorithms

used, which defines the policies of how the cache is being utilized. The algorithm includes

but is not limited to: 

• destage policy--determine which piece of old data to destage/replace (destage is a 

process to write data from the cache to the disk.), 

• prefetching policy--what data and how much data to prefetch 

• scheduling policy--which requests should be processed first. 

Jacob et al. also suggested that these two aspects are related but orthogonal in operation.

One aspect’s operation neither depends upon nor involves the other. However, some

particular algorithms may be more suitable to be implemented with a specific type of
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structure. Since, in this dissertation, we are focusing on the I/O intensive phase of the

execution consisting of mostly sequential requests served well with FCFS scheduling and

LRU replacement policy, the second aspect will not be discussed in this dissertation.

Zhu and Hu [75] have suggested that large disk built-in caches will not significantly

benefit the overall system performance because all modern operating systems already use

large file system caches to cache reads and writes. In our experiments, we investigated the

disk cache including the effects of file system caching. As suggested by Przybylski [101],

the reference stream missed by the L1 cache has low locality. Like the reference stream in

the processor caches, the reference stream to the disk system missed the file system cache.

As a result, the locality in the stream is low. To reflect a realistic stream to the disk system, it

is important to include the file system cache effect. Therefore, the reference stream

including file system caching effect in our experiment is more realistic than the stream in the

experiments for trace-driven simulations. This method is hard to implement, but extremely

valuable, so we ensure that the resulting reference stream represents realistic behavior of

real systems.

4.2.1.2. Prefetching

Prefetching is generally referred to the technique of acquiring the data before they are

actually used in the system. Like caching, prefetching is implemented in many levels in

memory hierarchy, including the disk systems. It involves two steps, which are predicting

which data are likely to be used in the near future and fetching them before they are actually

needed. The purpose of prefetching is to hide the stall time that the system has to wait if the
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data are fetched on demand. Hsu and Smith [78] pointed out that the overall effectiveness of

prefetching at improving performance depends on the following: 

1. the accuracy of the prediction

2. the amount of extra resources (memory use, disk and data-path busy time, etc.) that 

is consumed by the prefetching process

3. the timeliness of the prefetch, i.e., whether the prefetch is completed before the 

blocks are actually needed

There are several prediction schemes for prefetching on the host side to improve I/O

performance in server applications, i.e. Database Management Systems in multiple parallel

disk systems, or implemented in the operating systems. The host can prefetch in these

systems more intelligently than multi device controllers or disk caches can, since

applications can often better predict read requests. As examples given by Hsu and

Smith [78], the prediction of the host-side prefetching is usually based on past access

patterns [84, 85], system-generated plans [87, 88], user-disclosed hints [86], and even

guidance from speculative execution [89]. Depending on the implementation, this

information may be available to help with the prediction. However, only a few works

explore the prefetching in disk cache [90, 81]. The disk drive prefetch generation is usually

simply implemented as sequential prefetching. The reason for the disk drive to initiate

prefetching is that the drive is aware of its own status, so it can avoid prefetching, which can

be interfered from host requests. However, the drive does not know what data it stores, so it

requires additional hints from the host, i.e. which data it should prefetch for complex

prefetching schemes. Therefore, complex prefetching in the disk drive side is not a common

practice and only prefetching schemes based upon the principle of locality of access are
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implemented. Recently, since energy consumption has become major concern, a number of

publications are proposing Energy-Aware data prefetching that is orchestrated by the

compiler [91] or implemented with Flash Drives [92].

Since prefetching is based on speculation, the prefetched data may not be used.

However, prefetching comes with cost. The cost of prefetching includes the use of the disk

drive’s resources, i.e. the drive’s electronics and mechanical parts, to bring the prefetched

data into the cache. Therefore, prefetching can occupy the disk drive’s resources and prevent

the drive from doing other useful work. It may interfere with the user requests and may

cause a user request to be delayed and to observe an increase in request response time.

Therefore, a common strategy is to disable prefetch if there are I/O requests waiting to be

serviced in the queue, and preempt any ongoing prefetch when a new I/O request arrives if

the request requires the disk resources being used in the prefetch. If the new request can be

serviced without requiring the other disk resources used in prefetching, such as a request

hitting in the cache, the drive can continue prefetching. Besides the disk drive’s electronics

and mechanical parts, prefetched data also consume space in the disk cache. If the prediction

of prefetch is not accurate, prefetching may cause cache pollution just like in a processor

cache. Cache pollution occurs when prefetched data are not used in the near future, but they

cause other useful data to be thrown out from the cache since prefetched data contends for

this space. This may result in degradation of total performance. Therefore, care should be

taken when applying prefetch to the disk system.

Most workloads generate disk request stream with high sequentiality. Therefore, simply

sequential prefetching, especially on a cache miss, works well on all three criteria mentioned

above, which are prediction accuracy, cost, and timeliness. In addition, a request for a large
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chunk of sequential data can be served more effectively with sequential prefetching in many

storage systems. To improve prefetching performance further, small sequential requests are

merged into one large request, which can be served more efficiently by the storage system.

Therefore, it is a common practice for modern storage systems to be equipped with

sequential prefetching after a cache miss. We focus on such a prefetch in this dissertation

due to the sequential nature of the disk requests in the I/O intensive phase. The prefetched

data are managed as if they were fetched by reference in this dissertation. Unlike our

prefetch scheme, the prefetched data in other systems can be allocated in a separate buffer or

can be managed in the cache differently from data fetched by reference. The interested

reader is referred to [85] for an evaluation of such alternatives.

4.2.1.3. Write Buffering

The I/O subsystem is becoming a bottle-neck in the computer system due to the rapid

growth in the processor speed and technology. Increasing the memory size for the file

system cache and increasing built-in disk cache size will improve the caches’ effectiveness

to satisfy disk read requests. As a result, disk traffic will consist of mostly write traffic.

There are many proposed solutions to this problem, including Log-Structured File

Systems [93] in the operating system side and write-buffering in the disk drive side [95]. 

The term write buffering refers to the technique of temporarily holding written data in

fast memory before the data are written into the physical storage permanently. Right after

the data are accepted by the buffer, a write operation can be reported as completed. Unlike

read caching, write commands to the write buffer do not require data in the cache. Therefore,

the write commands are processed like a cache hit if there is available space in the cache
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memory. The write command latency is composed of only the drive controller overhead and

data transfer time. No mechanical time is involved. However, an amount of the dirty data is

“destaged”, written out to the disk media to free up space when the cache is mostly

occupied, depending on the write-buffering policy. To prevent conflicts with user requests,

destaging should be performed while the drive is idle. This avoids the interference with user

requests which causes noticeable delay. In reality, the interference may be inevitable

because the drive may be under a high usage with only minimal idle time. The situation is

most likely to occur because disk writes usually come in bursts, so they easily fill up the

buffer. In this case, destaging must take place while the drive is busy. Therefore, destaging

adds more load to the drive in this case, which causes longer delays for user requests. As a

result, write buffering may be only a technique to delay the disk writes instead of hiding

them completely. 

Even though write buffering may only delay the disk writes, delaying those writes may

be beneficial. The write requests in the write buffers can be scheduled, merged, or

overwritten for better performance, i.e. fewer requests must be sent to the physical disk.

Most systems implement a write buffer by allocating a part of DRAM memory under the

control of the disk controller for it. Therefore, in server systems, write buffering is usually

disabled for reliability reasons. To prevent data loss of data, the write buffer can be

implemented with some form of nonvolatile storage (NVS), such as non-volatile RAM

(NVRAM) [95, 79, 77], a disk cache disk (DCD) [76], NAND Flash memory [82], or

MEMS-based storage [96]. In some environments, (e.g., UNIX file system, PC disks),

periodically flushing the buffer contents to the physical disk, i.e. every 30 seconds, is

considered sufficient. 
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In summary, there are three key benefits when utilizing write buffering. First, write

buffering is used to hide the latency of writes by delaying the writes to until an appropriate

time, i.e. without interfering with user requests. Second, by merging and overwriting the

write data in the buffer, the write buffering can improve the performance by reducing the

number of writes to the physical disk. Finally, by scheduling the writes to the physical disk,

the write buffering helps the physical disk to perform more efficiently. 

While the write buffering technique performance can be affected by several destage

parameters, such as high water mark, low water mark, and the size of write cache, in this

dissertation we exclude those effects. We conducted a limit study of write buffering by

assuming that the destage algorithm is perfect, so write buffering can completely hide the

write latency. More details about destage algorithms can be found in [94] and [79].

4.2.1.4. Parallel I/O

Another widely used technique to improve I/O performance is to use parallel I/O.

Parallel I/O simultaneously distributes multiple small requests to be serviced by several

disks. A large request can also be serviced by multiple disks at the same time. Therefore,

parallel I/O can improve both response time for individual requests and improve the

throughput in for multiple requests. The two most common approaches are to distribute data

among multiple disks are organizing the disks in a volume manner and organizing the disks

into a stripe manner. The first approach, a volume manner, fills data into one disk until it is

filled then moves to the next disk. On the other hand, the second approach, a stripe manner,

divides data into small units called stripe units, and distributes the stripe units across the

disks in a round-robin manner. Therefore, the volume manner can be considered as a stripe
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manner with an entire disk is one stripe unit. Even though the stripe manner has an

advantage over the volume manner for parallelism, striping data across multiple disks

introduces low reliability to the disk system. As a result, redundant information is added to

the striped disk system to improve reliability. This striped disk systems with redundant

information are collectively called Redundant Arrays of Inexpensive Disks is RAID [80]. 

The following is a quick summary of the most commonly used RAID levels defined in

[80]:

• RAID 0: Striped Set 

RAID 0 stripes data evenly across multiple disks without parity information for

redundancy. RAID 0 was not included in the originally defined RAID levels because its

reliability is not enhanced with redundancy. It was invented to improve parallelism in the

disk systems for performance gains and to create a large logical disk space with multiple

small disk drives.

• RAID 1: Mirrored Disks

A traditional approach for improving reliability of magnetic disks is mirroring. As

suggested with the name, mirrored disks duplicate all data to the mirrored disks. Therefore, a

write actually is two writes to the data disk and the mirrored disk. Mirroring disks is

considered the most expensive approach to improving reliability since all disks are

duplicated. An optimized version of mirrored disks doubles the number of controllers for

fault tolerance, so it allows reads occur in parallel to improve performance.

• RAID 2: Hamming Code for ECC

RAID 2 imitates the DRAM bit-interleaving behaviors by bitwise striping the data

across multiple disks with redundancy. The redundancy is accomplished by additional check
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disks to detect and correct a single error. Multiple disks are required to detect and correct a

single error. Multiple disks are used to identify the erroneous disk. Therefore, RAID 2

suffers from low usable space in the disk system because multiple disks are required for

check disks. For a group size of 10 data disks, we need 4 check disks in total.

• RAID 3: Single Check Disk Per Group

RAID 3 stripes data in the unit of byte with one dedicated parity disk. RAID 3 replaces

multiple check disks in RAID 2 with a single parity disk. The principle is the disk controllers

can detect that a disk failed, so multiple check disks in RAID 2 unnecessarily duplicates the

function. If a disk has failed, the data on the failed disk can be reconstructed by the data on

the remaining disks and the parity information. If the disk is the parity disk, the parity

information can always be recalculated by the original data, and be stored easily in the

replacement disk. This mechanism results in lowest reliability cost in RAID 3. So, the last

two levels, RAID 4 and RAID 5, consider only improving the performance of small

accesses, but the cost of reliability remains the same as RAID 3.

• RAID 4: Independent Reads/Writes

RAID 4 stripes data in block-sized granularity across multiple disks with one dedicated

parity disk. The only difference between RAID 3 and RAID 4 is RAID 4 stripes per block,

rather than per byte. Consequently, the performance of RAID 4 is improved over RAID 3

because all reads/writes can now be serviced independently. The reason is a write uses 2

disks to perform 4 accesses—2 reads and 2 writes—while a small read involves only one

read on one disk.

• RAID 5: No Single Check Disk
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While level 4 RAID achieved high performance for reads due to parallelism, writes are

still limited to one per group since every write must read and write the check disk. The

RAID 5 distributes the data and checks information across all the disks—including the

check disks. Therefore, RAID 5 supports multiple individual writes per group. These

changes make RAID 5 satisfy the best performance for both reads and writes. RAID 5 can

perform small read-modify-writes close to the speed per disk of RAID 1 while it performs

large transfers per disk and retains the high ratio of usable storage capacity of RAID 3 and

RAID 4. Spreading the data and parity across all disks even improves the performance of

small reads, since there is one more disk per group that can perform read concurrently.

In this dissertation, we implemented only RAID 5 since it is the most widely used RAID

level. It also fits well with the concept of disk performance enhancements which we would

like to compare against other techniques. 

Chen et al. [97] studied the striping effects in a RAID 5 disk array. As mentioned earlier,

a striping unit is defined as the maximum amount of logically contiguous data that is stored

on a single disk. A large striping unit makes a file span only on only a few disks. A small

striping unit spans a file across more disks. They found that the optimal striping unit for the

write-intensive workloads to be four times smaller than in the case of read-intensive

workloads. The reason is the overhead of maintaining parity causes full-stripe writes (writes

that span the entire error-correction group) to be more efficient than read-modify writes of

reconstruct writes. The optimal striping unit for reads in RAID 5 varies inversely to the

number of disks, but the optimal striping unit for writes varies with the number of disks. In

conclusion, they derived general design rules for striping data in RAID 5 systems to be one

half of average positioning time times disk transfer rate.
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However, the application behavior characterizations (read/write intensive) vary with the

system memory size. That is, a read-intensive application can become a write-intensive one

by decreasing the memory and vice versa. We chose a fixed striping unit of 16KB as it

performed well in both read and write intensive applications reported in [97].

4.2.2.Disk Drive Physical Improvements

The storage of a disk drive consists of a set of multiple rotating platters, on whose

surfaces data is recorded. Each surface has its own head to perform read/write operations,

but all heads are attached to a single set of mechanical arms moving as one. Therefore, there

are multiple dimensions to the performance of a physical disk, for instance, what is the rate

at which the platters rotate (RPM), how fast does the arm move (seek time), and how closely

packed is the data (areal density). All dimensions affect the overall performance differently

in terms of response time and throughput. Additionally, the effectiveness of a disk depends

on the disk access order. As a result, only providing the numbers in the terms of those

physical features is not an obvious indicator to reflect the effect of the disk technology

improvement to real-world performance. In this dissertation, we also evaluate the

improvement in underlying physical technology in terms of the actual system

performance/power of real workloads. Hsu and Smith [78] stated that it is complicated to

isolate and quantify the performance impact of the disk technology improvement in the

different dimensions. Their reason is that disk technology improvements can affect the

performance metrics, i.e. access time, in many dimensions. They gave the examples that the

often-quoted 10% yearly improvement in the access time of disks is actually a result of a

multi-dimensional combination including higher rotational speed, faster seek time due to
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improvement in the disk arm mechanism, and smaller diameter disks with higher track

density, which also reduce seek distance. In practice, the areal density reduces the seek time

because the head is moved less to reach the destination track. Also, the areal density

improves the internal data rate since, with the same rotational speed, the head can process

more data when the data are packed more closely together. Higher areal density also

improves the storage capacity per surface, and results in fewer disks for the data mapping

mechanism. Observe that for various workloads in [78], the average response time and

service time are projected to improve by approximately 15% per year because it takes into

account the dramatic improvement in areal density and assumes that the workload and the

number of disks used remain constant. In fact, our metric, the total system performance

metric (CPI), has never been studied against the disk drive physical improvements. In this

dissertation, we break down the improvements in disk technology into three major basic

effects:

• Seek time reduction due to actuator improvement.

• Increase in rotational speed.

• Interface data rate

4.2.2.1. Seek Time

Seek time is the time to move the read-write head from its current track to the destination

track to service the next request. Seek time is one of the largest components of access time

because it is dealing with moving mechanical parts. Therefore, seek time plays a significant

role of a disk access time. With the recent rapid increase in areal density, the mass

production of smaller and lighter drive disk platters is the major cause in seek time
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improvement. Higher areal density translates into less distance for the head to seek, and the

smaller disk drive platters with smaller and lighter actuators and arms can be easily moved

in less time. Seek time is composed of two components, which are the travel time and the

settle time. The settle time is the time the head requires to maintain to correct position on the

track after arriving at the destination track. It includes the identification and confirmation of

the correct destination track and the head is ready for data transfer. With rapid growth in tpi

(tracks per inch), the travel time component in seek time decreases drastically, so settle time

grows its significance. Typical average seek time for today’s server-class disk drives is

about 3.5 milliseconds while for desktop drives is about 8 milliseconds. Mobile drives’ seek

time is typically slower in order to reduce power consumption. Historically, an 8%

improvement in the average seek time translates roughly into only 3% improvement in the

average response time [78].

4.2.2.2. Rotational Speed

After the head has reached the destination track and settled at the center of the track, the

disk rotates to bring the destination sector to the head. Rotational latency is defined as the

time the disk rotates to bring the destination sector to the position under the head. Since

magnetic disk drive rotational speed is constant, the average rotational latency on the

datasheet is simply calculated as one-half the time it takes the disk to finish one complete

revolution. The rotational speed is inversely proportional to the rotational latency. The

rotational speed is another great component of access time because it deals with moving

mechanical parts. The rotational speed or RPM (revolution-per-minute) improves in discrete

steps. The rotational speed has historically increased at 9% per year, which corresponds to
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about a 5% improvement in average response time [78]. As portrayed by Jacob et al. [102],

higher RPM is first introduced in the high-end server drives, and takes approximately 10

years to travel down to mobile drives. The new speed takes a few years to be adopted by the

majority of server drives and then another few more years to be commonly used among

desktop drives. Finally, the RPM speed takes another few more years to be introduced in

mobile drives. Jacob et al. gives an example of the 7200-RPM disk drive, which was first

introduced in server drives back in 1994. It was appeared in desktop drives in late 1990s,

and the first 7200 RPM mobile drive was not available until 2003 - almost ten years after the

first 7200 RPM drive was introduced in server systems. Today’s high-end server drives run

at 15K RPM, with 10K RPM being the most common, while desktop drives are mostly 7200

RPM [78].

4.2.2.3. Interface Data Rate

Interface data rate is the rate that the data can be transferred between the disk drive and

the host over the interface. The most recent disk drive interfaces, data rates, and the bus

latency per sector are shown in Table 4.2 below. All these interfaces are substantially faster

than the disk internal data rate. In our experiments, we varied the interface transfer time per

sector from 0.64 microseconds to 1 millisecond.
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Most interface data transfers can be overlapped with the internal data transfer, excluding

the very last block case. The reason is that every sector of data must be in the drive buffer

entirely for error checking and possible error correcting code (ECC) correction before it can

be sent to the host. For writes, all of the interface data transfer from the host can be

overlapped with the seek process, disk rotation, and the disk drive internal data transfer if

necessary.

Interface Type Data Rate 
(MB/s)

Bus latency 
(us) per 512B-
sector

ATA-7 133 3.85

SCSI Ultra 320 320 1.6

SATA and SAS 300 1.7

future SATA and SAS 600 0.85

FC 200 2.56

future FC 400 1.28

Table 4.2: Latest Disk Interfaces and Their Data Rate
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CHAPTER 5:   METHODOLOGY

SYSim is a model of an entire memory hierarchy that includes both performance models

and energy models for cache, DRAM, and disk. The SYSim project is incorporated with

several simulators for each component of the system. Figure 5.1 shows SYSim architecture

and its components.

Bochs [11], a Pentium emulator, is used as the CPU model to generate the memory

accesses and I/O interrupts. The cache model comes from Wattch [19]. The authors of

Wattch integrate Cacti [12] to obtain the cache configuration with the best timing behavior

for the cache.

OS CACHES:

Wattch
+ Cacti

DRAM:

DRAMsim
+ Micron
power model

req

data

DISK: DiskSim
with DRPM 
power model

I/O req

req

data

CPU

BOCHS

DMA

Figure 5.1: SYSim architecture. including CPU with OS from Bochs [11], caches with power model from Wattch [19] and Cacti [1
DRAMsim from University of Maryland [17] with power model from Micron [18], Disk with power model from DRPM [15] and DiskSim [14], a
all interfaces between them
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After a miss from the last level of the caches, the SYSim accesses the DRAM. The

DRAM simulator from the University of Maryland [17] is integrated into the system to

provide the timing behavior and also the power consumption. The simulator is implemented

in a very detailed way since it has the concept of channels, ranks, and banks. As part of this

dissertation, a power model [18] was incorporated into the DRAM simulator in order to

generate the instantaneous power consumption.

Bochs has the basic model of a Disk, but neither timing nor power statistics is

considered. The Disk model in Bochs takes the responsibility only to read and write data

from/to the disk image. Therefore, we integrate a modified DiskSim [14] simulator as used

in the DRPM paper [15] into the system. The DRPM version of DiskSim is used for only

timing and power consumption statistics collection. We obtained a disk image from Bochs

website which has Redhat Linux 6.0 installed. Finally, a set of programs from

SPECINT2000 benchmark [13] are complied and installed in an OS-ready disk image.
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5.1. The Processor Simulator: Bochs

Bochs is a highly portable open-source PC emulator written in Object-Oriented C++,

which runs on most popular platforms. It includes emulation of the Intel x86 CPU, common

I/O devices, and a customized BIOS. The typical use of Bochs is to provide complete x86

PC emulation, including the x86 processor, hardware devices, and memory. This allows

running OS's and software within the emulator on a workstation. Currently, Bochs can be

compiled to emulate a 386, 486, Pentium, Pentium Pro or AMD64 CPU, including optional

MMX, SSE, SSE2 and 3DNow! instructions. In addition, Bochs is able to run most

Operating Systems inside the emulation including Linux, Windows95, DOS, and Windows

NT 4. 

For the SYSim project, we compiled Bochs for Pentium since it is the most current

released version of Bochs reported to be stable. We also obtained a disk image of Redhat

Linux version 6.0 from the Bochs website. As the objective of the project is to construct a

simulator exclusively for memory system, the CPU simulator is viewed as a black box that

generates memory access requests to the L1 cache and I/O interrupts to the disk. It can be

considered as a trace generator that can reflect the changes in memory organizations and the

memory latency in the hierarchy, but it is more valuable than a trace generator because the

requests respond to the timing in the memory hierarchy, and it reflects the effects of the

unmodified operating system.
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5.2. The Cache Simulator: Wattch

Wattch [19] is an architecture-level microprocessor power estimation tool. The power

models are integrated into the SimpleScalar architectural simulator [28]. The cache model in

Wattch is implemented as an array structure. The power model of the cache is based on the

number of rows, columns, and the number of read/write ports. These parameters affect the

size and number of decoders, the number of wordlines, and the number of bitlines. In

addition, these parameters are used to estimate the length of the pre-decode wires as well as

the lengths of the array’s wordlines and bitlines. The wordline and bitline capacitance are

computed in the same way. The wordline capacitance includes the capacitance of the

wordline driver, the gate capacitance of the cell access transistor multiplied with the number

of bitlines, and the capacitance of the wordline’s metal wire. The bitline capacitance

includes the diffusion capacitance of the pre-charge transistor, the diffusion capacitance of

the cell access transistor multiplied by the number of word lines, and the metal capacitance

of the bitline. The number of ports also affects the power consumption due to additional

transistor connection on wordlines, two additional bitlines, and longer wire on both

wordlines and bitlines. 

Wattch authors estimate the physical implementations for cache structures using the

help of the Cacti tools [12]. Cacti takes the cache size, block size and associativity as inputs,

and chooses the organization that gives the smallest access time. Cacti models each

component of the cache in transistor level considering the technology dependence

parameters. Cacti authors compare the results with Hspice model.

Wattch consider three different options for clock gating to disable unused resources in

multi-ported cache. 
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1. All-or-nothing approach. The full modeled power will be consumed if any 

accesses occur in a given cycle, and zero power consumption otherwise.

2. Scaled linearly. If only a portion of a cache’s ports are accessed, the power is scaled 

linearly with the number of accessed port(s).

3. Scaled linearly with 10 per cent. It is the same as the second option except that 

unused units dissipate 10% of their maximum power, rather than drawing zero 

power.

Since the amount of clock gating in current processors falls somewhere between these

styles, SYSim calculates all three clock gating styles on the fly. Then, it output all three

power consumption numbers corresponding to the clock gating styles into the output file.

So, the user has the freedom to choose which clock gating style he prefers.
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5.3. The DRAM Simulator and Its Power Model

The DRAM simulator from University of Maryland [17] is integrated into SYSim. The

DRAM simulator is considered an extremely detailed DRAM simulator, and it is extremely

configurable. Every parameter can be set, for examples, type of the DRAM, the DRAM

configuration (i.e., number of channels, ranks, banks, rows, and columns), the operating

frequency, refresh policy, address mapping policy, close/open page policy, all timing

parameters, etc. It includes the bus interface unit, the memory controller unit, the DRAM

DIMMs, and DRAM devices. It has the concept of individual state of each channel, rank,

and bank. Each memory access request is transformed to a transaction consisting of the

combination of row activating, column read/write, and precharge commands. In order to

generate such commands, the DRAM simulator considers the current state of each bank. It

also takes the timing specification from the manufacturer’s datasheet into account, and

generates the timing diagram for command bus and data bus. It can simulate a wide variety

of the DRAM types, i.e. SDRAM, DDR SDRAM, DDR2 SDRAM, DRDRAM, and fully-

buffered DIMMS. 

The DRAM simulator has been carefully validated against real hardware and three

different detailed DRAM simulators, using in published DRAM studies. The accuracy

demonstrated exceeds that of any other simulators.

To generate the power consumption, the power model by Micron [18] has been added to

the DRAM simulator. The modified DRAM simulator can generate the power number and

its related statistics to an output file on every epoch. Currently, the DRAM simulator is

incorporated with a power model for DDR and DDR2 SDRAM. Basically, to calculate the

power is to calculate the average power in one activation-to-activation cycle. That is, we
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calculated the power in each DRAM state and then multiplied it with the fraction of time the

device spends in each state with respect to one activation-to-activation cycle. For simplicity,

we consider the power model for DDR SDRAM first, and then make some extensions to

cover the DDR2 case. The power consumption in DDR SDRAM is calculated as follows:

Parameter/Condition Symbol Units

OPERATING CURRENT: One bank; Active Precharge; tRC = tRC 
MIN; tCK = tCK MIN IDD0 mA

PRECHARGE POWER-DOWN STANDBY CURRENT: All banks 
idle; Power-down mode; tCK = tCK MIN; CKE = LOW IDD2P mA

IDLE STANDBY CURRENT: CS_ = HIGH; All banks idle; tCK = tCK 
MIN; CKE = HIGH IDD2F mA

ACTIVE POWER-DOWN STANDBY CURRENT: One bank; 
Power-down mode; tCK = tCK MIN; CKE = LOW IDD3P mA

ACTIVE STANDBY CURRENT: CS_ = HIGH; One bank; tCK = tCK 
MIN; CKE = HIGH IDD3N mA

OPERATING CURRENT: Burst = 2; READs; Continuous burst; 
One bank active tCK = tCK MIN; IOUT = 0mA IDD4R mA

OPERATING CURRENT: Burst = 2; WRITEs; Continuous burst; 
One bank active tCK = tCK MIN IDD4W mA

AUTO REFRESH CURRENT; tRC = 15.625ms IDD5 mA

Table 5.1: The definitions of symbols in the DRAM datasheeta

a. Data Sheet Assumptions
IDD is dependent on output loading and cycle rates. Specified values are obtained with 

minimum cycle time at CL = 2 for -75Z, -8 and CL = 2.5 for -75 with the outputs 
open.

CKE must be active (HIGH) during the entire time a REFRESH command is executed. 
That is, from the time the AUTO REFRESH command is registered, CKE must be 
active at each rising clock edge, until tREF later.

0°C TA 70°C≤ ≤

VDDQ( ) VDD⁄ 2.5V 0.2V+−=
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There are parameters extracted from a DDR SDRAM data sheet involved in the

calculation. Table 5.1 shows the definition of the IDD values from a data sheet. In order to

calculate the power, two states are defined. When data is held in any of the sense amplifiers,

the DRAM is said to be in the “active state”. And after all banks of the DDR SDRAM have

been restored to the memory array, it is said to be in the “precharge state”. Additionally,

CKE, the device clock enable signal, is considered. In order to send commands, read, or

write data to the DDR SDRAM, CKE must be HIGH. If CKE is LOW, the DDR SDRAM

clock and input buffers are turned off, and the device is in the power-down mode. 

From the definition of active/precharge states and CKE above, a DRAM device can be

in four states: 

1. Active Standby Power: 

2. Active Power-down Power: 

3. Precharge Standby Power: 

4. Precharge Power-down Power: 

where 

• IDD values are defined in the data sheet and VDD is the maximum voltage supply of 

the device.

• BNKpre is the fraction of time the DRAM device is in precharge state (all banks of 

the DRAM are in precharge state) compared with the actual activation-to-activation 

cycle time.

• CKEloPRE is the fraction of time the DRAM stays in precharge state and CKE is 

low compared with the time it stays in precharge state.

• CKEloACT is the fraction of time the DRAM stays in active state and CKE is low 

p ACTstby( ) IDD3N VDD× 1 BNKpre∠( ) 1 CKEloACT∠( )××=

p ACTpdn( ) IDD3P VDD 1 BNKpre∠( ) CKEloACT×××=

p PREstby( ) IDD2F VDD× BNKpre 1 CKEloPRE∠( )××=

p PREpdn( ) IDD2P VDD× BNKpre CKEloPRE××=
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compared with the time it stays in active state.

Figure 5.2 shows the four states of a DRAM device during an activation-to-activation

period with a read burst [18]. We assume that the CKE signal becomes low as soon as there

is no activity in the DRAM device.

In addition, when the DRAM device is in Active Standby state, commands can be sent to

the device. The activities corresponding to the commands cause an increase in the current

sent to the DRAM device. For example, during the Active Standby state in figure 5.2, the

current increases due to activation command, and then it drops to IDD3N. During the read

process, the current is also pulled up. Finally, the DQ termination increases the current

Figure 5.2: Read Current with I/O Power Included [18].  The four states of DRAM device are shown, Active Standby state, Active
Power-Down state, Precharge Standby state, and Precharge Power-Down state. We assume other banks in the DRAM device are
precharged. The DRAM device is in Active state when data is stored in any of the sense amplifiers, after an acitvation command. The
device is in Precharge state if all banks are in precharged. The device is in Power-Down mode if CKE signal is low, and it is in Standby
mode, otherwise.
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during data transfer out from the device. Therefore, we have 4 more states in the Active

Standby state.

1. Activate Power: 

2. Write Power: 

3. Read Power: 

4. Termination Power: 

where 

• tRC is the shortest activation-to-activation cycle time as specified in the data sheet.

• tACT is the actual activation-to-activation cycle time in the real system.

• WRpercent is the fraction of time the data, to be written, stays on the data pins 

compared with the actual activation-to-activation cycle time.

• RDpercent is the fraction of time the read data stays on the data pins compared with 

the actual activation-to-activation cycle time.

• p(perDQ) is the power of each DQ. It depends on the termination scheme. In this 

case, we use p(perDQ) = 6.88mW for DDR SDRAM.

• numDQ and numDQS are the number of DQ and DQS pins in the device, 

respectively.

And, Refresh Power: 

Notice that IDD3N is deducted out from the calculation since we already include it in

the p(ACTstdby). Also, in the current version of the DRAM simulator, we simulate a refresh

command as a row activate command with a precharge command. 

p ACT( ) IDD0 IDD3N∠( ) tRC
tACT
-------------× VDD×=

p WR( ) IDD4W IDD3N∠( ) WRpercent VDD××=

p RD( ) IDD4R IDD3N∠( ) RDpercent VDD××=

p DQ( ) p perDQ( ) numDQ numDQS+( ) RDpercent××=( )

p REF( ) IDD5 IDD2P∠( ) VDD×=
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Then we scale the voltage and frequency to the ones we actually operate on. As a result,

we obtain:

Finally, sum everything up for the total power:

P PREpdn( ) p PREpdn( ) useVDD2

maxVDD2
--------------------------×=

P ACTpdn( ) p ACTpdn( ) useVDD2

maxVDD2
--------------------------×=

P PREstby( ) p PREstby( ) usefreq
specfreq
----------------------× useVDD2

maxVDD2
--------------------------×=

P ACTstby( ) p ACTstby( ) usefreq
specfreq
----------------------× useVDD2

maxVDD2
--------------------------×=

P ACT( ) p ACT( ) useVDD2

maxVDD2
--------------------------×=

P WR( ) p WR( ) usefreq
specfreq
---------------------- useVDD2

maxVDD2
--------------------------××=

P RD( ) p RD( ) usefreq
specfreq
---------------------- useVDD2

maxVDD2
--------------------------××=

P DQ( ) p DQ( )= usefreq
specfreq
----------------------×

P REF( ) p REF( ) useVDD2

maxVDD2
--------------------------×=

P TOT( ) P PREpdn( ) P PREstby( ) P ACTpdn( ) P ACTstby( ) P ACT( )
P WR( ) P RD( ) P DQ( ) P REF( )

+ + + + +
+ + +

=
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In case of DDR2 SDRAM, most of the calculations remain the same except p(ACT),

p(REF), and the I/O and termination power. For DDR2 SDRAM, p(ACT) before the

voltage/frequency scaling is:

Then we scale it the same as in the DDR SDRAM case.

The refresh power p(REF) is:

In the power model of DDR2 SDRAM, the simulator supports two cases, 1) one-rank

case, and 2) multiple rank case but at most four rank. For the one rank case, the termination

powers are:

WriteTermination Power: 

Read Termination Power: 

Read Termination Power and Write Termination Power to other ranks are zero:

where p(dqW) = 8.2 mW and p(dqR) = 1.1 mW.

In the case of multiple ranks, the read termination power and write termination power

are the same with p(dqW) = 0 and p(dqR) = 1.5 mW. However, the DRAM needs to

terminate from the other ranks. The termination powers from other ranks are:

where 

p ACT( ) IDD0 IDD3N tRAS IDD2N tRC tRAS∠( )×+×
tRC

---------------------------------------------------------------------------------------------------------∠ VDD×=

p REF( ) IDD5 IDD3N∠( ) VDD tRFCmin
tREFI

------------------------××=

p termW( ) p dqW( ) numDQ numDQS 1+ +( )× WRpercent×=

p DQ( ) p dqR( ) numDQ numDQS+( )× RDpercent×=

p termRoth( ) p termWoth( ) 0==

p termRoth( ) p dqRDoth( ) numDQ numDQS+( )× termRDsch×=

p termWoth( ) p dqWRoth( ) numDQ numDQS 1+ +( )× termWRsch×=
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• p(dqRDoth) is the termination power when terminating a read from another DRAM, 

and is equal to 13.1 mW.

• p(dqWRoth) is the termination power when terminating write data to another 

DRAM, and is equal to 14.6 mW. 

• termRDsch is the fraction of time that read terminated from another DRAM.

• termWRsch is the fraction of time that write terminated to another DRAM.

Finally, we sum it all to obtain the total power of the DDR2 SDRAM:

During the simulation, SYSim collects the statistics information in each epoch. At the

end of the epoch, SYSim calculates the total power of each DRAM chip, and multiplies with

the number of chips in a rank to generate the per-rank power. In an oracle fashion, SYSim

switches the device to the power-down mode as soon as possible. During the time that the

DRAM simulator is not called, SYSim also accounts this time as a power-down mode. The

device is switched to either precharged or active power-down mode, depending on the state

of the banks in the device.

P TOT( ) P PREpdn( ) P PREstby( ) P ACTpdn( ) P ACTstby( ) P ACT( ) P WR( ) P RD( ) P DQ( )
P REF( ) p termW( ) p termWoth( ) ptermRot h( )

+ + + + + + + +
+ + +
=
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5.4. The Disk Simulator: DiskSim

DiskSim [14] is an efficient, accurate, highly-configurable storage system simulator. It

is written in C and requires no special system software. It includes modules for many

secondary storage components of interest, including device drivers, buses, controllers,

adapters and disk drives. Some of the component modules are highly detailed (e.g., the disk

module), and the individual components can be configured and interconnected in a variety

of ways. DiskSim can be driven by externally-provided I/O request traces or internally-

generated synthetic workloads. DiskSim has been used in a variety of published studies to

understand modern storage subsystem performance, to understand how storage performance

relates to overall system performance, and to evaluate new storage subsystem architectures.

The disk module in DiskSim, which is extremely detailed, has been carefully validated

against five different disk drives from three different manufacturers. The accuracy

demonstrated exceeds that of any other disk simulators.

The DiskSim model that we used is taken from the DRPM paper [15]. The model

includes power models to record the energy consumption of the disks when performing

operations like data transfers, seeks, or when just idling as described as TPM model in

DRPM paper. The model collects the latency of each state that the disk stays, and multiplies

the latency with the power consumption number in Figure 5.3 to generate the total energy

consumption. We modified the reported energy at the end of the simulation to report power

in every epoch on-the-fly. 
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However, DiskSim models the performance behavior of disk systems, but does not

actually save or restore data for each request. Therefore, we incorporate the DiskSim model

on top of the Disk model of Bochs. We modified Bochs’ Disk model to convert the I/O

requests from the CPU to DiskSim requests and to place the requests in the DiskSim

interrupt queue. After that, DiskSim is called to simulate the event and returns the latency.

Then, after Bochs updates the timing, the Bochs’ Disk model reads (or writes) the data from

the disk image and return the control to the CPU. 

IDLE

ACTIVE

STANDBY
22.3W 4.15W

39W

SEEK
39W SPINUP

26Secs.
34.8W

SPINDOWN
15Secs. 4.15W

Figure 5.3: TPM Power Modes [15]. 
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5.5. The Benchmarks: SPEC2000

The SPEC CPU2000 benchmarks are intended to exercise the CPU, the memory

hierarchy, and the compilers. Since we intended to study the behavior of the entire memory

hierarchy, a set of benchmarks from SPEC CPU 2000 suite were used in our experiments.

Seven benchmarks from SPEC2000 integer suite were selected, which are bzip2, gzip, gcc,

mcf, parser, twolf, and vortex. And, a selection of two benchmarks from floating-point suite,

ammp and mgrid, are also used in the experiments. They were compiled by gcc with static

libraries on a Linux host system. Then, the binary files of the benchmarks and their input

files are installed on a Redhat Linux disk image. Inputs for all benchmarks are reference

inputs.

SPEC CPU2000 is the next-generation industry-standardized CPU-intensive benchmark

suite. SPEC designed CPU2000 to provide a comparative measure of compute intensive

performance across the widest practical range of hardware. The implementation resulted in

source code benchmarks developed from real user applications. These benchmarks measure

the performance of the processor, memory and compiler on the tested system. The data

collected show that SPEC met its goals for memory footprint: most benchmarks are larger

than common cache sizes, many are larger than 100MB, and none are larger than 200MB.

Further details of the selected benchmarks can be found in the appendix of this dissertation. 
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5.6. Interactions

One of the main contributions of SYSim is to ensure the correct interactions between the

components in the system at the epoch level. These interactions include:

• the interaction between the processor and L1 cache

• the interaction between multiple levels of the caches

• the interaction between the last level of the caches and DRAM

• the interaction between processor and disk via I/O requests

• the interaction between the disk and DRAM via DMA.

Figure 5.4 shows the interaction among the processor, caches, and memory for a Load

instruction. For the interaction of the processor, L1 cache, multilevel of the caches, we

implement them as modeled in SimpleScalar/Wattch. When the processor fetches an

instruction, or executes a load or a store command, a memory request is generated. The

page-frame portion of the requesting address is translated by the operating system via TLB,

while the index portion from the page offset is sent to the L1 instruction cache. As we

viewed the processor and the operating system as a black box that generates memory access

requests and I/O interrupts, we assume that the TLB translates the page-frame address,

except on a page fault. A page fault will be taken care of by the operating system. With the

translated physical page-frame address and the page offset, the L1 cache decodes the

translated physical address into set, tag, and offset. Then, the set is chosen, and the tag

portion of the cache is accessed, and compared. If it is a hit, then the proper bytes of the
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block are furnished to the processor using the lower bits of the page offset, and the

instruction stream access is done.

If it is a miss from L1 cache, the L2 cache is accessed. Like in L1 cache, the physical

address is decoded to tag, set, and offset portion, and the L2 cache accesses the block. If it is

a hit, the proper bytes (the size of L1 cache block) of the block are sent to the L1 cache.

Then, the L1 cache chooses a block to be replaced, depending on the replacement policy,

writes the replaced block to the appropriate block in L2 cache, and writes the missed block

from L2 cache to the chosen block in L1 cache. 

Fetch Decode WBMemExec

virtual to physical 
address translation
(DTLB access) [A1]

[A2] L1 D-Cache
access. If miss
then proceed to

[A3] L2 Cache
access. If miss
then send to BIU

Bus Interface Unit (BIU)
obtains data from main
memory [A4 + B]

[B1] BIU arbitrates [B2] request
sent to system 
controller

[B8] system 
controller returns 
data to CPU

Stages of instruction execution

Proceeding through
the memory hierarchy
in a modern processor

[B3]physical addr.  to memory addr.
translation. 

[B4] memory 

L1
cache

L2
cache

DTLB

Processor Core

BIU (Bus Interface Unit)

DRAM System

for ownership of
address bus ** 

[B5] memory
addr. Setup request

scheduling** (RAS/CAS)

[A1]

[B8]

[A4]

[A2] [A3]

** Steps not required for some processor/system controllers. protocol specific

[B4]

[B3]

[B2]

[B1]

I/O to memory traffic memory request 
scheduling

physical to 
memory addr
mapping [B7]

[B5]

read
data
buffer

memory controller

processor

DRAM 
core

[B6]

[B6, B7] DRAM dev.
obtains data and 
returns to controller 

Part A: Searching
on-chip for data

Part B: Going
off-chip for data

(CPU clocking 
domain)

(DRAM clocking
domain)

Figure 5.4: : Abstract Illustration of a Load Instruction in a Processor-Memory System [17]. 
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On the other hand, if a miss occurs in L2 cache, the request is sent either to L3 cache, if

exists, or to the DRAM memory system. If the request must go to DRAM memory, the

request will be put in the Bus Interface Unit (BIU) request queue inside the DRAM

simulator. After the appropriate BIU entry has been selected, the status of the BIU entry is

marked as SCHEDULED, then a memory transaction is created in the memory transaction

queue. The transaction is broken into a series of appropriate row activation, column

read/write, and precharge commands depending on the status of the accessing bank. After

the commands are issued, the DRAM returns the most critical data (the size of memory bus)

with respect to the DRAM timing specification, and the rest of the data is sent to the

replaced block of the last-level cache until filled. Figure 5.4 shows how a processor and

memory system, excluding disk effects, interact in a load instruction.

For the actual implementation in SYSim, the integrated cache and DRAM models do not

contain any data; the data are obtained from the memory array in Bochs simulator. The

integrated cache and DRAM only return the latency for each request and update the status of

the components. The value of the returned latency includes only the time spent until the first

chunk (critical word) of data returns, excluding the time returning the rest of the data.

On the other side of the operating system, when a page fault occurs, the operating

system issues a command to transfer the new page from the disk to memory. As a disk

request often involves block transfers, direct memory access (DMA) hardware is added to

many computer systems to allow transfers of numbers of words without intervention by the

CPU. DMA is a specialized processor that transfers data between memory and an I/O device

while the CPU goes on with other tasks. Thus, it is external to the CPU and must act as a

master on the bus. The CPU first sets up the DMA registers, which contain source and
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destination memory addresses and number of bytes to be transferred. Once the DMA

transfer is complete, the controller interrupts the CPU. There may be multiple DMA devices

in a computer system; for example, DMA is frequently part of the controller for an I/O

device.

A newer protocol for the ATA/IDE interface is Ultra DMA. The key technological

advance introduced to IDE/ATA in Ultra DMA was double transition clocking. Before Ultra

DMA, one transfer of data occurred on each clock cycle, triggered by the rising edge of the

interface clock (or strobe). With Ultra DMA, data is transferred on both the rising and falling

edges of the clock. Double transition clocking, along with some other minor changes made

to the signaling technique to improve efficiency, allowed the data throughput of the interface

to be doubled for any given clock speed.

The actual implementation of DMA and Ultra DMA relies on the timing in Bochs.

Bochs already implements DMA and the interaction with memory, but no timing is updated.

By inspection from Bochs, a disk request causes the disk to read a sector from the disk to the

disk buffer. Then, the data is sent to the memory 2 bytes at a time as the IDE/ATA interface

is two bytes (16 bits) wide. We need to consider the transfer configuration, i.e. the frequency

of the bus, what is the type of the interface, etc., to calculate the data transferring latency.

For example, if we wish to transfer a 512-byte sector with DMA, the latency is equal to 

, or

 with Ultra DMA.

latency 512B
2BperClock BusFrequency×
----------------------------------------------------------------------------=

latency 512B
4BperClock BusFrequency×
----------------------------------------------------------------------------=
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After DMA completes transferring the data to the memory controller, the controller

generates a transaction corresponding to the data from DMA. Then, the transaction is

scheduled to the DRAM system when appropriate. Finally, the memory pages,

corresponding to the data existing in any caches, are invalidated as the preparation for the

data to be loaded to the caches later on.

In SYSim, we run all applications in single-user mode to make accurate calculation of

execution time. Otherwise, the kernel would swap to other processes on a read() system call.

Therefore, disk delay shows up as stall time. On the other hand, a write() system call returns

to user code as soon as the data is transferred into kernel space. Instead of writing through to

the disk system directly and waiting for the write to finish, the operating system buffers the

writes in the memory and returns the control to the user application immediately. The

operating system issues a long burst of buffered writes to the disk system periodically at

later time. As a result, the disk read requests behave like blocking requests, and disk writes

behave like non-blocking requests. Additionally, the way we implemented the interface is

very straightforward as DiskSim allows us to specify the bus latency for transferring one

sector. Therefore, in the experiment, we only varied the bus latency to see the differences

between the different types of interfaces.
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5.7. Parameter and Benchmark Selections

All the parameters using in the experiments are shown in the table below. We have

chosen the parameters to suit the benchmarks which is SPEC2K, but still reflects the modern

computer systems as the same parameters are still used in recent publications. The cache

structure consists of a level-1 instruction cache, a level-1 data cache, and a level-2 unified

cache. We use 0.10 micron-technology for the cache as defined in Wattch. The memory type

is DDR SDRAM with one channel of an eight-byte wide bus. The DRAM parameters are set

according to the datasheet of DDR SDRAM 128Mb chip from micron website. Table 5.2

shows the base configuration for the CPU, caches, DRAM, and Disk in our experiments. If

not specified, the parameters are set according to the table.

For the benchmarks, since we focus on the entire memory hierarchy affected by the

changed in parameter settings, we are using a subset of SPEC2K benchmarks. However,

after a preliminary experiment showing in the next chapter, all benchmarks can be

characterized into 2 categories; first is the benchmarks that show memory page swapping

behavior due to not enough memory. This type of benchmark has both disk reads and writes.

Second is the benchmarks that have no page swapping; therefore, only a series of

consecutive disk reads are exhibited. As a result, we choose only bzip2 and ammp with

different main memory sizes to represent both categories of behaviors. Since we focus on

the I/O intensive phase of the execution, we run only the first 500 million instructions,

which is disk-intensive.
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CPU Parameters

CPU speed 2GHz

L1-Icache 64kB; 64B linesize; 4-way with LRU repl.; lat = 1

L1-Dcache 64kB; 64B linesize; 4-way with LRU repl.; lat = 1

L2-cache 512kB; 128B linesize; 4-way with LRU repl.; lat = 6

cache technology sizing 0.10 micron

Memory Parameters

memory type DDR SDRAM

memory data rate 400 MHz

memory channel count 1

memory channel width 8 bytes

memory rank count 1

memory bank count 4

memory row count 4096 (for 128MB)

memory column 1024 (for 128MB)

DRAM chip density 128 Mb (for 128MB)

DRAM chip VDD 2.6 V

DRAM chip IDD0 155 mA

DRAM chip IDD2P 5 mA

DRAM chip IDD2F 55 mA

DRAM chip IDD3P 45 mA

DRAM chip IDD3N 60 mA

DRAM chip IDD4R 190 mA

DRAM chip IDD4W 195 mA

DRAM chip IDD5 11 mA

Table 5.2: Base Configuration for CPU, caches, and memory
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The disk parameter files are taken from DRPM paper. We choose 5400 RPM (or 5k) to

represent yesterday’s disk, 12000 RPM (or 12k) to represent today’s disk, and 20000 RPM

(or 20k) to represent tomorrow’s disk. However, for the power consumption, after several

disk drives currently available in the market have been surveyed, the power consumption for

idle mode and active mode of 22Watts and 39Watts as specified in DRPM paper are no

longer reasonable. Figure 5.5 below shows the plot of the RPM versus the idle power and

the active power of 47 commercially available disk drives. The figure shows the idle power

values are in the range of 5-16 Watts and the active power values are in the range of 7-23

Watts, while the RPM is between 7,200RPM and 15,000 RPM. No disk drive has the power

consumption over 25 Watts. The reason might be the changes in disk drive technology

which are increasingly moved toward low power venue in the past few years making the

power consumption of a disk drive in real life diverge from the one described a few years

back by DRPM paper. Therefore, a selection of more reasonable idle and active power

consumption has to be chosen.

DRAM chip’s power per DQ 6.88 mW

Disk Drive Parameters

Disk parameters 5400, 12000, 20000 with 4MB of disk cache

RAID stripe size 16KB

Disk sector size 512 bytes

Table 5.2: Base Configuration for CPU, caches, and memory
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In this dissertation, since the disk speed that we study is either obsolete (5400 RPM) or

not commercially available (12,000 RPM and 20,000RPM), we employ the following

technique to project the power consumption. Son and Kandemir [91] suggested curve fitting

method to estimate the idle and active power of a disk drive for a particular RPM. They

collected several pairs of RPM and power consumption from commercially available disk

drives, and projected them on a linear curve fitting. From the power consumption of the

multi-speed disk drive shown in their paper, we use their linear curve fitting to project the

idle power and active power for 5400, 12000, and 20000 RPM. The equation used in the

curve fitting is below:

projected value
projected value x

x

Figure 5.5: Idle and Active Power of 47 Commercially Available Disk drives. The figure on the left is for Disk Idle Power and RPM,
and the figure on the right is for Disk Active Power. The data point marked as DRPM is the Idle and Active Power from DRPM paper.
Obviously, the idle and active power from the DRPM paper are too high from the power numbers of the commercially available disks. The
figure also shows our projected values used in the dissertation.

Pidle 0.51 RPM( ) 1000⁄×( ) 2.5+=

Pactive 0.73 RPM( ) 1000⁄×( ) 2.5+=
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As a result, we use the following power consumption for 5400, 12000, and 20000-RPM

disk drives in our experiment as show in the table 5.3:

For the RAID5 settings, we consider the configurations as shown in the figure 5.7 below.

We conducted the experiments with 2 configurations of 4-disk RAID system which are (1) 2

controllers with 2 disks each or “2c x 4ds”, and (2) 4 disks connected to only one controller

or “4ds”. For the 8-disk RAID system, we have 3 configurations, which are (1) 2 controllers

with 4 disks each or “2c x 4ds”, (2) 4 controllers with 2 disks each or “4c x 2ds”, and (3) one

controller with 8 disks or “8ds”.

RPM Active Power (W) Idle Power (W)

5,400 6.442 5.254

12,000 11.26 8.62

20,000 17.1 12.7

Table 5.3: Disk Active and Idle Power Values

Figure 5.6: Son and Kandemir’s Disk Power Projection for IBM Ultrastar 36Z15. The figure shows linear relationship between the
power and the RPM as used in their experiments. This relationships reflect better representative values for the active and idle power for
a currently available disk drive.
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Figure 5.7: (1) RAID5 Configuration for an 4-disk system. The figure shows (a) 2 controllers with 2 disks each (2c x 2ds), and (b) one
controller with 4 disks connected (4ds). Note that each disk also has its own controller.

Figure 5.7: (2) RAID5 Configuration for an 8-disk system. The figure shows (a) 2 controllers with 4 disks each (2c x 4ds), (b) 4
controllers with 2 disks each (4c x 2ds), and (c) one controller with 8 disks (8ds). Note that each disk also has its own controller. Due to the
limitation in space, a bus is reduced to a 2-head arrow, and the name of the bus is omitted.
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5.8. SYSim and Real Systems Comparison

We compared the execution time breakdown results obtained from SYSim to the results

obtained from a set of real systems. We ran SPEC’s gzip on three different machines. The

real system configurations are set to be comparable to SYSim configurations. Due to the

limitation of the availability and compatibility in hardware, we compare SYSim with a set of

available machines with comparable configuration, but not with the exact configuration. The

first system has a 750MHz CPU with 96MB of the system memory and runs Fedora Core 3.

The execution time breakdown for the first system is shown in Table 5.4. 

The second system is the same system as the first system, but the system memory is set

to 128MB. The second system is comparable to a SYSim system configured with a 2GHz

CPU and 128MB of the system memory. Even though the second system has a CPU of

750MHz, the CPU is an out-of-order core, which is approximately comparable to a 2 GHz

in-order core in SYSim. Therefore, SYSim execution time statistics are also shown at the

end of Table 5.5 for comparison. 

Run # User (s) Kernel (s) I/O stall (s) Total (s)

1 (cold cache) 93.11 15.06 600.83 709

2 (warm cache) 92.7 16.3 397.00 506

3 (warm cache) 92.8 14.3 425.90 533

4 (warm cache) 93.3 14.3 460.40 568

5 (warm cache) 93.6 14.3 441.10 549

Table 5.4: Execution Time Breakdown for System #1: 750MHz CPU with 96MB 
memory
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The first and the second real systems are the same system with only 32MB different in

the memory size. However, the total execution time of both systems are as different by the

factor of 3 and the I/O stall times are as different by the factor of 5. This result shows that the

I/O effect exists in the real system. In Table 5.5, the execution time breakdown in both real

system and SYSim are comparable.

The third system has a 2.4GHz CPU with 1GB of the system memory also running

Fedora Core 3. The third system is to be compared with a SYSim system configured with a

2GHz CPU with 512MB of the system memory. Though the SYSim system has less in both

processor frequency and memory size, our experiment results in the next chapter show that

any systems running SPEC’s gzip with any size of memory larger than 160MB will not

cause any differences in the total system performance. Therefore, the memory size of 1GB

or 512MB will perform similarly in this case. The execution time statistics in both actual

Run # User (s) Kernel (s) I/O stall (s) Total (s)

1 (cold cache) 90.4 6.4 164.20 261

2 (warm cache) 90.1 6 126.90 223

3 (warm cache) 89.8 5.7 129.50 225

4 (warm cache) 90.5 5.5 121.00 217

5 (warm cache) 90.3 6.1 168.60 265

SYSim System Run User and 
Kernel (s) I/O stall (s) Total (s)

run# 1 27.8 135.2 162.8

Table 5.5: Execution Time Breakdown for System #2: 750MHz CPU with 128MB of 
memory comparing with a SYSim system with 2GHz CPU with 128MB of memory
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system and SYSim system are shown in Table 5.6. Notice, the execution time breakdown in

both real system and SYSim system are also very similar in this case.

Run # User (s) Kernel (s) I/O stall (s) Total (s)

1 (cold cache) 20 0.19 27.8 48

2 (warm cache) 20 0.19 19.8 40

3 (warm cache) 20 0.19 17.8 38

4 (warm cache) 20.1 0.20 18.7 39

5 (warm cache) 20 0.19 21.0 41.2

SYSim System Run User and 
Kernel (s) I/O stall (s) Total (s)

run #1 27.8 33.1 60.9

Table 5.6: Execution Time Breakdown for System #3: 2.4GHz CPU with 1GB of 
memory comparing with a SYSim system with 2GHz CPU with 512MB of memory
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5.9. Sample Output

Figure 8-11 show the graphs which are generated from the sample output of SYSim. The

system configuration is as described in Table 5.2, with 128MB of memory, a single 12k-

RPM disk drive with disk cache. The system ran gzip to completion. Figure 5.8 shows the

Sample Output of Cache Accesses and Total system CPI. The figure shows 4 graphs, which

are (1) instruction cache accesses per 10 milliseconds, (2) data cache accesses per 10 ms (3)

level-2 unified cache accesses per 10 ms, and (4) the total system CPI per 10 ms along with

the accumulated system CPI. In the last graph, the duration with no data point means that

there is no instruction executed.

Figure 5.9 shows the Sample Output of Cache miss rate and Disk Accesses. Figure 5.9

shows 4 graphs, which are (1) the miss rate of the instruction cache, (2) the miss rate of the

data cache, (3) the miss rate of level-2 unified cache, and (4) the disk accesses per 10ms.

Figure 5.10 shows the Sample Output of Cache power and Disk Power Dissipation. The

figure shows 4 graphs, which are (1) the instruction cache power, (2) the data cache power,

(3) the level-2 unified cache power, and (4) the disk power per 10 ms. All power dissipation

values are in Watts.

Finally, Figure 5.11 shows the Sample Output of DRAM and Disk Accesses and Power

Dissipation. The figure shows 4 graphs, which are (1) DRAM Power, (2) DRAM Accesses

per 10 ms, (3) Disk Power, and (4) Disk Accesses per 10ms. The duration having no data

point means that there are no accesses. All graphs share the same x-axis which is the

execution in milliseconds, and each data point is the collection of average value over 10

milliseconds.
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Figure 5.8: Sample Output of Cache Accesses and Total system CPI. The figure shows 4 graphs, which are (1) instruction cache
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CHAPTER 6:   EXPERIMENTAL RESULTS

This chapter discusses the results from the experiments that utilized SYSim to

investigate the system-level behaviors during the I/O intensive phase of an execution. Most

applications spend a significant amount of the time, if not most, in the I/O intensive phase

due to the I/O activities. During the I/O intensive phase, the other components in the

memory hierarchy cause only very little activities. We conducted the experiments during the

I/O-intensive phase, which tends to be within the first 500 million instructions of the

execution. This chapter presents the impact of the variations in system memory size settings

and disk design space having on total system performance and power. The experimental

results are shown in terms of both total system performance and power/energy consumption.

6.1. I/O intensive phase

As we discussed in the introduction, an application tends to spend a significant amount

of time during the I/O intensive phase. Again, Figure 6.1 shows the interaction of memory

hierarchy components during the entire execution of gzip on our complete-system

simulator--SYSim, while in a single user environment. The system configuration used in

this example is a 2-GHz Pentium processor, 128MB of main memory, and a 12k-RPM disk

drive with built-in disk cache. The other system configuration is as described in Table 5.2.

Figure 6.1 includes graphs displaying comparisons between cache accesses and system CPI,

all cache power, and DRAM and disk access/power. The system CPI is shown in both 10ms-



 160

I/O intensive phase

computation
phase

0

5e+06

1e+07

1.5e+07

2e+07

Ica
ch

e A
cce

ss

Cache Accesses (per 10 ms) and System CPI
gzip; memory: 128MB; run to completion

0

5e+06

1e+07

1.5e+07

2e+07

Dc
ach

e A
cce

ss

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05

L2
cac

he
 A

cce
ss

   20    40    60    80  100    120    140    160    180   200
time(s)

1

10

100

1000

10000

CP
I

CPI@10ms
cum. CPI

0
1
2
3
4
5

Ica
ch

e P
ow

er 
(W

)

Cache Power (per 10 ms)

0
1
2
3
4
5

Dc
ach

e P
ow

er 
(W

)

0.4
0.42
0.44
0.46
0.48
0.5

L2
cac

he
 Po

we
r (W

)

20 40 60 80 100 120 140 160 180 200
time(s)

0

5

10

15

Di
sk 

Po
we

r (
W

)

0
1
2
3
4
5

DR
AM

 Po
we

r (
W

)

DRAM & Disk Accesses/Power(per 10ms)

100
101
102
103
104
105

DR
AM

 A
cce

sse
s

0

5

10

15

Di
sk 

Po
we

r(W
)

   20    40    60    80   100    120    140    160    180   200
time(s)

100
101
102
103
104

Di
sk 

Ac
ces

s(p
er 

10
ms

)

Figure 6.1: The System CPI. The figure shows the System CPI over the entire run of gzip. The system configuration is a 2-GHz processor
with 128MB of memory and a 12k-RPM disk. The CPI graph shows 2 CPI values: one is the instant CPI for every 10ms, another is the
accumulated average CPI. The duration having no data point means no instructions are executed due to the I/O latency. The course of
execution when the accumulated CPI is over 100 is the I/O intensive phase, and the course of execution when the CPI is below 100 is the
computation phase.
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epoch average and total accumulated average. Accesses and power of level-1 instruction

cache, level-1 data cache, and level-2 unified cache are all illustrated. All graphs use the

same x-axis, which represents the execution time in seconds. The x-axis does not start at

zero since the system boot time is excluded. Figure 6.1 is the same as Figure 5.8 to 5.11, the

sample output in Chapter 5. 

The figure demonstrates different phases of execution: the I/O intensive phase and the

computation phase. During the I/O intensive phase, the operating system reads the program

and required data from the disk and allocates the memory pages for them. The caches are

mostly idle, and the DRAM is sporadically written into. On the other hand, the disk is

actively accessed. From the figure, the I/O intensive phase is from the start of the execution

until the 140th second. Since the application was run in a single user mode, the disk access

delay causes stall time in the execution. One notices long periods of disk activity, when the

disk power is at its maximum followed by periods of disk bursts, i.e. from the 10th second to

the 50th second and the 70th to the 110th second. These long disk activity periods are the

result of write bursts caused due to write buffering performed by the file system

management. Since perfect disk-side write buffering mechanism is not implemented in this

system, the long write bursts have to be processed immediately to prevent the data

discrepancy from any failures. The latency of this long period depends heavily on the

memory page swapping algorithm used by the operating system. More page swapping

means more write data to be buffered in the main memory due to pages swapped out, and

longer write bursts to be scheduled to the disk. In this configuration, due to the large

memory footprint of the application (as much as 180MB [13]), the operating system swaps

out numerous memory pages. The write data buffered in the file system are periodically sent
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to the disk. If these write bursts are scheduled before the disk reads in a single user mode,

the write bursts would prolong the execution time since the reads have to wait for the write

bursts to be completed.

The second phase is the computation phase. During the computation phase, the caches

and DRAM are accessed regularly while the processor read instructions and data from the

caches and executes them. In this execution phase, the disk is rarely accessed since most of

the required code and data are already loaded in the memory. In other applications, there

might be disk accesses due to a larger memory footprint. The figure also illustrates a number

of disk accesses during the computation phase, but these accesses have no performance

impact. This is because these accesses are periodic disk write bursts, which are the results

from write buffering under the file system. These write bursts would not lower system

performance unless there are reads scheduled after the bursts.

The last phase of execution, is often an I/O output phase. After the computation, an

application would output the results to I/O, which can be the computer screen or a file.

However, since SPEC's version of gzip performs only reads from I/O for input, but no file

I/O for output, the figure does not demonstrate this I/O output phase.

As Figure 6.1 shows, the CPI value can vary dramatically, i.e. by many orders of

magnitude, due to the I/O activities during long I/O intensive phase. CPI finally reduces to a

single-digit number during the computation phase as observed in previous studies. If the CPI

is calculated from the entire execution, the average CPI would be just under 10. However, as

many researchers only concentrate on the computation phase, they claimed the final CPI

number to be around 1. This misconception is mainly caused by excluding the I/O intensive

phase. The final results would be an inaccurate average CPI and incorrect execution time
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estimation. Therefore, the I/O intensive phase is truly important to the entire execution of an

application. 

Let’s have a look at what if we increase the memory size to the point where is no paging

in the system. Figure 6.2 shows the results of the same system with 512MB running gzip.

The I/O intensive phase is much shorter, but it remains a significant portion of the entire

execution time. Though the I/O intensive phase is much shorter, write bursts remain, i.e. at

the 25th and the 40th second. Therefore, even without the memory paging in the system, the

disk request stream is composed of both read and write requests. As a result, the problem

remains even in a system equipped with disk prefetching, so simple prefetching data from

the disk is not a solution.

Figures 6.3 to 6.11 show the executions during the I/O intensive phases of all nine

benchmarks used in the experiments: ammp, bzip2, gcc, gzip, mcf, mgrid, parser, twolf, and

vortex. Again, all graphs are the results of the configurations of 128MB of memory with a

single 12k-RPM disk equipped with disk cache. All results are shown for the first 500

million instructions. Obviously, all benchmarks demonstrate disk-intensive behavior during

the execution: the disk is actively accessed and prolongs execution time due to the long

latency. On the other hand, the number of cache and DRAM accesses are minimal,

compared with the number of cache and DRAM accesses during the computation phase.

Though some applications actively access the cache and DRAM, the numbers of accesses

are not as high as during the computation phase, for example, ammp and parser. For mcf,

system initialization ends after 10 seconds. During initialization only the disk is accessed.

Following the I/O intensive phase, all memory components are actively accessed. Caches

and DRAM accesses are scattered periodically because of long latency of the I/O between
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Figure 6.2: The interaction in memory hierarchy in a system with 512MB of memory. The figure shows the interaction between all
components in the memory hierarchy including level-1 instruction cache, level-1 data cache, level-2 unified cache, DRAM, and a disk drive.
Notice that initialization time reduces from 140 seconds in Figure 6.1 to 40 seconds in this figure.
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Figure 6.3: I/O intensive phase of ammp. 
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Figure 6.4: I/O intensive phase of bzip2. 
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Figure 6.5: I/O intensive phase of gcc. 
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Figure 6.6: I/O intensive phase of gzip. 



 169

0

5e+06

1e+07

1.5e+07

2e+07

Ica
ch

e A
cc

ess

Cache Accesses (per 10 ms) and System CPI
mcf; memory: 128MB; first 500M instructions

0

5e+06

1e+07

1.5e+07

2e+07

Dc
ac

he
 A

cc
ess

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05

L2
ca

ch
e A

cc
ess

8 10 12 14 16 18
time(s)

1

10

100

1000

10000

CP
I

CPI@10ms
cum. CPI

0
2
4
6
8

10

Ica
ch

e P
ow

er 
(W

)

Cache Power (per 10 ms)

0
2
4
6
8

10

Dc
ac

he
 Po

we
r (

W
)

0.4
0.42
0.44
0.46
0.48

0.5

L2
ca

ch
e P

ow
er 

(W
)

8 10 12 14 16 18000
time(s)

0

5

10

15

Di
sk

 Po
we

r (
W

)

0

1

2

3

4

DR
AM

 Po
we

r (
W

)

DRAM & Disk Power/Accesses

1
10

100
1000

10000
1e+05

DR
AM

 A
cc

ess
es 

pe
r 1

0m
s

0

5

10

15

Di
sk

 Po
we

r(W
)

8 10 12 14 16 18
time(s)

1
10

100
1000

10000
1e+05

Di
sk

 A
cc

ess
(pe

r 1
0m

s)

Figure 6.7: I/O intensive phase of mcf. 
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Figure 6.8: I/O intensive phase of mgrid. 



 171

0

5e+06

1e+07

1.5e+07

2e+07

Ica
ch

e A
cc

ess

Cache Accesses (per 10 ms) and System CPI
parser; memory: 128MB; first 500M instructions

0

5e+06

1e+07

1.5e+07

2e+07

Dc
ach

e A
cc

ess

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05

L2
ca

ch
e A

cc
ess

7 8 9 10
time(s)

1

10

100

1000

10000

CP
I CPI@10ms

cum. CPI

0
2
4
6
8

10

Ica
ch

e P
ow

er 
(W

)

Cache Power (per 10 ms)

0
2
4
6
8

10

Dc
ac

he
 Po

we
r (

W
)

0.4
0.42
0.44
0.46
0.48

0.5

L2
ca

ch
e P

ow
er 

(W
)

7 8 9 10
time(s)

0

5

10

15

Di
sk

 Po
we

r (
W

)

0

1

2

3

4

DR
AM

 Po
we

r (
W

)

DRAM & Disk Power/Accesses

1
10

100
1000

10000
1e+05

DR
AM

 A
cce

sse
s p

er 
10

ms

0

5

10

15

Di
sk

 Po
we

r(W
)

7 8 9 10
time(s)

1
10

100
1000

10000
1e+05

Di
sk

 A
cc

ess
(pe

r 1
0m

s)

Figure 6.9: I/O intensive phase of parser. 
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Figure 6.10: I/O intensive phase of twolf. 
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Figure 6.11: I/O intensive phase of vortex. 
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the accesses. Therefore, the disk latency has a significant impact on the total execution time

for all applications.

The disk dissipates near the maximum power during the I/O intensive phase, while other

memory components (level-1 caches, level-2 cache, and DRAM) dissipate marginal power.

Even in the applications with regular accesses, other memory components still dissipate

little power due to the long latency of the I/O spreading the accesses apart. The maximum

instantaneous power dissipated for level-1 caches is approximately 4 Watts, but the average

power for the entire phase is approximately 0.4 - 1.2 Watt. Despite its large size, the level-2

cache dissipates very little power (0.4 Watt) due to the clock gating style used in the cache.

In level-2 cache, since it is accessed less frequently than the level-1 caches, only the

accessed bank of level-2 cache is active during the access, and the rest are inactive. This

may cause a performance penalty, but the mechanism saves significant power. The DRAM

dissipates only roughly 4 Watts maximum at any instant and approximately 0.2 - 1 Watt on

average. Since the DRAM has low activity during the I/O intensive phase, the DRAM

power and energy mainly depends on the DRAM configuration: the power in the DRAM

system is proportional to the number of the DRAM chips. In our experiment, the DRAM is

set to only one rank with 8 chips, and its capacity is varied by changes in internal DRAM

chip configuration. With no variation in the number of chips, the power dissipation of the

DRAM would not be drastically affected.
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6.2. Memory Size and I/O Behaviors

It has been widely accepted that the system memory capacity has a great impact to

overall system performance. Different benchmarks require different memory, and different

phases of the execution have different memory footprint. For our experiments, we executed

nine different SPEC2000 benchmarks on different sizes of the main memory, and observed

the total system performance in term of CPI and the number of disk requests generated. The

results are shown in the figure 6.12. The minimum and the maximum size of the memory for

each benchmark executed are as labeled. The minimum size of memory for each benchmark

is the minimum size of memory that the system can run without a “not enough memory”

error. The maximum size of the memory for each benchmark is the size of memory that does

not have any different results than the system with smaller memory. Note, the y-axes in both

graphs are in log scale.

We observed that all SPEC2000 benchmarks used can be characterized into 2 categories;

first is the benchmarks that show memory page swapping behavior due to insufficient

memory to hold the entire memory footprint in the I/O intensive phase, i.e. ammp, bzip2,

gzip, and mgrid. This type of benchmark has both disk reads and writes. The numbers of

disk reads and writes depend heavily on the size of the memory. The second category is the

benchmarks that can fit into a small memory system, so the systems have no page swapping.

Therefore, only series of sequential disk reads are exhibited. For example, gcc, mcf, parser,

and vortex are categorized into this type of benchmark. This type of benchmark is not

sensitive to the size of the memory as long as the system can provide enough memory to run

without crashing. One would notice that in the latter type of applications, for example gcc,
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Figure 6.12: Memory Size Exploration. Changing in the system memory capacity has exponentially impact on the overall system
performance (CPI). However, if the size of the memory is big enough to hold the memory footprint of the benchmark, the memory size
has no effects. The figure shows not only the changes in CPI but also the changes in the number of the disk requests over 9 spec 2000
benchmarks. We run amp, gcc, parser, twolf, and vortex over the memory size of (16MB, 32MB, 64MB, 96MB, and 128MB), bzip2 and
gzip over (96MB,112MB,128MB, 144MB, 160MB, 172MB, 192MB), mcf over (80MB, 96MB, 128MB), and mgrid over (32MB, 64MB,
96MB, 128MB). The smallest size of the memory for each benchmark is the smallest size of memory that the system can run without
“not enough memory” error.
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the memory size of 16MB can hold both the operating system and the application.

Therefore, the operating system uses less than 16MB. As a result, in the applications

demonstrating paging behavior, the systems exhibit paging even with the memory size

larger than 100MB. This paging behavior is all due to the memory footprint of the

application. Due to the paging behavior in those systems, in the subsequent experiments, we

choose only bzip2 and ammp with different memory size to represent both categories of

behaviors. 

Figure 6.13 to 6.15 show the disk reads and writes over time in the first category of

applications for ammp, mgrid, gzip, and bzip2. Each graph in the figure represents the data

on the system with different DRAM capacity: less DRAM capacity on top and more at the

bottom. There are both disk reads and writes in the request streams. The less DRAM

capacity provided in the system, the more requests to disk. The majority of the increased

disk requests are disk writes. On the other hand, Figure 6.16 shows the disk reads and writes

over time in the second category applications for parser and gcc. Obviously, the applications

in the first category exhibit increasing number of writes while the DRAM capacity decreases

because the operating system swaps many pages out to prepare for new pages reading in.

The applications in the second category applications do not write to disk, despite the size of

the DRAM.
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Figure 6.13: ammp and mgrid Disk Activities. 
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Figure 6.14: gzip Disk Activities. 
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Figure 6.15: bzip2 Disk Activities. 
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6.3. Power/Energy Consumption of the Disk due to 

Different Memory Size

In the previous section, we learned that the memory size has a substantial impact on the

overall system performance. However, not only is overall performance important, but the

power dissipation and energy consumption are also main concerns nowadays. We setup an

experiment for the power dissipation and energy consumption. We varied the size of the

memory and analyzed the power dissipation and energy consumption of the DRAM and the

disk. The experiment focuses on only single disk systems. The disk configuration is a 12k-

RPM disk with 4MB disk cache. Figure 6.17 shows the power dissipation and the energy

consumption of such systems. Compared to the disk, DRAM dissipate a small amount of

power. Indispensably, the system requires enough DRAM capacity to hold the application

footprint, so the disk is accessed less and dissipates much less power. 

On the other hand, the energy consumption is more important than the power dissipation

in our experiments. For small size of the memory, the disk power dissipation remains

relatively constant compared with the system with large memory, while the disk energy

consumption is rapidly increasing. The reason is, though the power dissipation is limited by

the maximum, the execution time is prolonged due to more pages swapping to the disk. The

prolonged execution time causes the energy consumption to increase rapidly. Additionally,

DRAM energy consumption becomes significant compared to the disk energy. The reason is

the DRAM capacity is large enough to contain all needed memory pages, so the number of

requests to the disk is reduced. Therefore, the disk consumes its minimum energy while the

DRAM system is busiest. The ratio of the energy consumption of the disk over the energy of
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the DRAM reduces from 100:1 to 10:1 when enough DRAM capacity is added in the

system. However, the ratio may reduce even more if more DRAM is added excessively and

costs only more energy without any performance benefits.

Next, we conduct an experiment to characterize the power dissipation and the energy

consumption of different RPM disks. Figure 6.18 shows the DRAM & Disk Power

Dissipation and Energy Consumption with different RPM disks. The top graph shows the

power dissipation of the DRAM and the disk in a single disk system. The bottom graph

shows the energy consumption of the DRAM and the disk. We varied the memory size and

study its impact on energy consumption/power dissipation. All results are show for bzip2. 

The DRAM power and energy for each memory size are always the same for all disk

RPMs. Interestingly, the power dissipation of the disk are varied with the disk RPM. On the

other hand, the energy consumption is more intriguing. Lower RPM disk does not always

mean lower energy. Unlike the power dissipation, the lowest RPM actually consumes the

most energy when the memory size is small, and consumes the least energy when the

memory size is large enough to hold the benchmark data. The reason is when the memory

size is small, the disk with lower RPM spend more time to execute the same set of

instructions since there are more disk requests to the disk due to memory page swapping.

The disks with 12k-RPM and 20k-RPM consume relatively the same energy, but the CPI of

the latter is much better than the former. All disks consume relatively the same energy at

144MB, but the different system performances vary as much as a factor of 2.5.
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Lastly, Figure 6.19 shows the trade-offs graph between the Energy Consumption and the

system CPI. Each line represents a configuration with different RPM disk. There are 7 data

points on each line, representing the size of memory varied from 96MB to 192MB,

corresponding to the memory size in the previous figure. On each line, the top-right data

point is for the memory size of 96MB. The inset graph shows the data points of the

configurations with the memory size of 144, 160, 176, and 192MB. As displayed, all lines

are moving toward the origin as the memory is increasing. Among different RPMs, the

higher RPM disks move toward the system optimal with higher rate. Hence performance is

related to DRAM capacity more strongly than disk RPM. However, the lines stop at a

certain CPI, even though the memory is increasing. This suggests that, with large system
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Figure 6.19: Energy Consumption v.s. CPI Trade-offs. The graph show the trade-offs plot combining total system energy consumption
and the total system CPI. Each line represents a configuration with different RPM disk. There are 7 data points on each line, representing the
size of memory from 96MB to192MB with the top-right data point is for 96MB. Largest DRAM capacity is to the left; obviously, more DRAM
capacity translates into better in both energy and performance. The inset graph shows the pareto optimal points.
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memory, higher disk RPM only increases system energy without performance impact. Using

a fast RPM disk is a bad design point in this case. As a result, the slowest RPM disk is

optimal.

6.4. Effects of Disk Physical Technology Improvement 

and Enhancements

6.4.1.Rotational Speed (RPM) 

We conducted an experiment to explore the effects of the RPM on the disk on the overall

system performance. For each benchmark, we set the disk system to single disk system and

varied the RPM and the disk cache. The disk cache setting is either 4MB with prefetching or

no cache at all. The memory size is set to a capacity of 128MB. Note, only bzip2 and gzip

have memory page swapping at this stated memory size. Figure 6.20 shows the CPI due to

the RPM and disk cache variation. The CPI is also in log scale. 

First, we consider the benchmarks without page swapping, which have only read

requests to the disk systems. Without disk caching and prefetching, the disk RPM benefit is

very obvious; the faster, the better. However, when the disk RPM is fast enough, i.e. from

12k RPM to 20k RPM, improvements from a faster disk taper out. At this point, the latency

from the other parts of the disk overshadow the benefit from higher RPM. With disk caching

and prefetching, there is no significant difference in CPI for the benchmarks without page

swapping because the disk caching and prefetching can hide the latency of the disk perfectly. 
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Second, in the benchmarks with disk reads and disk writes, as exhibited in bzip2 and

gzip, the disk RPM does matter in both the systems with and without disk cache. The

locality of the accesses decrease since the reads and writes access different areas of the disk.

Even though either the reads or writes have high locality, the disk caching and prefetching

cannot hide all their latency. The reason is the disk maintains the concepts of non-volatile

storage, so reads issued after any writes have to wait until the writes are processed.

Finally, to be compared with our base case with a 12k-RPM single disk in Figure 6.4,

Figure 6.21 and Figure 6.22 show the interaction of the memory hierarchy components in

the system with a 5k-RPM single disk and with a 20k-RPM single disk, respectively. The

system with 12k-RPM spends approximately 140 seconds while the 5k-RPM system spends
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Figure 6.20: CPI due to the disk RPM and disk cache. The memory size is 128MB, and the disk system is a single disk system. We
vary the RPM and the existence of the disk cache. The disk cache configuration is either 4MB disk cache with prefetching or no cache at all.
For each benchmark, there are 6 bars which represent the CPI of (1) 5k-RPM disk with no cache,(2) 5k-RPM disk with cache, (3) 12k-RPM
disk with no cache, (4) 12k-RPM disk with cache, (5) 20k-RPM disk with no cache, and (6) 20k-RPM disk with cache.Note that at the
memory size of 128MB, only bzip2 and gzip exhibit the memory page swapping.
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Figure 6.21: The interaction in the memory hierarchy for a system with a 5k-RPM disk drive. 



 190

0

5e+06

1e+07

1.5e+07

2e+07

Ica
ch

e A
cce

ss

Cache Accesses (per 10 ms) and System CPI
bzip2; memory: 128MB; 12k-RPM single disk

0

5e+06

1e+07

1.5e+07

2e+07

Dc
ach

e A
cce

ss

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05

L2
cac

he
 A

cce
ss

20 40 60 80 100
time(s)

1

10

100

1000

10000

CP
I CPI@10ms

cum. CPI

0
2
4
6
8

10

Ica
ch

e P
ow

er 
(W

)

Cache Power (per 10 ms)

0
2
4
6
8

10

Dc
ach

e P
ow

er 
(W

)

0.4
0.42
0.44
0.46
0.48

0.5

L2
cac

he
 Po

we
r (

W
)

20 40 60 80 100
time(s)

0

10

20

Di
sk 

Po
we

r (
W

)

0
1
2
3
4
5

DR
AM

 Po
we

r (
W

)

DRAM & Disk Power/Accesses

1
10

100
1000

10000
1e+05
1e+06

DR
AM

 A
cce

sse
s p

er 
10

ms

0

5

10

15

20

Di
sk 

Po
we

r(W
)

20 40 60 80 100
time(s)

1
10

100
1000

10000
1e+05

Di
sk 

Ac
ces

s(p
er 

10
ms

)

Figure 6.22: The interaction in the memory hierarchy for a system with a 20k-RPM disk drive. 
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over 250 seconds on the same set of instructions. Using a 20k-RPM disk improves the

execution to 110 seconds. The improvement in total execution time is mainly from the

benefits over the write bursts. The write bursts can benefits from higher RPM disk directly

because the faster disk would result in fast response for writes. As a result, the write bursts

processed faster results in shorter write burst processing period. However, the benefit over

the reads is not obvious. The reason is the disk subsystem is already equipped with disk

cache, which absorbs the reads when the cache hits without disk mechanical parts involved.
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6.4.2.Prefetching 

As shown is Figure 6.20, disk caching and prefetching can gain significant performance,

especially with both the benchmarks with only reads (no page swapping) and with

reads/writes (with page swapping). Furthermore, disk caching and prefetching can

completely hide the rotational latency in the benchmarks with only disk reads. In this

section, we conducted the experiment to identify the importance of disk caching and

prefetching separately.

In the experiment, the system configuration is set to 112MB of memory running bzip2.

Figure 6.23 shows the CPI and disk average response time for the experiment. The three

bars in each group represent (1) a single disk system, (2) a 4-disk RAID5 system, and (3) an

8-disk RAID5 system. The upper graph shows the CPI for each configuration, and the lower

graph shows the average response time of the disk requests. Note, the CPI axis is in linear

scale, but the disk average response time axis is in log scale. The height of each bar in the

average response time graph is the absolute value, i.e. the value of the response time for each

type is the exact value where the bar ends.

In the previous section, Figure 6.20 shows that, in the disk read-dominated benchmarks,

disk prefetching is more important than increasing the disk RPM. That is, rotational latency

and bandwidth can be overcome by simple prefetching in an application with only disk

reads. From Figure 6.23, disk caching has only marginal effects to both the CPI and the disk

average response time. However, disk caching with prefetching has significant benefits: up

to the factor of 4 for the case of 5400 RPM with 8 RAID disks and the factor of 2 on average
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over all configurations. Therefore, from this point on, we will only study disk cache with

both caching and prefetching mechanism implemented. We refer to the Disk Cache that

caches and prefetches as "Disk Cache" as referred to by the disk drive manufacturer.

As we focus on the RAID disk system in the next section, we will discuss another

interesting behavior also demonstrated in Figure 6.23. The behavior is how the RAID disk

system tends to have longer response time for disk writes due to parity calculations. This

behavior will be discussed later. Despite longer response time for writes causing longer

overall average response time, the overall performance is significantly improved.

To compare the behavior of the entire memory hierarchy in the system with disk

prefetching, Figure 6.24 shows the interaction of the entire memory hierarchy in a system

without disk cache, and Figure 6.25 shows the interaction of the components in a system

with disk cache but no prefetching. Figure 6.26 illustrates the interaction of the memory

hierarchy with disk caching and prefetching mechanism enabled. All system configurations

have 112MB of memory running bzip2 with a single disk drive. All three figures

demonstrate the power and accesses of caches, DRAM, disk, and the total system CPI. Both

the systems without disk cache and with disk cache but no prefetching perform relatively the

same as they complete the 500 million instructions in 500 seconds. With both disk caching

and prefetching, the system can reduce the task execution time to 300 seconds. The

contribution of disk caching and prefetching is mainly from its read absorbing behavior. The

read bursts can be processed faster by the disk cache than by the mechanical parts in the

disk, and this behavior results in shorter process time for read bursts. However, write bursts

still take as much time as a system without disk cache, because they overwhelm the size of

the disk cache.
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Figure 6.24: The interaction of the memory components in a system without disk cache. 
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Figure 6.25: The interaction of the memory components in a system with disk cache but no prefetching. 
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Figure 6.26: The interaction of the memory components in a system with disk caching and prefetching. 
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6.4.3.Parallel I/O: RAID5

In this section, we will discuss the RAID disk system and the RAID organization

focusing only on RAID 5, which is the most popular RAID organization. We conducted the

experiment with a single disk system, a 4-disk RAID system with 2 different organizations,

and an 8-disk RAID system with 3 different organizations. 

Figure 6.27 shows the CPI and the disk average response time for all RAID5

configurations described in the previous chapter. The system configuration used in this

experiment is set to 32MB of memory running ammp with various RAID configurations

made up of 12k-RPM disks with disk cache enabled. As illustrated in Figure 5.7, the label

“xc x yds” refers to the RAID5 configuration with x controllers, each of which is connected

with y disks. For comparison, the figure also shows the CPI and average response time of the

system with 5400 RPM and 20k RPM. The first group was configured with a single 5400

RPM disk with and without disk cache. The last 2 groups were configured with 20k RPM

disk(s). If the configuration is not labeled with “no$”, each disk in each configuration has a

4MB disk cache. Like before, the graph above shows the CPI, and the graph below shows

the disk average response time.

Let’s consider the 12k-RPM disk system with the same number of disks. No matter how

the disks are organized, the CPI and the average response time remains the same across the

same number of disks. To explore the effects of increasing parallelism by increasing the

number of disks, we move from 1 disk to 4 disks and from 4 disks to 8 disks. However,

unlike Figure 6.23, increasing the number of disks from 1 to 4 seems not to have any
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obvious benefit compared to increasing from 4 to 8 in 12k-RPM disk systems. The possible

explanation is that the complexity of scheduling and parity calculation overshadows the

benefits of having multiple disks in the case of a 4-disk system in this application. As we

move to 20k-RPM disk system, the benefits of having RAID system is less obvious even

with 8 disks. Additionally, the performance of any 20k-RPM system is comparable to an 8-

disk RAID system with 12k-RPM disks. Therefore, RAID in a high RPM disk system may

have only marginal benefits over a system with a single high RPM disk. Care should be

taken to choose the number of RAID disks in a uniprocessor system.

For the average response time, even though the write response time in a RAID system is

much higher than the write response time in a single disk system, this trend does not

translate directly into the overall performance. The write response time in a RAID system is

higher due to parity calculations, especially the benchmarks with small writes. The cost of

writing in a RAID system is significant [80]. If the cost of a write is reduced/eliminated, the

overall system performance will be improved.

Figure 6.28 shows the CPI and the average response time of the disk systems with a

different number of RAID disks and RPMs. The system configuration is set to 112MB of

memory running bzip2. The 3 bars in each group represent a single disk system, a 4-disk

system and an 8-disk system. Note, the CPI is in linear scale and the average response time

is in log scale. Again, as the RPMs increase, the benefit of the RAID diminishes. As

mentioned before, the benefits of having 4 RAID disks versus having only a single disk is

not very obvious in a fast disk system. In a slow disk system (i.e., 5400 RPM), RAID has

more tangible benefits over a non-RAID system. Nevertheless, the combination of using

RAID, disk cache, and fast disks can improve the overall performance up to a factor of 10.
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Figure 6.29 shows the effects of RAID disk systems with different configurations on the

total system CPI of the benchmarks with only disk reads. The benchmarks are ammp and

gcc with 128MB of memory, and all disks in the system are equipped with a 4MB disk cache

each. The RAID disk system has only minimal benefits over a single disk system since the

disk requests are sequential. The reason is the caching and prefetching mechanism in the

disk can hide most of the latency.

The interaction between the components in the memory hierarchy in the RAID disk

systems are shown in Figure 6.30 and Figure 6.31. These two figures are to be compared

against the system with a single 12k-RPM disk in Figure 6.26. Figure 6.30 shows the

interaction results of a system with 4-disk RAID system, and Figure 6.31 shows the

interaction results of a system with 8-disk RAID system over time. All system

configurations are set to 112MB of memory running bzip2. Moving from a single disk
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Disk RAID5 Exploration: no writes
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Figure 6.29: RAID5 with no writes. The figure show the effects of different RAID5 systems with benchmarks with only disk reads. The
benchmarks are ammp and gcc with 128MB of memory. Obviously, RAID disk system has only minimal benefits over a single disk system.
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Figure 6.30: The interaction between the memory components in the hierarchy of a system with 4-disk RAID system. 
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Figure 6.31: The interaction between the memory components in the hierarchy of a system with 8-disk RAID system. 
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system to a 4 disk system, the execution time improves from 325 seconds to 275 seconds

approximately. Even better, an 8-disk system can improve the execution time to only

roughly 190 seconds, approximately. Both read and write burst process times are improved

since the bursts can be serviced faster. Despite the fact that the average response time for a

single write is higher, the total performance including the benefit from parallelism in write

bursts is also improved. However, the power consumption is also proportionally increased

by the number of disks.

6.4.4.Size of the Disk Cache

We conducted a set of experiments to identify the effects of the disk cache size over the

overall system performance. The size of the disk cache relates to the cost of the disk drive

directly since the cost per GB for DRAM is currently about 50 times higher than for disk

storage [78]. A disk cache is composed of a set of multiple segments. Each segment can

vary in size in the unit of sector (512 bytes in general). Compared with processor cache, a

segment can be seen as a cache line, and the segment size is therefore the same as a cache

line size. As a result, to vary the disk cache size, we have to vary the number of segments

and the segment sizes themselves.

Figure 6.32 shows the performance impacts of Segment Size Variation. The figure

shows the impacts of different segment sizes with the same number of segments in the disk

cache. In this case, there is only one segment. The system configuration is set to 128MB of

memory with a 12k-RPM disk. There are 7 bars for each benchmark, which are (1) no cache,

(2) 1 segment of 2 sectors each, (3) 1 segment of 4 sectors each, (4) 1 segment of 8 sectors

each, (5) 1 segment of 32 sectors each, (6) 1 segment of 128 sectors each, and (7) 1 segment
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Figure 6.32: The Effects of Disk Cache Size by varying the Segment Size. The figure shows the effects of different segment size with
the same number of segments in the disk cache. The system configuration is 128MB of memory with a 12k-RPM disk. There are 7bars for
each benchmark, which are (1) no cache, (2) 1segment of 2 sectors each, (3) 1segment of 4 sectors each, (4) 1segment of 8 sectors each,
(5) 1segment of 32 sectors each, (6) 1segment of 128 sectors each, and (7) 1segment of 256 sectors each. Note that the CPI graph is in
linear scale, and the average response time graph is in log scale.
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of 256 sectors each. The top graph shows the CPI and the bottom graph shows the average

response time of the disk requests.

Figure 6.33 entitled the Effects of Disk Cache Size by Varying the Number of Segments.

The figure shows the effects of different number of segments with the same segment size in

the disk cache, which is 512 sectors. The system configuration is set to 128MB of memory

with a 12k-RPM disk. There are 5 bars for each benchmark, which are (1) no cache, (2) 1

segment of 512 sectors each, (3) 2 segments of 512 sectors each, (4) 16 segments of 512

sectors each, and (5) 24 segments of 512 sectors each. Note that the CPI graph is in linear

scale, and the average response time graph is in log scale. 

The effect of the disk cache size is limited to the presence of the cache with a particular

size. Meaning, increasing the size of the disk cache, either by segment size or by the number

of segments, will not result in a better performance if the disk cache is already large enough

as described in [75] and [78]. They simply concluded that, with a reasonably sized file

system buffer cache controlled by the operating system, there is very little performance

benefit of using a big built-in disk cache. Our study agrees with those observations, but from

the system-level point of view. Another interesting behavior to point out is, for the

benchmark with disk reads and writes, i.e. bzip2 and gzip, the average response times are

always the same while the overall CPIs improve due to the presence of the disk cache. This

behavior will be explained in the next section.

Figure 6.34 shows the trade-offs between Memory Sizes and Disk Cache Sizes. The top

graph shows the trade-offs between the memory sizes and the disk cache sizes under the

assumption that the total in megabytes of memory and disk cache remain the same. We also

varied the number of disks in a RAID5 disk systems. In this experiment, the total in
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Figure 6.33: The Effects of Disk Cache Size by varying the Number of Segments. The figure shows the effects of different number
of segments with the same segment size in the disk cache. The system configuration is 128MB of memory with a 12k-RPM disk. There are
5 bars for each benchmark, which are (1) no cache, (2) 1segment of 512 sectors each, (3) 2 segments of 512 sectors each, (4) 16
segment of 512 sectors each, and (5) 24 segment of 512 sectors each. Note that the CPI graph is in linear scale, and the average
response time graph is in log scale.
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megabytes used on an ammp execution is 32MB. From left to right in each RAID

configuration, each bar represents the CPI of (1) 32MB of memory with no disk cache, (2)

28MB of memory with 4MB of disk cache in total, (3) 24MB of memory with 8MB of disk

cache in total, (4) 20MB of memory with 12MB of disk cache in total, (5) 16MB of memory

with 16MB of disk cache in total, and (6) 8MB of memory with 24MB of disk cache in total.

Each bar has 3 bars that are overlapping, which are for 5k-RPM, 12k-RPM, and 20k-RPM

disk system. Note, the CPI is in log scale. 

The bottom graph shows the effects of disk cache size on RAID5 disk systems. The

system is also set to have 32MB of memory constantly and is running ammp while we

varied the size of the disk cache on each disk drive. Each bar in each RAID configuration

represents (1) 32MB of memory with no disk cache, (2) 32MB of memory with 4MB of disk

cache for each disk, (3) 32MB of memory with 8MB of disk cache for each disk, and (4)

32MB of memory with 256MB of disk cache for each disk.

Unlike in Figure 6.33, the experimental results in Figure 6.34 suggest that increasing

disk cache size will result in better performance most easily seen in the top graph. Increasing

disk cache size is not a step function in this case. The reason is the application in Figure 6.33

has only minor write traffic to the disk, but the write traffic in Figure 6.34 is increasing with

the reduced memory size. Therefore, increasing disk cache is beneficial for write traffic.

However, the effect remains true until the system reaches the memory limit where the

DRAM can no longer contain significant portion of the memory footprint. At that point, the

CPI increases rapidly. Also, the bottom graph suggests that, at a particular memory size,

only a relatively small amount of disk cache can improve the performance greatly.
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Increasing the disk cache further would not positively affect the performance. These facts

are also true with multiple disks in the RAID disk systems.

6.4.5.Disk Cache Organization

In the previous section, we conclude that the size of the disk cache, either by segment

size or by the number of segments, does not have significant effects to the system

performance. Only a small disk cache size is enough for the disk caching and prefetching.

This section explores the choice of cache organization to see if that has any more of an effect

than cache size.

To answer this question, we also conducted an experiment to identify the effects of the

disk cache organizations. From Figure 6.32 and Figure 6.33, we learned that only a small

disk cache, i.e. 1 segment with 4 sectors, can improve the performance. Therefore, we did an

experiment to see the effects of the cache organizations around the 4-sector case. Figure 6.35

shows the effects of disk cache organization around this case. The figure shows both the CPI

(above graph) and the average disk response time (below graph). The 7 bars on each

benchmark in the graph represent the disk system with (1) no cache, (2) disk cache with 1

segment with 2 sectors each, (3) disk cache with 2 segments with 1 sector each, (4) disk

cache with 1 segment with 4 sectors each, (5) disk cache with 2 segments with 2 sectors

each, (6) disk cache with 4 segments with 1 sector each, (7) disk cache with 2 segments with

4 sectors each.

From the experimental results, we can conclude that only the 1 segment with 4 sectors

and the 2 segments with 4 sectors cases improved the performance. Both of them gained the

same improvements over other cases. For other cases, no significant system performance
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effects were exhibited. Therefore, the disk cache with the same size but different

configurations, i.e. 1 segment with 4 sectors each, 2 segments with 2 sectors each, and 4

segment with 1 sectors each, perform differently. The configurations exhibiting benefits

included the configurations with the segment sizes of 4 sectors. In conclusion, the only

cache organization parameter that matters is the size of the segment.

6.4.6.Bus Transmission Latency

As suggested in [35], the bus transmission latency in the DRAM system has a

significant effect on the overall system performance. We conducted an experiment to

identify the effects of the bus transmission latency on the disk system. Figure 6.36 shows the
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Figure 6.36: Bus Latency Exploration. The graph shows the effects of the bus latency variation to the total system CPI. The system
configuration is 32MB of memory running ammp with a 12k-RPM RAID disk system without disk cache. The groups marked as “R=0”
represent the read bus latency (data from the disk) taking no time but the write bus latency (data to the disk) taking varied latency, and the
groups marked as “W=0” represent the write bus latency to the disk take no time but the read bus latency taking varied latency. The groups
marked as “1 disk” has a single disk system,”4 disks” has a 4-disk RAID system, and “8 disks” has an 8-disk RAID system. The bus latency
varies from 1 millisecond to 0.64 microseconds for a single disk system, and from 1 milliseconds to 1.28 microseconds for a 4-disk and 8-disk
system.
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Bus Latency Exploration. The graph shows the effects of the bus latency variation in regards

to the total system CPI. The system is configured with 32MB of memory running ammp

with a 12k-RPM RAID disk system without disk cache. The groups marked as “R=0”

represent the read bus latency (data from the disk) taking no time but the write bus latency

(data to the disk) taking varied time lengths to transfer one sector of data. The groups

marked as “W=0” represent the write bus latency to the disk taking no time but the read bus

latency taking varied time lengths to transfer one sector of data. The groups marked as “1

disk” equipped with a single disk system,”4 disks” equip a 4-disk RAID system, and “8

disks” equipped with an 8-disk RAID system. The bus latency varies from 1 millisecond to

0.64 microseconds for a single disk system, and from 1 millisecond to 1.28 microseconds

for a 4-disk system and an 8-disk system. These bus latency values are set according to the

range of the latency in the latest disk interface latencies showing in Table 4.2.

Even though the bus latency has a significant effect on the overall performance in the

case of the DRAM systems, there are no significant effects of the bus latency variation on

the disk system in regards to the total system CPI. The reason is the bus latency in the

DRAM system is comparable to the DRAM latency. However, the bus latency in the disk

system, which is in the unit of microseconds, is insignificant compared to the disk latency,

which is in the unit of milliseconds.

6.4.7.Perfect Write-Buffering

The I/O subsystem is becoming a bottle-neck in the computer system due to the rapid

growth in the processor speed and technology. Disk cache has been used to fill this gap, but

the benefit is limited to the read operations as the write I/Os are usually committed to disk to
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maintain consistency and to allow for crash recovery. Therefore, disk writes basically are

clogging the disk system. There are many publications [76, 77, 79, 82] suggesting to use the

write-buffering techniques. Such techniques are aimed at hiding the disk write latency by

writing to a buffer instead of writing to the disk immediately. To maintain the non-volatile

concept of the disk, the buffer is required to withstand possible failures that could happen

before the data are written to the disk. Using non-volatile RAM (NVRAM), a disk cache

disk (DCD), or a NAND Flash memory are possible options for these techniques. All write-

buffering publications measure the techniques against the disk subsystem metric such as the

disk request response time and the disk system throughput. We conducted an experiment to

exhibit the limit of such techniques to the overall system performance, by modeling a perfect

write buffering, which can completely hide the write latency. The system was configured

with 112MB of memory running bzip2 with a choice of 1, 4, or 8-disk RAID system. We

also varied the existence of the disk cache to isolate the effects.

Figure 6.37 shows the limited effects of write-buffering, assuming that all writes to the

disk system are buffered perfectly to eliminate the need to write to the disk immediately. The

top graph shows the total system CPI, and the bottom graph shows the disk average response

time. The CPI graph compares the CPI of the perfect write-buffering techniques with the

system with normal disk reads and writes. For the disk average response time graph, the

total average response time and the read response time are similar since the write latency to

the disk system is hidden perfectly.

Our study shows that using some techniques to buffer the writes can improve the

performance greatly, up to a factor of 10 in the case of a single 5k-RPM disk with disk

caching. Additionally, buffering write requests decreases the needs for many disks to exist
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in a RAID system since both 4-disk and 8-disk systems perform similarly. Note, this may

not be true in multiprocessor environment.
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Figure 6.37: The Limit of Write-Buffering Technique. The figure shows the limited effects of write-buffering technique. The above graph
show the CPI of both a normal systems and a write-buffering system, and the graph shows the disk average response time of only the write-
buffering system. The CPI graph compares the limit with the system with normal disk reads and writes. For the disk average response time
graph, the total average response time and the read response time are the same since the writes to the disk system are eliminated.
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The graph also shows that if we can perfectly buffer write requests to the disk along with

obtaining a small amount of cache to the disk, the performance will significantly be

improved up to an order of magnitude. Furthermore, all the CPIs of any RPM disks remain

the same no matter how fast the disks are. In conclusion, write-buffering technique can

improve the performance immensely without the cost of multiple fast and expensive disks.

To be compared with our base case in Figure 6.26, Figure 6.38 shows the interaction of

the system with a single disk with perfect write buffering. Figure 6.39 shows the interaction

of the same configuration with a 4-disk RAID system, and Figure 6.40 shows the interaction

of the configuration with 8-disk RAID system. All system configurations have 112MB of

memory running bzip2. The write buffering eliminates the needs to write to disks.

Therefore, reads can be performed immediately. This improves the execution time from 325

seconds, in the case of the system with a single disk with disk cache, to 100 seconds, in the

case of the single-disk system with disk cache and write buffering. The rest of the

components in the hierarchy remain dissipating low power.
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Figure 6.38: The interaction of the memory components in the hierarchy in a single disk system with perfect write buffering. 
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Figure 6.39: The interaction of the memory components in the hierarchy in a system with 4-disk RAID disk subsystem along with 
perfect write buffering. 



 220

0

5e+06

1e+07

1.5e+07

2e+07

Ica
ch

e A
cce

ss

Cache Accesses (per 10 ms) and System CPI
bzip2; memory: 112MB; 12k-RPM 8disks

0

5e+06

1e+07

1.5e+07

2e+07

Dc
ach

e A
cce

ss

0
50000
1e+05

1.5e+05
2e+05

2.5e+05
3e+05

3.5e+05

L2
cac

he
 A

cce
ss

20 40 60
time(s)

1

10

100

1000

10000

CP
I

CPI@10ms
cum. CPI

0
2
4
6
8

10

Ica
ch

e P
ow

er 
(W

)

Cache Power (per 10 ms)

0
2
4
6
8

10

Dc
ach

e P
ow

er 
(W

)

0.4
0.42
0.44
0.46
0.48

0.5

L2
cac

he
 Po

we
r (

W
)

20 40 60
time(s)

50
60
70
80
90

100

Di
sk 

Po
we

r (
W

)

0
1
2
3
4
5

DR
AM

 Po
we

r (
W

)

DRAM & Disk Power/Accesses

1
10

100
1000

10000
1e+05

DR
AM

 A
cce

sse
s p

er 
10

ms

60

70

80

90

100

Di
sk 

Po
we

r(W
)

20 40 60
time(s)

1
10

100
1000

10000
1e+05

Di
sk 

Ac
ces

s(p
er 

10
ms

)

Figure 6.40: The interaction of the memory components in the hierarchy in a system with 8-disk RAID disk subsystem along with 
perfect write buffering. 
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6.5. Total CPI v.s. Disk Response Time 

Most publications in the disk research community use the average disk response time

and/or throughput as the metrics to measure the performance of the system. Especially, in

the case of a single-user environment, the user pays attention to only a single process

response. Therefore, average disk response time is the metric in this case. 

However, as we have noticed this behavior in the previous section, the total CPI does not

track the total average disk response time. We conducted an experiment to identify the

relationship between the total CPI and the disk response time. We ran several benchmarks

on a system with 128MB of memory utilizing a single disk. We varied the RPM of the disk

and the existence of the disk cache. Figure 6.41 shows the CPI and Disk Average Response

Time of the systems. The 6 bars in each group represent (1) a 5k-RPM disk without disk

cache,(2) a 5k-RPM disk with disk cache,(3) a 12k-RPM disk without disk cache,(4) a 12k-

RPM disk with disk cache,(5) a 20k-RPM disk without disk cache, and (6) a 20k-RPM disk

with disk cache. The top graph shows the total CPI of the system, and the bottom graph

shows the average disk response time for reads, writes, and overall for both.

During the I/O intensive phase which consists of both disk reads and writes, the average

CPI tracks only average read response time, not the overall average R/W response time. This

is true even for the benchmarks with read and write activities or even write-intensive

benchmarks as portrayed with bzip2 and gzip. Therefore, the total disk average response

time may not be an accurate metric to evaluate a disk technique as a representative to the

total performance of a system. A better representative to the total system performance

should be the read response time.
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6.6. The CPI Breakdown

Figure 6.42 shows the System CPI Breakdown. The figure shows the breakdown CPI for

2 benchmarks, twolf and bzip2; both experimental system configurations utilized 128MB of

memory with different disk systems. The top graph is for twolf, which does not have disk

write requests, and the bottom graph is for bzip2, which has both reads and writes. The

graphs show the CPI breakdown portions for (1) the processor, caches, and DRAM, (2) the

controller computation which includes queuing, scheduling, and parity calculation, and (3)

the disk mechanism, which include seek, rotation, and transfer. We experimented with 6

RAID5 configurations. Each RAID configuration contained 9 bars, divided into 3 groups.

The first group uses 5400 RPM disks, the second group uses 12k RPM disks, and the last

group uses 20k RPM disks. Each group consisted of 3 bars, which represented normal seek

time, half seek time, and zero seek time. “Half seek time” means the seek times were

computed then scaled down by half. “Zero seek time” means the seek times for all accesses

are assumed to be zero. Note that the graphs have different y-axis.

From the twolf CPI, the CPI remains the same for all configurations due to only disk

reads exhibited in the benchmark. RAID systems improve performance with a small margin

due to less queuing and less scheduling time. The disk systems rarely use the disk

mechanism since most of the requests hit the disk cache due to their sequential nature. In this

case, the CPI portion of the processor, caches, and DRAM is significant.

In the case of bzip2, there are both disk read and write requests. Interestingly, the 4-disk

systems have a bigger portion of controller computation CPI--this is due to the complexity

of the scheduling and the parity calculations. However, due to the parallelism of multiple
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 225

disks, the overall performance of the 4-disk system is better than the single disk system with

the same configuration. The 8-disk systems amortize the complexity of the disk controller

computation well enough to reduce the queuing and scheduling CPI. In both benchmarks,

varying the seek time has no effect on the CPI due to the largely sequential nature of the

requests. This seems not in agreement to the claim that seek time is very significant to the

performance. The reason is seek time would be important in the access streams with little

sequentiality as in multiprocessor systems, not in uniprocessor systems in our experiments.

In conclusion, CPI portions spent in the processor, caches, and DRAM represent only a

secondary effect in comparison with the Disk parameter effects. The reason that the DRAM

and Cache CPI are not as significant compared to the Disk CPI portion is that the access

time due to the DRAM and cache is insignificant compared to the Disk access time.

Additionally, most DRAM and Cache enhancements will affect at most only less than 2X

their CPI portions. On the other hand, the Disk Parameter settings can change the total

system performance over an order of magnitude.

6.7. Power/Energy Consumption 

This section discusses the power dissipation and the energy consumption of the system

as functions of memory size and disk enhancements mentioned in previous sections. First,

the energy and power consumption of the system with different memory capacities are

illustrated in Figure 6.43. Figure 6.43 corresponds to the performance graphs in Figure 6.12.

The top graph shows the total power dissipated in the memory system, including caches,

DRAM, and disk. The middle graph shows the energy consumption, and the bottom graph
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shows the Pareto plot of the CPI and energy. The power and energy of nine SPEC

benchmarks are reported. While the total power dissipation in the systems remains at

maximum for all memory sizes, the total energy consumed can differ by two orders of

magnitude. The total power for the benchmarks demonstrating memory page swapping

should be lower when the DRAM capacity increases. However, since the disk power

dominates the total system power, and the difference between the active power (11.26W)

and idle power (8.62W) of the disk is marginal, the power of the systems with lower

memory capacity is not much lower than the systems with large memory. Additionally,

despite the large memory capacity, the disk is still the key component as it is accessed

actively during the I/O intensive phase. On the other hand, the energy consumption in those

systems are extremely different. Compared with Figure 6.12, the energy consumption tracks

closely with the CPI and the number of disk requests, and can reach as high as two orders of

magnitude of the energy in a system with large memory. Interestingly, by plotting the CPI

and the energy trade-offs, all benchmarks end up with having the same relationship between

the CPI and the energy consumption. This reflects the realistic behavior of our simulator

because the very same hardware-based systems reported the same total performance would

consume the same amount of energy, no matter what type of applications the system is

running. The reason is the overall performance and the total system energy consumption

would account for all activities in all components in the system. 

The power and energy of the systems with different disk RPMs and disk cache is

illustrated in Figure 6.44. The graph shows the power and energy corresponding to the

experiment results in Figure 6.20. The system memory is 128MB running nine different

benchmarks. The top graph shows the power dissipation, and the middle graph shows the



 228

ammp bzip2 gcc gzip mcf mgrid parser twolf vortex0

10

20
Po

we
r (

W
)

Disk RPM and Cache Exploration
(5k,no$),(5k,w$),(12k,no$),(12k,w$),(20k,n0$),(20k,w$)

ammp bzip2 gcc gzip mcf mgrid parser twolf vortex100

101

102

103

En
erg

y (
J)

Disk RPM and Cache Exploration
(12k,no$),(12k,w$),(54k,no$),(54k,w$),(20k,n0$),(20k,w$)

10 1 00 1 00 0 10 00 0
C PI

10

10 0

1 00 0

10 00 0

En
erg

y (
J)

am m p
bzip2
gcc
gzip
m cf
m grid
pars er
tw ol f
vo rtex

Disk RPM and Cache Trade-offs
 R PM : 5k , 1 2k , 2 0k         di sk  cache:  d ash  li ne =no $,   s ol id  li ne =w$

5K

5K

5K

5K

Figure 6.44: Power and Energy Consumption for the system with different RPM and the presence of disk cache. The top graph
shows the power dissipation, and the middle graph shows the energy consumption. The bottom graph shows the CPI and total energy
trade-offs of the systems with different disk RPM and the presence of disk cache. For the bottom graph, The graph shows the CPI and
energy for different benchmark on the systems with varied RPM and the existence of the disk cache. The lines connect the data points with
the same disk cache configuration with different RPMs (5k, 12k, 20k): The dash lines represent no-cache configuration, and the solid lines
represent with-cache configuration.



 229

energy consumption. The bottom graph shows the CPI and total energy trade-offs of the

systems with different disk RPMs and the presence of disk cache. In the bottom graph, For

the bottom graph, The graph shows the CPI and energy for different benchmark on the

systems with varied RPM and the existence of the disk cache. The lines connect the data

points with the same disk cache configuration with different RPMs (5k, 12k, 20k): The dash

lines represent no-cache configuration, and the solid lines represent with-cache

configuration. Again, the power dissipation remains the same among the systems with the

same features, i.e. the same disk rotational speed in this case. The power also increases with

the disk rotational speed because the higher RPM disk dissipates more power. Unlike the

systems with the same disk RPM, the energy consumption does not track the system CPI.

The reason is the power varies in different rotational speed; therefore, the system with the

same CPI but equipped with different RPM disks consumes different energy. Interestingly,

the systems without disk cache prefer 12k-RPM disk over other rotational speed disk. The

systems implementing disk cache prefer lower RPM for the benchmarks with only read

requests since the requests are mostly serviced by the disk cache, so the disk mechanical

parts are mostly idle in these benchmarks. Additionally, the disks with disk cache consume

the same amount of energy when the request stream is a mix of reads and writes, such as

bzip2 and gzip because slow disks compensate slowness with lower power. Like Figure

6.43, the CPI and energy relationships for all systems lie on the same projected band with

different slopes due to different disk RPMs. Moreover, now we actually have an interesting

Pareto plot: more than one optimal points are exhibited in case of the benchmarks with both

reads and writes. For those benchmarks with both reads and writes, regardless of disk cache,

both 12k and 20k RPM are optimal points. 
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Figure 6.45 shows the power and energy consumption of the systems as a function of
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Figure 6.45: Power and Energy Consumption of the system with Disk Caching/Prefetching. This figure shows the power and energy
consumption corresponding to Figure 6.22. The memory is 112MB running bzip2. The number of RAID disks, the disk RPM, the presence of
disk cache and prefetching were varied.
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disk caching and prefetching. This figure shows the power and energy consumption

corresponding to Figure 6.23. The system configuration is set to 112MB of memory running

bzip2. The other experimental system configuration settings such as the number of RAID

disks, the disk RPM, the presence of disk cache and prefetching were set to various

increments. In contrast to Figure 6.23 where more RAID disks gain better performance, the

power and energy is proportionally increased with the number of disks. The same pattern

repeats here again where the power dissipation in the systems with similar features remains

the same across all different disk caching/prefetching organizations. On the other hand, the

energy numbers of those systems with different disk caching/prefetching organizations are

different. The system with better performance in Figure 6.23, i.e. one with both disk caching

and prefetching, consumes less energy. Considering only energy, the systems prefer 12k-

RPM disk system over other RPMs. The reason is the 12k-RPM disk systems with lower

active and idle power perform as comparable as the 20k-RPM disk systems, so the 20k-

RPM consumes more energy. The 5k-RPM disk systems perform much slower despite

lower power, so the final total energy is higher. 

The results for the systems with perfect write buffering are shown in Figure 6.46. The

figure shows the power and energy corresponding to Figure 6.37. Like the previous case, the

power dissipation in the systems with the same disk-system configurations remain the same

across different disk caching and write buffering choices. The energy consumption is

different depending on the system performance. Despite the RPM, the systems with both

disk caching and write buffering prefer a lower RPM disk system because of its lower

power. This is true because disk caching and write buffering eliminate the need to wait for

the disk’s mechanical parts; thus the system no longer requires fast RPM disks to improve
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performance. Therefore, slower but lower powered disks are more energy efficient at this

point. 

The energy and power results for the system with constant megabytes of the sum of

DRAM and disk cache capacity are also included in Figure 6.47. The energy and power

reported corresponds to the top graph in Figure 6.34. The graph shows the energy and power

trade-offs between the memory size and the disk cache size under the assumption that the

total MB of the memory and the disk cache remains the same. In this case, the total MB is

32MB on an ammp execution. The bars represent the system power, and the lines represent

the system energy. The total power remains the same across all systems with the same

number of disks and disk RPM. On the other hand, the energy consumption tracks the CPI

shown in Figure 6.34, while the last two data points in each RAID configuration, which are

(16,16) and (8,24), increase rapidly because the memory is not large enough for the
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Figure 6.47: Power and Energy Consumption for the system with constant sum of memory size and disk cache. 
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application’s footprint. All disk RPMs consume relatively the same amount of energy in this

case, typically within 50% of each other.

The energy and power for the systems with different disk cache size is shown in Figure

6.48. The system memory is 32MB running ammp. The disk cache size varies from no

cache, 4MB, 8MB, and 256MB of disk cache. The figure is corresponding to the bottom

graph of Figure 6.34. The power remains the same across the systems with similar number

of RAID disks. The energy consumption tracks the system CPI in the configurations with

the same number of RAID disks and RPM. However, the systems with faster RPM disks

consume more energy as well as being superior in performance.

Finally, we conducted an experiment to investigate the trade-off between the power

consumption and the performance of several disk technology improvements and

enhancements. Figure 6.49 shows the trade-offs Chart of the Power Dissipation/Energy

1ds 2gx2ds 4ds 2gx4ds 4gx2ds 8ds
0

50

100

150

Po
w

er
(W

)

5k power
12k power
20k power

Disk RPM/($+MEM)/RAID Exploration
ammp; Memory:32MB; Disk cache: 0, 4, 8, 256MB

1

10

100

1000

10000

En
er

gy
(J

)

5k energy
12k energy
20k energy

(3
2,

0)
(3

2,
4)

(3
2,

8)
(3

2,
25

6)

Figure 6.48: Power and Energy Consumption for the system with different size of disk cache. 
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Consumption versus CPI. The top graph is the Power Dissipation versus the CPI, and the

bottom graph is the Energy Consumption versus the CPI. The system configuration is

128MB running bzip2. We varied the number of disks to one, four, and eight RAID disks

with 5k, 12k, and 20k RPM. We also varied the existence of the disk cache. The dash line is
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Figure 6.49: Power Dissipation/Energy Consumption v.s. CPI trade-offs. The above graph is Power Dissipation v.s. CPI, and the lower
graph is the Energy Consumption v.s. CPI trade-offs. The system configuration is 128MB running bzip2. We varied the number of disks to
one (the lowest data point on the line), four (the middle data point), and eight RAID disks (the highest data point) with 5400, 12k, and 20k
RPM. We also varied the existence of the disk cache. The dash line is for the disk system with write-elimination technique. Therefore, the
dash line is the limit of energy/power saving.
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for the disk system with perfect write-buffering technique marked as “WB”. Therefore, the

dash line can be considered as the limit of energy/power saving of the write-buffering

technique.

For the power dissipation, except for 5k RPM with no disk cache, all other data points

are clustered in the region or CPI 500-1000. We can conclude that the techniques, such as

increasing RPM and disk caching and prefetching, can improve the performance only to a

factor of 2. The write-buffering technique can also improve the performance by a factor of 2,

and the combination of write-buffering and caching/prefetching can improve the

performance greatly without the requirement of multiple fast disks. However, the power

dissipation remains the same among the systems with the same number of disks. 

On the other hand, the energy consumption graph gives us more of an insight.

Obviously, unlike the power dissipation, the systems with the same number of disks do not

consume the same amount of energy. For example, the system with 8 20k-RPM RAID disks

without disk cache consumes more energy and performs worse than the same configuration

with disk caching. The system with 5k-RPM disks consumes more energy than other

different RPM-disk systems containing more disks. Nevertheless, the write-buffering

technique on a slow disk system in conjunction with disk cache produces the optimal effect

in this case. 

To sum up, systems with N RAID disks do not directly improve the performance by a

factor of N, while they typically consume N times more energy and power. On the other

hand, increasing the RPM of an already fast disk system will not gain any obvious benefits,

and only increases the energy consumption, which varies with the number of disks. Using a

low RPM disk does not save energy in most case. The disk enhancements, i.e. disk
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caching/prefetching and write-buffering, can improve the performance by a factor of 2 while

reducing the energy approximately the same rate. Care should be taken into the disk

enhancements rather than attempting to increase only the disk bandwidth parameters, such

as the number of RAID disks and the RPM.

6.8. The System Bandwidth

To sum up, the figure 6.50 shows how the total System Bandwidth of configurations on

different disk systems compares to the total system performance. The figure shows the CPI

versus the system bandwidth, which is calculated by multiplying the number of disks, the

rotation speed, the number of sectors per cylinder (1024), and the sector size (512 bytes).

We varied the disk RPM, the existence of the disk cache, prefetching, and write-buffering

technique. We also varied the number of disks in the RAID5 disk system. Each line connects

systems with the same RPM disks; therefore, there are 3 data points on each line, which

represent 1-disk, 4-disk, and 8-disk system, respectively from left to right. The top graph

shows only the configuration with caching and prefetching, which are already explicitly

implemented in today’s disk drives. The bottom graph shows the same graph along with the

perfect write-caching configurations represented as dotted lines. We ran bzip2 on all system

configurations with 112MB of memory.

Interestingly, the total performance of the system with the same system bandwidth can

vary over an order of magnitude, depending on which enhancements have been applied. In

some cases, the disk system with comparable bandwidth and employing the same techniques

can have the total performance as different as a factor of 2 due to different configurations.
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For example, the case of the 8 5k-disk system without disk cache and the 4 12k-disk system

without disk cache exhibit this behavior. On the other hand, with different enhancements,
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Figure 6.50: The System Bandwidth. The figure shows the CPI versus the system bandwidth, which is calculated by multiplying the
number of disks, the round- per-second, the number of sectors per cylinder, and the sector size. We varied the disk RPM, the existence of
the disk cache, prefetching, and write-buffering technique. We also varied the number of disk in the RAID5 disk system. Each line connects
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shows the configuration with perfect write caching in dotted lines.
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carelessly choosing a configuration only to increase the bandwidth may cause the system to

perform worse. For example, choosing a system with 8 20k-RPM disks with no cache rather

than a system with 4 12k-RPM disks with cache will not benefit the system as suggested by

the system bandwidth.

Another trend also demonstrated in the graph is the trend that increasing only the system

bandwidth does not directly translate into improvement in total system performance. When

the bandwidth is low, increasing the bandwidth will improve the performance significantly,

except the cases where employing all disk caching/prefetching and write-buffering

techniques. We noticed that as we continue increasing the system bandwidth without

applying further enhancement, the CPI exhibits relatively no improvement. As a result, new

enhancements for disk systems are required to improve the total system performance.

6.9. Configuration Comparison

In this dissertation, we tried to answer this question: 

What is the best solution, in terms of both total system performance and power/energy

consumption, for a single processing system whose I/O intensive phase is exposed to occupy

a significant portion of the entire execution time?

And, from our experiments with SYSim, we conclusively proposed two answers:

• increasing the memory size, and/or

• using a single disk system with disk cache and significant attention paid to write 

buffering.
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The interactions between all components in the entire memory hierarchy and the system

CPI of both solutions are shown in the last figures. To compare with the interaction in Figure

1.1 which is also shown here again for comparison, Figure 6.52 shows the interaction in the

case of increasing the memory size to 512 MB, and Figure 6.53 shows the interaction in the

case of 128MB of memory with perfect disk write buffering. Both systems run gzip with a

12k-RPM disk drive with a small disk cache (4MB). The figure shows the interaction

between all components in the memory hierarchy including the level-1 instruction cache, the

level-1 data cache, the level-2 unified cache, DRAM, and a disk drive. Notice that the

initialization time reduced from 140 seconds in Figure 1.1 to 40 seconds in Figure 6.52 and

to 48 seconds in Figure 6.53. The first solution would solve the problem under the condition

where the memory is always big enough to hold the application memory footprint. However,

the energy consumption of the first solution may increase significantly if using next

generation DRAM, i.e. an FBDIMM system. In contrast, the second solution would be less

sensitive to the application characteristics due to the I/O latency hiding nature of the

approach. However, one would suggest using a RAID disk system to improve parallelism in

the disk system. As shown in the RAID studies, using RAID in single user mode does not

improve the performance as much as its costs because the energy and power consumption of

the RAID system is proportional to the number of disks, and RAID performance does not

directly scale with the number of the disks. Figure 6.54 shows the interaction in the system

with an 8-disk RAID system equipped with cache and write buffer. The execution time of

the RAID system improves only 5 seconds--less than 7% improvement over a single disk

with write buffer while the user has to pay the cost of 8 disks. As a result, RAID is not

recommended to a single process environment during the I/O intensive phase.
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Figure 6.51: The interaction in memory hierarchy in our base configuration with 128MB of memory. The figure shows the System
CPI over the entire run of gzip. The system configuration is a 2-GHz processor with 128MB of memory and a 12k-RPM disk. The CPI graph
shows 2 CPI values: one is the instant CPI for every 10ms, another is the accumulated average CPI. The duration having no data point
means no instructions are executed due to the I/O latency. The course of execution when the accumulated CPI is over 100 is the I/O
intensive phase, and the course of execution when the CPI is below 100 is the computation phase.
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Figure 6.52: The interaction in memory hierarchy in a system with 512MB of memory. The figure shows the interaction between all
components in the memory hierarchy including level-1 instruction cache, level-1 data cache, level-2 unified cache, DRAM, and a disk drive.
Notice that initialization time reduces from 140 seconds in Figure 1.1 to 40 seconds in this figure.
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Figure 6.53: The interaction in memory hierarchy in a system with 128MB of memory and a disk drive with perfect write buffering. 
The figure shows the interaction between all components in the memory hierarchy including level-1 instruction cache, level-1 data cache,
level-2 unified cache, DRAM, and a disk drive. Notice that initialization time reduces from 140 seconds in Figure 1.1 to 48 seconds in this
figure.
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Figure 6.54: The interaction in memory hierarchy in a system with the same configuration with RAID disk system. The figure
shows the interaction between all components in the memory hierarchy including level-1 instruction cache, level-1 data cache, level-2
unified cache, DRAM, and a disk drive. Notice that initialization time reduces from 140 seconds in Figure 1.1 to less than 40 seconds in this
figure
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CHAPTER 7:   CONCLUSIONS

Most studies focus on the computation phase during which the most repeated

instructions are executed. The argument for focusing on the computation phase is to make

the most repeated case fast. However, we followed a different path from those studies. The

course of the entire execution consists of I/O intensive phase as well as the main

computation phase. We have shown that a program spends significant amount of the time in

the I/O intensive phase due to the I/O latency, especially in the single processing

environment mostly found in personal computers. Therefore, the I/O has been exposed as a

significant component with respect to total execution time.

To obtain a system with more balanced phases, we require more understanding in the

effects of I/O configurations to the entire system. Therefore, we are forced to extensively

investigate the I/O effects to the full-system scale. The system total execution time can be

improved to an order of magnitude by the previously mentioned enhancements in disk

systems, i.e. using disk caching/prefetching and write-buffering techniques. 

Memory performance and power are now the key challenges in system design. With

respect to the processor, memory accesses become slower and consume more power with

increasing memory size. Most of the total power consumption of the systems is dominated

by the entire memory hierarchy. Hence, memory power and access time significantly affect

total power and performance for computations with large storage requirements, and memory

becomes the main bottleneck
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Disks in general have been widely used as secondary, non-volatile storage and as a low-

level memory in virtual memory hierarchy. It is accepted as an indispensable part of the

general-purpose computer system. So far, no studies demonstrate the complete picture of the

virtual memory hierarchy including disk. One of the reasons is that there are no proper tools

available in the public domain for such studies. 

Therefore, we created SYSim, an open-source complete-system simulator aiming at

complete memory hierarchy studies. SYSim focuses on demonstrating the detailed

interactions in the entire memory hierarchy. SYSim has the ability to instantaneously collect

the statistic information in both performance and power consumption. 

With SYSim, we extensively conducted the complete-system experiments. We explored

disk drive design space, including several disk drive enhancements and technology

improvements, during the I/O intensive phase. The experimental results are reported in

terms of total system performance (CPI) and power/energy consumption for many SPEC

2000 benchmark applications. We captured unquestionably fascinating behaviors as

follows:

• The disk research community uses average response time as the metric to measure 

the disk system performance, which includes both disk read and write response time. 

However, we found that, during the I/O intensive phase, the average CPI tracks only 

average disk read response time and not overall average disk response time. This 

behavior stays true with the disk request stream consisting of any ratio of reads and 

writes. Therefore, average read response time should be a better representative for 

measuring the disk system performance and relating it to the entire system 

performance.
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• The effect of the size of the disk cache is limited to the presence of the cache with a 

particular size. Meaning, with constant DRAM capacity, increasing the size of the 

disk cache will not result in better performance if the disk cache is already large 

enough. The disk cache organization does not have any impact to the performance. 

Only one segment of disk cache is sufficient for our case. This behavior is in 

agreement with the disk-level simulation results in [78]. However, increasing disk 

cache size benefits increasing write traffic.

• In disk read-dominating applications, Disk Prefetching is more important than 

increasing the disk RPM. That is, rotational latency and bandwidth can be overcome 

by simple prefetching mechanism. In such applications, the request stream is often a 

stream of sequential reads. Therefore, requests mostly hit the prefetched data in the 

disk cache. By hitting the cache, there is no need to access the physical disk and 

move the disk mechanical parts, which are the major reason for long I/O latency.

• In applications with both disk reads and writes, the disk RPM matters. The reason is 

the disk maintains the concepts of non-volatile storage, so when the write comes in, 

it is required to write to the disk immediately if there is no sufficient space in the 

cache. Therefore, if a long write burst is scheduled before a read, even if the read is a 

cache hit, the read has to wait for the write burst to complete before it hits the data in 

the cache. The waiting time can be very long since the write burst has to move the 

disk mechanical parts. As a result, the RPM affects the read response time, which 

represents the overall system performance. The experiment shows that using some 

techniques to eliminate the writes may improve the performance significantly in this 

case.
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• The cost of writing in a RAID system is significant as the RAID system usually 

suffers from small writes [80]. The reason is that a disk write in a RAID system 

requires parity calculation, so a disk write in RAID system takes longer than a write 

in a single disk system. If the cost of a write is reduced, such as by implementing 

write buffer mechanism, the overall system performance will be improved by 

potentially an order of magnitude.

• Individual DRAM chips dissipate little power, but a system must have a substantial 

amount of DRAM to reduce disk traffic and thus prevent the disk from dissipating 

significant power. Since the total system performance is related to DRAM capacity 

more strongly than disk RPM, and an active disk dissipates more power than 

individual active DRAMs, it is wise to increase the DRAM capacity rather than 

increase the disk RPM. However, when there is enough amount of DRAM in the 

system, the total DRAM power can be significant and can approach that of the disk 

system. In this case, higher disk RPM also increases system energy without 

performance benefit, so using high RPM disk with sufficiently large DRAM 

capacity is a bad design point.

• The energy consumption has more significance than the power dissipation. While 

the power stays constant in most systems with similar features, the energy consumed 

can change significantly with different disk parameters. This is because the I/O 

latency, resulted from different disk parameters, substantially prolongs the program 

execution time. The difference in energy in different systems can be as much as a 

factor of 10.

• In systems with high RPM disks, techniques aiming at increasing the system 
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bandwidth alone, such as increasing the number of RAID disks and RPM, fail to 

improve the total system performance directly. In some cases, the systems with 

higher bandwidth perform worse than the systems with lower bandwidth. To 

significantly improve total system performance further, the disk enhancement 

techniques are required in the systems with fast disks.
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APPENDIX:   SPEC CPU2000

SPEC CPU2000 [13] is the industry-standardized CPU-intensive benchmark suite.

SPEC designed CPU2000 to provide a comparative measure of computation-intensive

performance across the most extensive practical range of hardware. The benchmark suite is

comprised of source code benchmarks developed from real user applications. The

benchmarks in the suite have a goal to measure the performance of the processor, memory

and compiler on the tested system.

The SPEC CPU2000 benchmarks are intended to exercise the CPU, the memory

hierarchy, and the compilers. The data collected show that SPEC CPU2000 met its goals for

memory footprint. Meaning, most benchmarks are larger than common cache sizes, many

are larger than 100MB, and none are larger than 200MB.

This section provides details about a set of SPEC CPU2000 suite used in the

experiments in this dissertation. A selection of seven benchmarks from integer suite and a

selection of two benchmarks from floating-point suite are explained.
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A.1. CFP2000 (Floating Point Suite of SPEC CPU2000):

A.1.1.188.ammp

188.ammp is classified as a Computational Chemistry program. It models large systems

of molecules usually associated with Biology. The benchmark runs molecular dynamics on

a protein-inhibitor complex, which is embedded in water. The energy is approximately

calculated by a classical potential or "force field". The protein in the complex is HIV

protease complexed with the inhibitor indinavir. There are 9582 atoms in the water and the

protein, making the benchmark a representative of a typical large simulation. This

188.ammp benchmark is a derivation from published work on an understanding of drug

resistance in HIV. The problem traces how the atoms move from an initial coorinates and

initial velocities. The output is the energy of the final configuration of atoms. It is written in

C.

A.1.2.172.mgrid

172.mgrid is a Multi-grid Solver program, which is a 3D Potential Field program. The

172.mgrid benchmark demonstrates the capabilities of a simple multigrid solver in

computing a three dimensional potential field. The benchmark is adapted by SPEC from the

NAS Parallel Benchmarks with modifications for portability and a different workload as

follows

1. It solves only a constant coefficient equation, and only on a uniform cubical grid.

2. It solves only a single equation, representing a scalar field rather than a vector field.
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The output includes echoing some of the inputs and the smoothed approximate inverse.

The main part of the output is from the smoothed approximate inverse. However, only a

small portion of the smoothed output is printed. This output is only enough to assure that all

work is being done and to check intermediate results for accuracy. Additionally, the L2

norm and Inf norms are used as a checksum of the output. The benchmark is written in

Fortran 77.
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A.2.  CINT2000 (Integer Component of SPEC CPU2000)

A.2.1.164.gzip

164.gzip (GNU zip) is a popular data compression program written by Jean-Loup Gailly

for the GNU project. The 164.gzip benchmark uses Lempel-Ziv coding (LZ77) as its

compression algorithm. However, SPEC's version of gzip performs only reading I/O for

input, but no file I/O for output. All compression and decompression are computed entirely

in memory. This is to differentiate the work done in the CPU from the work done in the

memory subsystem. Reference workload of 164.gzip includes five components: a large

TIFF image, a web server log, a program binary, random data, and a source tar file. The

random data is selected to test gzip's worst-case behavior. Beside the random data, the rest

of the workload components were selected as a realistic representative set of general inputs

that gzip might encounter regularly. Every input set is compressed and decompressed at

several different blocking factors or compression levels. Then, the end result of the process

is compared against the original data after each step. The output files are generated to

include a brief outline of the benchmark activities during execution. Output sizes for each

compression and decompression are included to facilitate validation. To validate, the results

of decompression are compared against the input data to ensure that they match. The

benchmark is written in C.

A.2.2.176.gcc

176.gcc is a C Language optimizing compiler. The 176.gcc benchmark is based on gcc

Version 2.7.2.2 from GNU. It generates code for a Motorola 88100 processor. The



 254

benchmark executes as a compiler with multiple optimization flags enabled. Unlike GNU

gcc, 176.gcc has its inlining heuristics altered slightly. Therefore, more code can be inlined

than it would be typical on a Unix system in 1997. The reason is the expectation that this

feature would be more typical for compiler usage in 2002. The change was done so that

176.gcc would spend more time analyzing it's source code inputs, and use more memory.

Despite of this effect, 176.gcc would have done less analysis, and required more input

workloads to achieve the run times specification for SPECint2000. There are five input

workloads included in 176.gcc. All of them are preprocessed C code (.i files). First,

integrate.i and expr.i come from the source files of gcc itself. 166.i is produced by

concatenating the Fortran source files of a SPECint2000 candidate benchmark, then using

the f2c translator to produce C code, and then pre-processing. 200.i is produced with the

same method from a previous version of the SPECfp2000 benchmark Finally, 200.sixtrack

and scilab.i are produced with the same method from a version of the Scilab program. All

output files are 88100 assembly code files. The code of 176.gcc is in C.

 The known portability issues for the 172.gcc benchmark are as follows:

1. The code requires the knowledge of the platform endian of the host it runs on. The 

default endian for 176.gcc is set to little endian. To run correctly on a big- endian 

machine, the flag HOST_WORDS_BIG_ENDIAN must be defined when the 

benchmark is compiled (eg -DHOST_WORDS_BIG_ENDIAN).

2. Some of the optimizations 176.gcc performs require platform-dependent calculation 

of floating point constants. These requirements form an insignificant amount of 

computation time, depending on IEEE floating point format to produce a correct 

result.
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3. 176.gcc is not an ANSI C program. It uses GNU extensions.

4. 176.gcc is inherently a 32-bit program. SPEC has successfully ported 176.gcc to 

many 64-bit UNIX implementations. However, use of high optimization levels with 

a 64 bit system in conjunction with inlining of procedures from different source files 

may reveal some 64-bit portability issues with 176.gcc.

5. SPEC has changed176.gcc slightly in order to build properly with newer versions of 

GCC. If you're using an old gcc (~2.6 or older) to build 176.gcc, you should define 

the __OLDANDBUGGY__GNUC__ flag.

A.2.3.181.mcf

181.mcf is a Combinatorial optimization / Single-depot vehicle scheduling. It is a

benchmark derived from a program used for single-depot vehicle scheduling in public mass

transportation. The benchmark is written in C, and The benchmark version uses almost

entirely integer arithmetic. The program is designed to solve single-depot vehicle scheduling

(sub-)problems occurring in the planning process of public transportation companies. It take

into account one single depot and a homogeneous vehicle fleet. It is based on a line plan and

service frequencies, so-called timetabled trips with fixed departure/arrival locations and

times derived. Each of this timetabled trip has to be served by exactly one vehicle. The links

between these trips are called dead-head trips. Additionally, there are pull-out and pull-in

trips for leaving and entering the depot, respectively. Cost coefficients are provided for all

dead-head, pull-out, and pull-in trips. The purpose is to schedule all timetabled trips such

that the number of necessary vehicles is minimized and, secondarily, the operational costs

among all minimal fleet solutions are also minimized. For simplification, the benchmark
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assumes that each pull-out and pull-in trip is defined implicitly with a duration of 15 minutes

and a cost coefficient of 15. For the considered single-depot case, the problem can be

formulated as a large-scale minimum-cost flow problem that can be solved with a network

simplex algorithm accelerated with a column generation. The main calculation of the

benchmark 181.mcf is the network simplex code "MCF Version 1.2 -- A network simplex

implementation", which is embedded in the column generation process. The network

simplex algorithm is a specialized version of the prominent simplex algorithm for network

flow problems. The linear algebra of the general algorithm is replaced by simple network

operations, such as finding cycles or modifying spanning trees that can be performed very

rapidly. The main work of our network simplex implementation is pointer and integer

arithmetic. 

 The input file includes the followings:

• the number of timetabled and dead-head trips,

• its starting and ending time for each timetabled trip,

• its starting and ending timetabled trip and its cost for each dead-head trip.

Worst case execution time is pseudo-polynomial in terms of the number of timetabled

and dead-head trips and in the amount of the maximal cost coefficient. However, the

expected execution time is in the order of a low-order polynomial. The benchmark memory

footprint is approximately 100 and 190 megabyte for a 32 and a 64 bit architecture,

respectively. The benchmark generates two output files, inp.out and mcf.out. The inp.out

output file consists of log information and a checksum while the mcf.out output file contains

check output values describing an optimal schedule computed by the program.
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A.2.4.197.parser

197.parser is a Word processing program. The Link Grammar Parser is a syntactic

parser of English, based on link grammar, an original theory of English syntax. The program

assigns a syntactic structure to a given sentence. The syntactic structure consists of set of

labeled links connecting pairs of words.

The parser includes a dictionary of about 60000 word forms. The dictionary covers a

wide variety of syntactic constructions, including many rare and idiomatic ones. The parser

is robust. It has the capability to skip over portions of the sentence that it cannot understand,

and assign structure to the rest of the sentence. It can handle unknown vocabulary, and

intelligently guess from context about the syntactic categories of unknown words. The input

is a sequence of proposed sentences, one per line. It is sensitive to punctuation and case. The

output is an analysis of each input sentence. The analysis output consists of a set of links

capturing the grammatical structure of the sentence, a labelling of each word with an

appropriate part of speech tag, and a judgement of the grammaticality of the input sentence.

Words in square brackets are determined superfluous by the parser. The parser is written in

ANSI C.

A.2.5.255.vortex

255.vortex is a Database program. The benchmark 255.vortex is a subset of a full object

oriented database program called VORTEx. VORTEx stands for "Virtual Object Runtime

EXpository". It is a single-user object-oriented database transaction benchmark, exercising a

system kernel coded in integer C. The VORTEx benchmark is a derivative of a full

OODBMS that has been customized to conform to SPEC CINT2000 guidelines.
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Transactions operated on the database are translated through a schema. The function of a

schema is to provide the necessary information to generate the mapping of the internally

stored data block to a model viewable in the context of the application. The benchmark

schema is pre-configured to manipulate three different database, including mailing list, parts

list, and geometric data. Both little-endian and big-endian binaries for the schema are

provided in the benchmark.

The 255.vortex benchmark builds and manipulates three separate, but inter-related

databases based on the schema. The size of the database is scalable, but has been restricted

to about 200 Mbytes for CINT2000 guidelines. However, this version of VORTEx

benchmark has been modified to prevent committing transactions to memory in order to

remove input-output activity from the benchmark.

The workload of VORTEx has been modeled to reflect general object-oriented database

benchmarks with modifications to vary the mix of transactions.

The 255.vortex benchmark executes three different times with different sequences of

transactions. Each time a different combination of database insert, delete and lookup

transactions is used to simulate different database usage patterns. 

The benchmark 255.vortex use three different workloads, simulating different dataset

sizes and access patterns. Each run, one for each workload, produces one output file. Each

output file (vortex1.out, vortex2.out, and vortex3.out) is a log of all transactions occurring

during the execution of the benchmark. These transactions include creating entries in the

database, deleting entries, and entry lookups. 255.vortex is written in C.
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A.2.6.256.bzip2

256.bzip2 is a compression program. The 256.bzip2 benchmark is a derivative of Julian

Seward's bzip2 version 0.1. Like SPEC version of gzip, the only difference between bzip2

0.1 and 256.bzip2 is that SPEC's version of bzip2 performs no file I/O rather than reading

the input. All compression and decompression occurs entirely in memory to help isolate the

work done to only the CPU and memory subsystem. The output files consist of a brief

outline of what the benchmark is doing during its execution. Output sizes for each

compression and decompression are printed to facilitate validation. To validate the

execution, the results of decompression are compared against the input data to ensure that

they match. The 256.bzip2 benchmark is written in ANSI C.

A.2.7.300.twolf

TimberWolfSC is a placement and global routing application package. The

TimberWolfSC package is used to create the lithography artwork needed for the production

of microchips. Especially, it determines the placement and global connections for standard

cells, which constitute the microchip. The standard cell is usually a group of transistors. The

placement problem is a permutation. Meaning, an exploration of the state space would take

an execution time proportional to the factorial of the input size. For example, To solve a

problems with 70 cells, a brute force algorithm would take the execution time of the factorial

of 70, which is an unacceptable amount of time even on the world's fastest computer.

Instead, the TimberWolfSC program implements simulated annealing as a heuristic to find

relatively optimal solutions for the row-based standard cell design style. In this

implementation, transistors are grouped together to form standard cells. These standard cells
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are placed in rows each or which share power and ground connections by abutment. The

simulated annealing algorithm has found the relative optimals to a large group of placement

problems. After the placement step, the global router interconnects the microchip design. It

is implemented with a constructive algorithm followed by iterative improvement.

The basic simulated annealing algorithm has been widely used in many applications

since its first introduction in 1983. The SPEC suite version is the most numerically intensive

version. Recently, the newer versions have reduced runtimes by intelligent reductions in the

search space. However, the solution search strategy and cost functions remain the same to

later versions.

SPEC has customized the version of TimberWolfSC so that it would capture the flavor

of many implementations of simulated annealing. The submitted version spends most of its

time in the inner loop calculations. With this behavior, this version often creates cache

misses due to traversing memory. In fact, the execution of small jobs on this version is

similar to later simulated annealing versions executing on large jobs. The reason is to insure

the applicability of the benchmark in the future versions of the program running large

instances. The submitted version should be extremely computer-intensive, but realistic for

future problems. 

Three test problems are provided for the SPEC 300.twolf benchmark. The first problem

is a small synchronous circuit which is being placed and routed as a subchip. The second test

circuit is the MCNC primary one benchmark circuit. It is one of the most frequently

executed benchmark circuits. The third test case is a structured circuit found in the MCNC

benchmark suite. In all test problems, the TimberWolf program is required to determine the

position of the standard cells and determine the interconnection of the netlist. Additionally,
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the global router must add extra cells, called feedthrus, to complete the route if not enough

space is present between two adjacent standard cells. The input files are composed of the

block description file, the netlist file, the net weighting file, and the parameter file. The

block description file describes the number and position of the rows, where standard cells

are to be placed. A valid placement is defined as the placement all of the cells are placed

within the specified rows without any overlap between cells. The netlist file describes the

standard cells and the connection network between cells. At this moment, the physical

location of these connections has not been determined.

Two output files are created for each test circuit: the placement file and the global

routing file. The benchmark is written in C.
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