

ABSTRACT

Title of Dissertation: RESISTIVE RAM BASED MAIN-MEMORY
SYSTEMS: UNDERSTANDING THE
OPPORTUNITIES, LIMITATIONS, AND
TRADEOFFS

 Meenatchi Jagasivamani

Doctor of Philosophy, 2020

Dissertation directed by: Professor Bruce Jacob

Department of Electrical & Computer
Engineering

As DRAM faces scaling issues as a high-density memory, emerging

technologies are being explored as alternatives. One promising candidate is

Resistive Memories (ReRAM), which is scalable, vertically stackable, and because

of the possibility of integration with standard logic process, can deliver higher

density as a main-memory solution. The key differentiator with this approach

involves a ReRAM memory array that integrates directly with a logic processor

underneath.

In this research work, I explore ReRAM as a main-memory alternative at

three levels of detail – at the device level, the physical-design level, and finally at

the architecture level. I begin with an overview of ReRAM and compare with

alternate technologies. I look at the physical design of the solution and present the

results of area studies on integrating a VSCALE processor at the 45nm technology

node with a ReRAM bit-cell array. The area study was performed based on

parameters specified by my collaborators at Crossbar Inc. The results showed that

the optimum operating point is at 50% array efficiency with a VSCALE processor,

and that this configuration incurs an area penalty of 18%.

Two of the key challenges for ReRAM with respect to DRAM performance

include the higher write latency requirement (typically on the order of 1us) and the

lower write endurance (typically less than 10^8 cycles). This compares with

DRAM write-latency times of less than 30ns (depending on technology node and

generation) and write endurance of more than 10^15 write cycles. In this research

work, I explore the possibility of utilizing the ReRAM cell in an intermediate state

between non-volatile state and threshold state, where I intentionally tradeoff the

write energy for a much lower data retention. This allows the chip to more easily

replace existing DRAM-like main memory applications, without requiring higher

write programming current or accommodating for a longer write latency. I

performed this evaluation both at the device-level and at the architecture level.

At the device-level, I used UMD’s Nano-fab lab to construct a Metal-Oxide

based ReRAM bitcells on which I characterized the relationship between data-

retention and write current applied. My fabricated ReRAM was composed of

Titanium-Oxide and Aluminum Oxide. I also confirmed the behavior of a mixed-

volatility state where a formed filament relaxes over time to move to a high-

resistance level. Based on my experimental measurements, operating in the mixed

volatile state would reduce write energy by 10 to 100x, and thereby improve the

write endurance.

Finally, at the architecture-level, I used the Structural Simulation Toolkit

(SST) to characterize a ReRAM-based main-memory system and compare with a

DRAM-based one using our research group’s DRAMSIM3 tool. I also

characterized the sensitivity of various architectural parameters (core-to-memory

controller ratio, queue depth, NoC topology) on system performance on stream and

gups-based graph benchmarks which indicated that the torus topology will provide

reasonable performance. Impact of the number of parallel processors indicated that

at low processor counts, DRAM outperforms ReRAM due to its faster memory

latency. However, at high processor counts, ReRAM with its higher number of

parallel connections is able to deliver higher system performance than DRAM.

RESISTIVE RAM BASED MAIN-MEMORY SYSTEMS: UNDERSTANDING
THE OPPORTUNITIES, LIMITATIONS, AND TRADEOFFS

by
Meenatchi Jagasivamani

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2020

Advisory Committee:

Professor Bruce Jacob, Chair/Advisor

Professor Manoj Franklin

Professor Robert Newcomb

Professor Martin Peckerar

Professor Donald Yeung

Professor Lourdes Salamanca-Riba, Dean’s Representative

© Copyright by

Meenatchi Jagasivamani

2020

To my parents, Vadivel and Rani Jagasivamani;

my husband, Guru Thuduppathy;

and my children, Gugan and Kayal Thuduppathy.

Acknowledgements

I would like to thank my family for supporting me in this journey and

encouraging me to pursue the PhD after working in the industry. I am grateful to

my mother for being my number one supporter, my father for instilling a deep sense

of curiosity and appreciation for engineering, my husband for always believing in

me to reach beyond my limits, and my children for filling me with joy each day.

I owe a great deal to Professor Jacob for being a wonderful research advisor.

He was patient and encouraging throughout my PhD research, while having a long-

term vision for the research work being explored. His suggestions in providing

specific research questions to explore, while allowing me the intellectual freedom

to discuss and pursue research areas of interest was paramount to the depth and

breadth of my research study.

I would also like to specially thank Professor Yeung, for his valuable technical

feedback and offering suggestions for improvement during the entire course of my

PhD. Thank you to all of my committee members who provided me with their time

and energy to further consider certain aspects during my defense.

Finally, I would like to thank my friends and colleagues at the University of

Maryland, Shang, Brendan, Candace, Devesh, Luyi, and Daniel for their wish and

support all these years.

viii

Table of Contents

ABSTRACT .. I

TABLE OF CONTENTS ... VIII

1 INTRODUCTION ... 1

1.1 MOTIVATION AND PROBLEM DESCRIPTION ... 1

1.2 PROPOSED APPROACH ... 4

1.3 CONTRIBUTION AND SIGNIFICANCE ... 6

1.4 ORGANIZATION OF DISSERTATION .. 8

2 EMERGING MEMORY TECHNOLOGIES ..11

2.1 SRAM, DRAM (HMC, HBM, EDRAM), STT-MRAM, RERAM11

2.2 RERAM IMPLEMENTATION VARIATIONS ...15

2.3 APPLICATIONS FOR RERAM TECHNOLOGY ..21

2.3.1 ReRAM with Support Logic Circuits ..22

2.3.2 ReRAM for Super Conducting applications ...25

3 RERAM BACKGROUND ...27

3.1 RERAM AS DRAM ALTERNATIVE ...27

3.2 OVERVIEW OF RESISTIVE MEMORY AND CELL OPERATION ..29

3.3 RERAM READ AND WRITE PERFORMANCE TRADEOFFS ..31

3.4 RERAM WRITE ENDURANCE CHALLENGE ...33

4 AREA EXPLORATION STUDIES ..35

4.1 CROSSBAR RERAM INTEGRATION CONSTRAINTS ..37

4.2 CAD METHODOLOGY...45

4.3 SINGLE RERAM CLUSTER INTEGRATION ...48

4.4 MULTIPLE RERAM CLUSTER INTEGRATION ..55

4.5 SRAM-RERAM INTEGRATIONS ...68

4.6 MEMORY ARCHITECTURE CALCULATOR (MAC) ...72

4.7 ALTERNATIVE FLOORPLAN ARRANGEMENTS (L, CROSSBAR, FRACTAL DESIGN)75

4.8 CONCLUSION ..78

5 RERAM DEVICE-LEVEL RESEARCH STUDY ..80

5.1 MOTIVATION ..80

5.2 FABRICATION APPROACH ...82

5.3 MASK GENERATION ...87

5.4 DEVICE FABRICATION ..94

5.5 RERAM RESISTIVE SWITCHING BEHAVIOR..100

5.6 THRESHOLD BEHAVIOR AT LOW CURRENT COMPLIANCE LIMITS.............................104

ix

5.7 TIME DEPENDENT VOLATILITY BEHAVIOR ...106

5.8 IMPACT ON WRITE ENERGY AND ENDURANCE ...116

5.9 POST-CHARACTERIZATION SEM ..118

5.10 CONCLUSION AND FUTURE WORK ...121

6 ARCHITECTURE-LEVEL SIMULATIONS ...124

6.1 SST SIMULATOR...124

6.2 BASELINE ARCHITECTURE COMPARISON..126

6.3 IMPACT OF MEMORY PARALLELISM FOR RERAM ..133

6.4 MOTIVATION FOR CENTRAL RERAM DESIGN ..137

6.5 AREA FLOORPLAN CENTRAL RERAM DESIGN...140

6.6 WRITE PERFORMANCE IMPACT OF RERAM ...145

6.7 IMPACT OF CORE COUNT ..155

6.8 ENERGY COMPARISON ..161

7 NOC TOPOLOGY IMPACT ..165

7.1 MOTIVATION ..165

7.2 BACKGROUND ..167

7.2.1 ReRAM-based Main-Memory Architecture ..172

7.2.2 NoC Topologies of Interest ..175

7.2.3 Simulation Methodology ..178

7.3 EXPERIMENT RESULTS & ANALYSIS ..179

7.3.1 NoC Topology Evaluation ..180

7.3.2 DRAM Memory Controller Optimization ...189

7.4 CONCLUSION ..193

8 RERAM AS TRUSTED ON-CHIP MAIN MEMORY ...194

8.1 MOTIVATION ..194

8.2 BACKGROUND ..197

8.2.1 Integrated Processor-ReRAM Architecture ...198

8.2.2 ReRAM Security Implications ..200

8.3 PROPOSED APPROACH ..201

8.4 ANALYSIS AND DISCUSSION ...204

9 CONCLUSION ...206

10 FUTURE WORK..210

11 REFERENCES ...213

APPENDIX A: CADENCE ENCOUNTER COMMAND FILE223

APPENDIX B: MAC JAVASCRIPT SOURCE CODE ...229

x

Table of Figures

Figure 1-1 Motivation: Memory Bandwidth Wall .. 2

Figure 1-2 System Connection in Proposed Approach (Side and Corner View) 6

Figure 2-1 Conventional 6T SRAM cell ..13

Figure 2-2 DRAM Bit-cell ..13

Figure 2-3 STT-MRAM Bitcell Figure source: (MRAM-info, 2016) ..14

Figure 2-4 Cell-Size Comparison for different Memory Technologies ..18

Figure 2-5 Read-Latency Comparison for different Memory Technologies20

Figure 2-6 Write-Latency Comparison for different Memory Technologies21

Figure 2-7 Augmenting Logic to enable ReRAM adaption into key applications (a) output buffer
to increase data bandwidth (b) pipelined floating point logic to enable computation24

Figure 2-8 – RFSQ Circuit ..26

Figure 3-1 DRAM Bandwidth-Capacity Tradeoff ...28

Figure 3-2 ReRAM Bitcell Details (a) ReRAM bitcell cross-section (b) Crossbar 1S1R array bias
scheme, with selected cell circled ...30

Figure 3-3 ReRAM Array Size vs Read Latencies ..32

Figure 3-4 Write Endurance Ranges for DRAM vs ReRAM ..34

Figure 4-1 Cross-Section ReRAM bitcell ..35

Figure 4-2 ReRAM Physical Integration. ..36

Figure 4-3 Crossbar ReRAM Bitcell (a) Orthogonal Bitcell Layout (b) ReRAM integration with
CMOS Process Figure source (Crossbar Inc., 2018) ...38

Figure 4-4 45nm ReRAM bitcell ..41

Figure 4-5 Memory Organization ...43

Figure 4-6 Via tap points from ReRAM metal layer to periphery circuits44

Figure 4-7 Digital Implementation Tool Flow of an integrated ReRAM RISC-V Processor tile. 47

Figure 4-8 Layout of VSCALE Processor Core ...50

Figure 4-9 Blockage Region for ReRAM Peripheral Circuits ...52

Figure 4-10 Layout of an integrated ReRAM RISC-V Processor tile. ...53

Figure 4-11 Embedding Multiple ReRAM Mat Clusters within a Larger Processor56

Figure 4-12 Scaled 256-bit VSCALE Processor Layout..57

Figure 4-13 Inter-Mat ReRAM Array Spacing causing Inefficient Layout59

Figure 4-14 Multiple ReRAM clusters integrated with a 256-bit RISC-V Processor60

Figure 4-15 Impact of Inter-MAT ReRAM cross spacing on Area ..63

Figure 4-16 Impact of Inter-MAT ReRAM cross spacing on Efficiency ...64

Figure 4-17 – Bitcell Relative Sizes at 45nm ..69

Figure 4-18 - OpenRAM 45nm (a) Generated Bitcell Array (b) SRAM..70

xi

Figure 4-19 ReRAM Integrated with SRAM memory ...71

Figure 4-20 MAC JavaScript Architectural Area Estimator ...73

Figure 4-21 ReRAM with 3-core VSCALE processor ...76

Figure 4-22 Independent Core with ReRAM block ...77

Figure 4-23 Alternative ReRAM-Processor integration floorplans showing (a) Fractal approach
for Star topologies and (b) Mesh approach for mini-core parallel architectures78

Figure 5-1 ReRAM Metal Stack ..83

Figure 5-2 UMD ReRAM Device Fabrication..86

Figure 5-3 Mask Configuration ..88

Figure 5-4 Mask Prototype Creation ..89

Figure 5-5 Final Mask Configurations for Mask 1 (left) and Mask 2 (right)91

Figure 5-6 Mask Fabrication clockwise from top: (a) ProtoTRAK SMX Milling Station (b) Sheet
Mask being cut (c) Finished mask set (d) Finished Mask Set overlaid93

Figure 5-7 Fabrication flow for Pt/Al2O3/TiO2/Ti/Pt ReRAM structures (a) Thermal SiO2 (b)
Mask 1: PVD of bottom electrode (c) Mask 2: PVD of ReRAM stack and top electrode95

Figure 5-8 – (a) PVD chamber used for fabrication (b) Fabricated test wafer of discrete devices
with probe measurements ..96

Figure 5-9 - Crucible materials into PVD Chamber ...97

Figure 5-10 – Platinum Deposition on First Mask ...97

Figure 5-11 PVD Chamber and MicroProbe Station ..98

Figure 5-12 - Die Photograph of Fabricated Devices (a) Probe Landed (b) Probe etch mark (c)
Top-electrode/Metal Stack boundary ...99

Figure 5-13 SEM Cross-section photo with EDS spectra of the ReRAM stack99

Figure 5-14 – Oscilloscope Measurement on the Applied Program Pulse101

Figure 5-15 - ReRAM Switching between LRS and HRS in bipolar program mode102

Figure 5-16 - ReRAM Resistive switching in Unipolar program mode ...104

Figure 5-17 - ReRAM Threshold behavior at low current compliance (Ic) limits105

Figure 5-18 - Change in Resistance after 5 and 10 minutes delay as a function of the initial
resistance. Log(Delta-Resistance) is calculated for the y-axis ..108

Figure 5-19 - Resistance change over time grouped by Cell sizes with trend observed across
multiple devices. Diameters of Cell 2=5.94mm, cell 3=7.56mm, cell 6=14.04mm. Log(Delta-
Resistance) is calculated for the y-axis..110

Figure 5-20 - Predicted vs Observed change in resistance for cellstates with Rinit below 10M.
Log(Delta-Resistance) is calculated for the y-axis. ..111

Figure 5-21 - Resistance change for different Program Current Compliance values113

Figure 5-22 - Resistance change as a function of Program Current Compliance.115

Figure 5-23 - Sliced Sample inside GAIA SEM Chamber ..119

Figure 5-24 – SEM Thickness Measurement ...119

Figure 6-1 SST Component-based Framework ..125

Figure 6-2 Architecture Comparison ..127

xii

Figure 6-3 SST Simulation Result ...130

Figure 6-4 Memory Latency Breakdown, Queue Depth=2 ...132

Figure 6-5 Impact of Queue Depth ...134

Figure 6-6 Impact of Queue Depth and Multiple Mem-Controllers ..136

Figure 6-7 Hybrid ReRAM-DRAM System Floorplan ...138

Figure 6-8 ReRAM Memory Controller Design ..139

Figure 6-9 – Memory Footprint for Central ReRAM Design ...141

Figure 6-10 – Bank Controller Area ...142

Figure 6-11 – Placement of Control Logic, Buffers, and SRAM ..143

Figure 6-12 – Interconnect Routing over Central ReRAM Floorplan ...144

Figure 6-13 - DRAM ReRAM Architecture Comparison ...146

Figure 6-14 - SST STREAM Benchmark Comparison for 21 cores ..150

Figure 6-15 - SST GUPS Benchmark Comparison for 21 cores ...152

Figure 6-16 – Impact of Increasing Core Count ..154

Figure 6-17 - Performance Comparison between DRAM and ReRAM system using STREAM
and GUPS benchmarks (note: Log-Scale X & Y axis) ..157

Figure 6-18 - Bandwidth Comparison between DRAM and ReRAM system using STREAM and
GUPS benchmarks (note: Log-Scale X & Y axis) ..159

Figure 6-19- Energy-Delay Plot of DRAM-DDR4 and ReRAM system using STREAM and
GUPS benchmarks (note: Log-Scale X axis) ..163

Figure 7-1 - Comparison of (a) Conventional off-chip main-memory system with (b) Integrated
CPU die with ReRAM layers on-chip ...166

Figure 7-2 Comparison of various NoC topologies ..168

Figure 7-3 - ReRAM Array Access ...173

Figure 7-4 - Hybrid ReRAM-DRAM System ...175

Figure 7-5 - Overview Diagram of NoC Topologies Simulated ..177

Figure 7-6 - Torus Configuration for Central ReRAM Architecture ..179

Figure 7-7 - NoC Topology Performance: Impact of Cores ..183

Figure 7-8 - NoC Topology Performance: Impact of Link Bandwidth ..186

Figure 7-9 - NoC Topology Tradeoff: Execution Time vs Aggregate Bandwidth for STREAM
benchmark (Note: Log Scale X & Y axis) ..188

Figure 7-10 - DRAM Performance: Impact of Cores and Memory Controller190

Figure 7-11 - DRAM Speedup: Impact of Cores and Memory Controller (note: Log-Scale X axis)
 ..192

Figure 8-1 - Vulnerabilities in Main Memory ..196

Figure 8-2 - ReRAM Resistance Creation ..198

Figure 8-3 - Integrated ReRAM-Configuration...199

Figure 8-4 - ReRAM-based Main-Memory Solution ...201

Figure 8-5 - ReRAM Three Modes of Operation ...203

xiii

Table of Tables

Table 2-1 Comparison of key parameters of Memory Technologies ..12

Table 2-2 Key performance metrics of various ReRAM implementations17

Table 4-1 Crossbar 1S1R ReRAM Parameters ...39

Table 4-2 Integration Results ..54

Table 4-3 Summary of Inter-Mat Spacing on Area and Efficiency ...61

Table 4-4 Area, Power, and Performance comparison of Processors ..73

Table 5-1 Mask Feature Specifications ...92

Table 5-2 – SEM Analysis of Deposited Thickness ..120

Table 6-1 Summary of SST Architecture Details ..128

Table 6-2 - Architectural Parameters ...148

Table 6-3 Bandwidth Comparison ..155

Table 7-1 Comparison of NoC Topologies ...171

Table 7-2 – Network Sizing Parameters ...180

Table 7-3 - Speedup for different NoC Topologies (baseline: 16 cores) ...185

Table 9-1 - Summary of Key Contributions ...207

1

1 Introduction

1.1 Motivation and Problem Description

The memory bus is a major limiting factor to overall system performance.

Current system performance is limited between the processing power’s data needs and

the data rate received by the memory system, with CPU request rate typically 3-4x

faster than the data rate received from the overall memory system. System architects

have come to accept the limitation due to the memory bandwidth wall and have focused

on modifying memory access patterns and increasing parallelism in the computation

layer in order to increase instruction throughput.

There are several mitigation strategies that are currently employed to address

this problem. Hardware techniques include employing multiple levels of cache

memory blocks. This relies on memory access requests being either temporally or

spatially related, allowing for access requests to be serviced using data present in the

cache blocks. Software techniques include prefetch to load specific data for an

application or managing the access patterns by locating data in a predictable pattern in

2

the memory. Finally, system-level techniques include introducing multiple memory

controllers for bandwidth and incorporating high-bandwidth memories. While all of

these techniques mitigate some of the issues, as the computational system becomes

increasingly parallel, the memory parallelism imposes an upper limit on the overall

system performance. Figure 1-1 illustrates a conventional system and depicts the

problem.

Figure 1-1 Motivation: Memory Bandwidth Wall

This figure shows multiple CPU processors that are embedded within a single

chip, to perform the computations. These multiple CPUs generate several memory

requests in parallel, often independent of each other. Each CPU is connected to

multiple levels of cache memory blocks, often with the final level (Last Level Cache)

being a shared memory block. The cache blocks attempt to service the data

requirements of the CPU if the requested address is within the confines of the data

3

contained with the cache. Any misses in the requested data would necessitate an access

to an external main memory, typically DRAM, to fetch the data and fill the cache block.

As can be seen in the figure, the external main memory is often located off-chip and

are accessed through a few memory controller circuits embedded on chip. The memory

controller itself has the ability to queue pending incoming memory requests, while the

external memory is servicing the requests.

Figure 1-1 denotes six such CPU units, however modern systems could make

use of close to 100 such CPU units. As the number of independent CPU or processor

units increase, so does the number of independent memory access requests and the

likelihood for a bottleneck at the memory controller. This causes memory requests

from the CPU to be stalled while pending requests are serviced by the main memory.

The result is that while DRAM device-level memory latency is on the order of 10s of

nanoseconds, due to this bottleneck of memory requests, from the CPU’s point of view,

the perceived memory access latency ends up being much higher, on the order of 100s

of nanoseconds for large parallel systems.

Thus, we can observe that the system is fundamentally limited by the number of

wires that connect the processor and the memory chip. This bandwidth wall stems from

the limited number of memory access points that exist in current systems. Due to the

number of pins required to make a connection to an external DRAM subsystem (ex:

DIMM), the DRAM memory controllers on-chip are often limited to six or eight per

4

chip. Our proposed approach seeks to alleviate this bandwidth wall problem directly

by utilizing a memory technology, ReRAM, that allows for higher numbers of access

connections between the processor and the memory subsystems.

1.2 Proposed Approach

Emerging memory technologies are currently being explored by industry and

academia to address both scalability concerns with conventional solutions and

improved power-performance capabilities [1]. One promising memory technology is

Resistive Memories which utilize creation of a high or low resistance state in a device

to correspond to a digital value of 0 or 1. The resistance states are modified by creating

a conductive filament in a dielectric material. The filaments could be either oxide-

based (OxRAM) or metal ion based (CBRAM) and are controlled by applying specific

high voltage or current pulse(s) of a specific shape [2,3,4]. In comparison with DRAM,

ReRAM promises nonvolatility combined with better scalability, CMOS back-end-of-

line (BEOL) compatibility, reasonable switching speeds for read, and higher density

when stacked. Integrated Logic and ReRAM Integrated Circuits open the doorway for

enabling more intuitive implementation of addressing the memory bandwidth wall

problem without requiring complete redesign of long-standing software to hardware

design techniques.

5

Our proposed solution for addressing the memory bandwidth wall described

earlier involves using ReRAM as a main-memory replacement for DRAM and

integrating it to the CPU logic on the same chip. This is different from 3D stacked-die

types of approaches that make use physical integration of discrete dies, as shown in

Figure 1-2. Our solution, which we call Monolithic Computer, involves the ReRAM

cells residing in metal layers which are fabricated on the same die. This ReRAM

technology has been demonstrated and fabricated in products from Crossbar, Inc who

our research group is in collaboration with for part of this research work, as well as

others in industry, such as Intel, Micron, and Rambus. Additionally, this approach

enables extremely high parallel connections to the CPU and directly addresses the

Memory Bandwidth Wall problem.

Current studies and research work focus on a specific material composition,

with characterizations pertaining only to that area. A broad understanding of the

technology, implications on how one parameter affects another, and the various

tradeoffs involved is missing. Such an understanding allows wider adoption of this

technology by computer architects to leverage the advantages into their design.

6

Figure 1-2 System Connection in Proposed Approach (Side and Corner View)

1.3 Contribution and Significance

In this dissertation, for background, I pull together research work done from

different groups, both in industry and academia to extract the broad trends that emerge

for this technology and draw together the various implementations of resistive memory

to reveal design insights and architectural impacts. This is a literature survey of

existing research on all variations of resistive memory technology, known by different

names, such as ReRAM, PCM (Phase Change Memory), memristor.

7

For the experimental component, I begin with my results of design experiments

performed using a collaboration with Crossbar Inc. Crossbar ReRAM utilizes a novel

fabrication technology that provides integration capabilities with logic. Exploration

studies on a specific ReRAM instance from Crossbar have been performed to

understand the impacts on area, power, and bandwidth of integrating with a RISC-V

processor. I have successfully established a methodology for physical floor-planning

of a Resistive Memory layer on top of existing logic and present the area impact of a

memory-processor architecture.

I also directly seek to address the high write latency and low write-endurance

problem associated with ReRAM by characterizing the impact of write energy on the

data-retention of the cell. My research thrust to support this goal involved fabricating

ReRAM bitcells as test-cells using UMD’s Nano-fab lab. I collected characterization

data on these cells and characterized the relationship between data retention and write

energy.

My final research thrust involved architectural simulations to quantify the

impact of ReRAM write latency on various parallel simulations and evaluate the impact

of additional memory hierarchies and non-regular NoC Topologies. To support this

effort, I utilize Structural Simulation Toolkit (SST) to model and simulate different

architectural configurations. My simulations indicated that despite the longer access

time latencies of the ReRAM array, due to the much higher number of connections to

8

the CPU logic, the ReRAM architecture is able to exceed the performance when

compared to DRAM. A high enough number of memory access requests were needed

where this advantage comes into play, with the crossover point for my simulation being

64 cores. My first order NoC topology comparison showed that typically torus and fat-

tree configurations performed the best when compared with a mesh topology, with torus

being 39% better and fat-tree being 70% better at the lower link bandwidths where the

topology counts. Due to its ease of implementation, torus might be preferable over the

other topologies as the link bandwidth increases, or as the number of cores increases.

1.4 Organization of Dissertation

The dissertation will begin with an overview of emerging memory technologies

and a comparison of them. Here, I present the resistive memory cell operation and

relationship between related memories such memristor and PCM. I present the key

tradeoff pertinent to this technology in terms of area, program bandwidth, read

performance, power consumption, long-term data-retention and reliability effects, and

multi-level cell implementations. In the first part of my report, I present the detailed

implementation of my area study, including the CAD flow to perform the study, and

the results from my study. In the second part of my report, I present the premise of

leveraging the non-volatile/volatile switching behavior of the cell, the device

fabrication and characterization work, and present some of the preliminary results from

9

my SST simulation. To sum, the thesis spans a broad range of topics and research

techniques from physical design to device and circuit level, and to the architectural

level.

High-level summary of the chapters are as follows:

 Chapter 2: Literature Survey and overview of Non-volatile memory

technologies. Additional focus is given for the different implementation

of ReRAM and alternate application space for this technology.

 Chapter 3: My motivation for using ReRAM as a replacement for

DRAM as the main-memory, a more in-depth overview of the cell

operation, and some of the device level challenges as a main-memory.

 Chapter 4: Floorplanning study of the die area impact of ReRAM

integration with CPUs using Cadence and Synopsys design tools to

perform the synthesis and digital implementation.

 Chapter 5: Device based characterization of a test ReRAM cell

investigating cell behavior with lower program current and its effect on

the data retention of the resistance state.

 Chapter 6: Performance studies (C and C++ based performance

modeling using SST) comparing conventional DRAM based memory

systems against ReRAM based main-memory system. Additional

studies on the impact of parallelism are also presented. Finally, I

10

calculate the area required for some of the sub-blocks in the central

ReRAM IP that I propose and provide a floorplan for the design.

 Chapter 7: Expanded architectural simulation work looking at different

NoC topology and system configurations and the impact on performance.

I also present effect of the number of DRAM memory controllers on the

system performance in support of a Hybrid ReRAM-DRAM solution.

 Chapter 8: I talk about utilizing ReRAM in the volatile state to limit the

data persistence and its possible application as a trusted on-chip main

memory to improve overall system security.

 Chapter 9: Conclusion of the dissertation and research work

 Chapter 10: Bibliography of the Technical literature and references.

 Appendix A: Command File used in the Auto-Place-Route Physical

Design study.

 Appendix B: Javascript code to perform architectural sizing calculations

to estimate number of processors, and ReRAM blocks within a given

chip size.

11

2 Emerging Memory Technologies

2.1 SRAM, DRAM (HMC, HBM, eDRAM), STT-MRAM, ReRAM

In this section, I provide a high-level comparison of current state-of-art and

emerging memory technologies’ capabilities. I begin with a brief overview of each of

the technologies. Table 2-1 presents a summary of key parameters for the different

memory technologies. I go over each of the memory technologies in detail.

SRAM: Static Random-Access Memory (SRAM) consists of a six-transistor

(6T) bitcell with a back-to-back inverter pair tied to pass-transistors that allow access

to the cell, as shown in Figure 2-1. The bitcells continuously maintain the data injected

into the storage node. Data is statically maintained as long as power is supplied to the

circuit. SRAM has one of the fastest access time at the expense of area overhead and

typically serve as cache blocks on a chip.

12

SRAM STT-MRAM DRAM

(HMC)

DRAM

(HBM)

eDRAM ReRAM

Read Latency 1-10 ns 1-10 ns ~30ns ~30ns 100ns 200-800 ns

Write Latency 1-10 ns 10-50 ns ~30ns ~30ns 100ns 1-10 us

High Write

Voltage

Requirement

(charge pump)

None Yes,

dependent on

retention

requirement

(3v to 6v)

None None None 6v

Write-

Endurance

1e16 1e13 1e16 1e16 1e16 1e6

Area
200 F

2

 32 F
2

 8 F
2

 6-8 F
2

 35 F
2

 1-4F
2

(dependent

on # of

stacks)

Process CMOS CMOS +

MTJ layer

CMOS CMOS CMOS

(+Cap)

CMOS +

ReRAM

Energy

Efficiency

Moderate Moderate Moderate Low Low 20-30x

lower than

flash

Non-Volatile? No Yes, possible No, refresh

every ~10-

100 ms

No, refresh

every ~10-

100 ms

No, requires

refresh every

< 100us

Yes

Table 2-1 Comparison of key parameters of Memory Technologies

13

Figure 2-1 Conventional 6T SRAM cell

DRAM: Dynamic Random Access Memory (DRAM) bitcell is comprised of a

capacitor whose charge is altered to store a data value of 0 or 1, as shown in Figure 2-2.

Because the charge on the capacitor dissipates over time, a periodic write is performed

to refresh the data on all bit-cells. An access transistor provides the mechanism to read

and write the capacitor. DRAM provides fast read and write access times, but since

it’s typically located off-chip, it has limitations in achieving very high memory

bandwidth and density at the same time. Also, DRAM technology based on the current

implementations are projected to run into scaling issues at advanced process nodes.

Figure 2-2 DRAM Bit-cell

14

Typically, DRAM memory is implemented as a separate stand-alone discrete die.

Embedded DRAM (eDRAM) versions of the bitcells allow for the DRAM memory to

be integrated on the same die as CPU but requires more expensive processing and take

up silicon area. New DRAM architectures provide increased density by stacking

several DRAM memory layers in a single chip. The two most common ones are Hybrid

Memory Cube (HMC) by Micron and High Bandwidth Memory (HBM). HMC is

developed by Micron to provide a discrete high-density DRAM memory chip

consisting of 3D-integrated stacks of DRAM Memory dies. HBM is an open-standard

high-bandwidth DRAM memory stack that requires a silicon interposer to connect the

DRAM to a CPU/GPU die.

STT-MRAM: Spin-Transfer Torque (STT) Magnetic RAM (MRAM) bitcell is

comprised of a magnetic tunnel junction (MTJ), where the direction of magnetic

moments and the spin direction of the electrons determine the state of the bitcell, as

shown in Figure 2-3.

Figure 2-3 STT-MRAM Bitcell Figure source: (MRAM-info, 2016)

15

Because of its CMOS compatibility, this bitcell could be integrated into standard

manufacturing process and could deliver high density with non-volatile data retention.

2.2 ReRAM Implementation Variations

There are several variations on the exact resistive creation mechanism based on

the materials used [7,8,9]. The three major versions are:

(1) CBRAM: Conductive Bridging RAM which relies on the creation of

microscopic conductive filaments through metal-ion migration;

(2) OxRAM: Creating Metal-oxide physical defects which results in

conductive paths of varying resistances in a layer of oxide material by

causing a valence change.

(3) PCM: Phase Change Memory which changes the crystal structure of a

chalcogenide glass from amorphous to crystalline, thus altering the

resistance of the material.

PCM is constructed using a heater material, such as tungsten (W), which has a

high resistivity and emits heat to its surrounding. The chalcogenide material is placed

on top of the heater and a current is passed through structure to apply a high temperature

(close to 600K) to melt the material. By lowering the programming current slowly, we

anneal the material to cool slowly and settle into a crystalline structure which has a

lower resistivity. Alternatively, by abruptly bringing down the program current, we

16

quench the material and the resulting structure is amorphous and highly resistive in

nature. Thus, the resistivity of the material is altered, and the data state is represented

as the resistance value. A select device is needed in conjunction with the PCM cell so

that a single cell can be “selected” among an array of cells.

Up until recently, most PCM implementations used either a MOS transistor or a

buried PNP-BJT as the selector. This prevented PCM array itself from being stacked

vertically. Additionally, PCM cells were observed to have a drift phenomenon, where

the natural state of the material eventually drifted towards a crystalline structure (low-

resistance), which is especially problematic for multi-level cell behavior. Device

engineering work, along with a new selector that can reside in the metal layers are being

investigated to circumvent this problem. In comparison to PCM, ReRAM have not

been reported to be prone to data disturb from signal lines adjacent or underneath to the

memory bitcell. The work described in this thesis covers OxRAM and CBRAM

implementations, both of which work on creating a conducting filament and altering

the overall resistance of the material.

To provide an overview of existing ReRAM implementations, I performed a

survey of reported specifications of different Resistive Memory implementations based

on published data. Table 2-2 summarizes the performance metrics. Several of the

implementations are partnerships between design companies working closely with a

semiconductor manufacturing fab to realize high-volume implementations of ReRAM

cells.

17

Organization Capacity
Process

(nm)
Structure

Area

(mm2)

Density

(Gb/mm2)

Cell Size

(F2)

Read

Latency

(uS)

Write

Latency

(uS)

Intel/Micron

3D Xpoint
16Gb 20

PCM+OTS between

Metal 4 & Metal 5
206.5 0.62 4.4 8 30

SanDisk/Toshiba

ReRAM
32Gb 24

OxRAM Metal-Oxide

based with Diode

selector

130.7 1.958684 7 40 230

Micron/Sony

ReRAM
16Gb 27

CBRAM based CuTe

Alloy+Buried MOS

selector

168 0.761905 6 2 10

Crossbar

ReRAM stacked
4Mb 40 1TnR test chip 5.6 0.5 10

Crossbar

ReRAM 1T1R
16Mb 40 1T1R, 9 metal test chip 0.02 10

Adesto

EEPROM
512kb 40 CBRAM test chip 118 1.2 60

IBM/Macronix

PCRAM
- 90

PCM based with MOS

selector
test chip - 20 0.0375 0.13125

Table 2-2 Key performance metrics of various ReRAM implementations

Figure 2-4 below plots the bitcell size comparison of the different

implementation against the process node. SRAM and DRAM metrics are also provided

for comparison. The cell size is reported in feature-squared (F^2), which denotes the

multiplication of the smallest feature size achievable in that particular process node.

The value of F is a critical technology parameter defined as the minimum polygon that

can be fabricated in that process node and is typically limited by the lithography of the

process. It is often used as the minimum achieved gate length of the transistors. The

figure highlights the bitcells based on ReRAM technology.

18

Figure 2-4 Cell-Size Comparison for different Memory Technologies

From the plot, we can observe improvement in cell size as we scale to advanced

process node, largely through innovations vertical stacking. One exception to this is

the Adesto EEPROM product which uses a PCM bitcell with a MOS selector and is not

stackable. This product targets low-power IoT applications and the high-area is

sufficient for the low-volume product. For the other implementation of ReRAM cells,

I see the feature size to be lower than DRAM bitcell. Note that the Crossbar ReRAM

bitcell is based on a two-layer stack but is expected to be vertically scalable to up to 8

stacks, which would further reduce the bitcell size. STT-MRAM occupies higher area

19

compared to most ReRAM implementations, but it’s read and write latencies, which

are on the order of SRAM latencies, are much lower than ReRAM. This memory

technology could be a competitive alternative for on-chip cache application to replace

much the higher area cost of SRAM cells.

Read latency comparison among ReRAM implementation is presented in Figure

2-5. ReRAM bitcells have higher read latencies when compared with the other

technologies. The exception here is the Crossbar 1T1R ReRAM, which reported a read

latency of 20ns and was targeting a high-speed embedded memory application. This

product was implemented in 40nm 9-metal process and had a total capacity of 16Mb.

This implementation used a transistor as the selector device, and therefore would not

be stackable. From the plot, we can observe a slight increase in read latency with

advanced process nodes, however, as can be seen in summary Table 2-2, this is more

due to the capacity of the memory rather than advances in technology. As the

technology matures, we can observe that ReRAM transitions from EEPROM type of

memories that require lower capacity to Intel’s 3D Xpoint memory with higher memory

needs. The higher capacity is supported by larger arrays, which often requires higher

latency times. I discuss this phenomenon in more detail in the device tradeoff section

3.3.

20

Figure 2-5 Read-Latency Comparison for different Memory Technologies

Write latency comparison among ReRAM implementation is presented in

Figure 2-6. ReRAM bitcells, being non-volatile memory, have higher write energy

requirements, which also translates into higher write latencies. The IBM/Macronix

PCM reported a lower write latency of 131ns on a test-chip product. Although not

reported in this chapter, the overall write energy also tends to be higher and leads to

lower write endurance when compared to volatile memory technologies. In chapter 5,

I discuss the device-level challenges in adopting ReRAM as a main-memory

replacement for current computer architectures. ReRAM is a Non-Volatile memory

Intel/Micron 3D
Xpoint

SanDisk/Toshiba
OxRAM

Micron/Sony
CBRAM

Crossbar ReRAM
stacked

Crossbar ReRAM
1T1R

Adesto EEPROM

IBM/Macronix
PCRAM

SRAM

DRAM_offchip

eDRAM

IBM STT-MRAM

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100

Re
ad

 La
te

nc
y

(u
S)

Process node (nm)

Read Latency (uS)

21

with higher write energy and latency requirements than DRAM cells. ReRAM targeted

for main memory applications needs to be engineered to support shorter latencies and

higher write endurances.

Figure 2-6 Write-Latency Comparison for different Memory Technologies

2.3 Applications for ReRAM technology

The ease of integration and low-bandwidth characteristics of ReRAM readily

lends itself to be used in applications that require high parallelism with fine access

granularity. Parallel multi-processor architectures meet this criterion and could be

Intel/Micron 3D
Xpoint

SanDisk/Toshiba
OxRAM

Micron/Sony
CBRAM

Crossbar ReRAM stacked

Crossbar ReRAM 1T1R

Adesto EEPROM

IBM/Macronix
PCRAM

SRAM

DRAM_offchip

eDRAM
IBM STT-MRAM

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

W
rit

e
La

te
nc

y
(u

S)

Process node (nm)

Write Latency (uS)

22

implemented using the mesh architecture topology that I mentioned in the previous

section. Such parallel multi-processors are most suited for computation intensive

programs that can be expressed as SIMD (Single Instruction Multiple Data), MODS

(Monolithic Operations, Distributed Data), or DODS (Distributed Operations

Distributed Storage). These architectures consist of an array of tiles, with each

consisting of a modest processing core, supporting ReRAM memory, and NOC switch

to support inter-tile communication. Each unit should be capable of functioning as

autonomous processing unit, with individual processors having modest computation

power. Collectively the mesh architecture could provide higher power efficiency on

computation intensive programs (SIMD, MODS, DODS).

2.3.1 ReRAM with Support Logic Circuits

Resistive Memories is an emerging technology that has huge promises in terms

of scalability, integration with logic, and helping address the memory wall problem.

However, it has limitations in stream bandwidth and write endurance making an

augmenting memory component a suitable transition, rather than a replacement for

currently existing SRAM or DRAM cache needs. One of the biggest advantages with

ReRAM comes from the fact that ReRAM has the potential to support computation-in-

memory because you can fit in much more complex logic underneath the memory layer

and it can still be at near sense-amp pitch. In this section, I look at applications that

23

take advantage of the proximity to the memory that the higher BEOL allows in enabling

the creation of more powerful ReRAM that allows us to build custom sense-amp

pitched logic to support certain data-intensive applications. Some potential circuits to

integrate could be buffer circuits to increase bandwidth and embedded hardware

accelerators to create processor-in-memory like features. These accelerators would be

supporting floating point operations.

I present two augmenting logic to tailor ReRAM for an application that

researchers are looking at. To overcome the bandwidth limitation for streaming

intensive applications, I can place register banks that shift in data from ReRAM and

provide a single wide data output. For example, suppose a ReRAM memory array has

read bandwidth of 8 bits per read, which implies 8 Sense-Amplifier columns. If my

target bandwidth is one 128bits per read, and if the read time is dominated by partly by

wordline selection time, then selecting one row and reading a 128-bit “page” at a time

to accumulate into “shift register” would optimize some of the read-time overhead.

This register bank buffer could be placed directly underneath the ReRAM memory

resulting in no additional area requirements.

Figure 2-7(a) illustrates this using a simple augmenting logic using an output

buffer to increase the perceived data bandwidth. This approach is similar to DRAM

stream read access, where a single read outputs 128-bit granularity by switching the

24

column multiplexer and selecting subsequent columns in a single row. Another simple

augmenting logic to be considered includes floating point computation logic that

supports several signal processing and matrix computation applications. As shown in

Figure 2-7(b), this would involve pipelined floating-point computation logic (Multiply-

Multiply-Add) folded directly underneath the ReRAM memory. A read request from

one or more arrays would feed a pipelined floating logic block to perform the

computations as successive reads are performed in parallel. This approach is similar

to the FPGA pipelined approach used to embed accelerators into the FPGA fabric.

Figure 2-7 Augmenting Logic to enable ReRAM adaption into key applications
(a) output buffer to increase data bandwidth (b) pipelined floating point logic to

enable computation

Finally, non-volatile logics are a group of circuits that make use of the non-

volatility in ReRAM to preserve the state of logic when a chip goes to deep power-

down modes. Because of the ease of integration that ReRAM allows, logic states of

25

key circuits could easily be preserved in ReRAM memory residing above. Due to the

intermittent power availability of IoT (Internet on Things) devices, non-volatile logics

are being explored as an application for ReRAM technology.

2.3.2 ReRAM for Super Conducting applications

ReRAM could have an application for Super Conducting circuits due to their

non-volatility. Super conducting circuits make use of a RSFQ (Rapid single flux

quantum) type of logic, as opposed to traditional CMOS logic. This type of circuit

relies heavily on capturing spikes that propagate through the system to achieve the

different logic functions. Figure 2-8 shows an example RFSQ circuit where signal from

BLK1 is transmitted to BLK2 as a spike. The input signal, i, appears before the clk

signal spike in order to latch in the input signal. A Joseph Junction device, depicted as

X in the figure, is used to maintain the signal until it is consumed by the BLK2.

However, these RFSQ gates consume the input token/charge, and a lot of care is taken

to path-balance and synchronize the arrival of all inputs. In order to combat this,

conventional techniques [24], implement special Non-Destructive-Read-Out (NDO)

circuits that implement persistence of the input signal.

26

Figure 2-8 – RFSQ Circuit

Although MRAM type of memory technologies are being studied as a possible

application for this, ReRAM could be a better alternative due to its integration with

traditional fabrication technologies. However, it’s higher write energy and write

latency make it a device challenge in adopting in this application. One interesting study

to explore is the possibility of making use of ReRAM, to implement the persistence

instead. By using a ReRAM with a very low data retention time, it could translate to a

lower write-energy requirement, as long as the written spike need not be maintained for

very long time (not non-volatile behavior). In chapter 5, I explore using ReRAM in

this mixed volatility state to tradeoff data retention with write energy and write

endurance. One challenge in this solution might be that the temperature range that

these circuits would operate in might limit the material composition of ReRAM to be

used. Further exploration is needed to evaluate the feasibility of this solution.

27

3 ReRAM Background

3.1 ReRAM as DRAM alternative

There is currently one DRAM limitation that system architects have to work

around. This is the tradeoff between bandwidth and capacity, illustrated in Figure 3-1.

The x-axis in the graph is the peak bandwidth rated for the device, measured in GB/sec.

The y-axis is the typical total memory capacity available for that particular

implementation.

Conventional DDR4 implementations are capable of high storage capacity,

close to 400GB. Their bandwidths on stream triad benchmarks are reported as below

100GB/sec. The stacked DRAM implementation, on the other hand, has a high

bandwidth close to 500GB/sec measured with the stream triad benchmark. However,

their capacity maybe quite low, on the order of 16GB in total. While these bandwidths

are for sequential dense access patterns, the effective bandwidth drops dramatically for

sparse access patterns to below 100GB/s.

28

Figure 3-1 DRAM Bandwidth-Capacity Tradeoff

While off-chip DRAM can provide significant capacity, the bandwidth is low.

The option of increasing aggregate bandwidth using additional chips has a high-power

penalty (~2-4W per DIMM). Implementations such as Stacked DRAM provide high-

bandwidth, but with low-capacity. DRAM bandwidth also is targeted for dense-type

of memory access patterns and degrades severely in sparse type of access patterns.

ReRAM, on the other hand, can provide a much higher bandwidth at higher

density. ReRAM has a low access granularity of 8B and can sustain the bandwidth for

both dense and sparse memory access patterns. The graph shows the projected

29

ReRAM bandwidth of 320GB/sec at a capacity of 200GB, based on current capabilities.

Additionally, I project that by stacking the ReRAM devices vertically in a 3D-IC could

increase the capacity dramatically with a small impact of the overall bandwidth.

In addition to the bandwidth-capacity tradeoff, DRAM is also reported as facing

scaling issues and being vulnerable to failure at advanced technology nodes. ReRAM

on the other hand has been fabricated at 28nm technology and shows no issues of being

scalable beyond 7nm. This allows the ReRAM memory to scale with advancements in

the processor and logic technology and could further improve the capacity and

bandwidth of the memory.

3.2 Overview of Resistive Memory and Cell operation

ReRAM stands for resistive Random Access Memory, where the resistance of a

material is varied by applying different voltage/current across the material, and the

resistance is used to indicate a data value of 0 or 1. In this section, I present a brief

overview of ReRAM characteristics. Resistive memories have two main components:

the selector, and the resistive storage element. The ReRAM bitcell’s basic storage

mechanism of operation involves the use of dielectric materials which normally don’t

conduct current. A dielectric breakdown is induced by subjecting the material to a high

enough current or voltage, which typically causes permanent damage to the device in

30

other dielectric devices, such as diodes and capacitors. The ReRAM materials are

engineered in such a way so that this dielectric breakdown does not cause permanent

damage and is reversible.

Figure 3-2(a) shows the cross section of the 1S1R (1 selector per 1 resistive

element). During read, the voltages are expected to operate in the nominal range for the

technology, while write voltages are expected to be pumped to a higher voltage level.

This Crossbar ReRAM implementation does not utilize a separate access transistor for

selection, but the selector device is integrated with the resistive element to form the

switching medium (SM) layer for the bitcell as shown in Figure 3-2.

Figure 3-2 ReRAM Bitcell Details (a) ReRAM bitcell cross-section (b) Crossbar
1S1R array bias scheme, with selected cell circled

The SM is sandwiched between the bottom electrode (BE) and the top electrode

(TE). A voltage above a threshold (> VTH) is required to select the cell to perform a read

or write operation. For the program operation, a much higher voltage (>VPRG) is applied

to enable the formation or resetting of the conductive filaments. Figure 3-2(b) shows

31

the bias scheme of the crossbar memory array for selection. All wordlines and bitlines

are held at V/2, while the selected cell’s wordline and bitline are biased to have a

difference of V across it. The selector device is engineered so that the ratio between the

ON-resistance, defined as when the bitcell has a high voltage bias (V) across it, and the

OFF-resistance (voltage bias of V/2 in this example), is very high. This high selectivity

ensures minimal sneak path current on unselected cells on the same bitline, which have

a potential of V/2 across their cells.

3.3 ReRAM Read and Write Performance Tradeoffs

The read latency of a ReRAM array is dependent on the overall array size, as

shown in the graph in Figure 3-3. The x-axis in the graph is the sub-array size of the

memory array, which is the product of the number of rows and columns with an array.

The graph has two y-axis – overall die area required to meet a certain memory storage

capacity measured in sq mm and read latency delay measured in micro-seconds.

For the purpose of area efficiency, it is desirable to have as high an array size as

possible. This is because having several smaller arrays would increase the overhead to

the surrounding peripheral circuits, such as the row and column decoders. Although

the overall sizing of the individual drivers could be smaller for the smaller array, the

overall area needed would be higher since there would more of the decoder logic.

32

Additionally, by separating the arrays into small sub-arrays, certain duplication of

control and sensing circuits becomes necessary, adding to the overall overhead area.

Figure 3-3 ReRAM Array Size vs Read Latencies

The graph shows that read-latency delay (marked by the latency numbers),

increases as the size of the sub-array increases. A very small array of a single bit (1),

can have an expected delay of 0.1uS, or 100ns, while a very large sub-array of 2000

bitcells can have an expected delay of 2.2uS. From the die-area point of view, the small

sub-array of a single bit would incur a high die-area of 100mm2, while the large sub-

array of 2K would have a die-area of 3mm2. Thus, there exists a strong tradeoff

between array performance and the area. This high dependency is due to the latency

timings largely being dominated by the parasitic elements (Resistance, Capacitance) of

33

the wordline and the bitline. A shorter array reduces the length of these lines, and

therefore directly helps to reduce the latency of the memory.

To consume shorter latency, the array size needs to be kept small, which results

in lower area efficiency. In order to match read latencies close to DRAM main-memory,

this tradeoff between array-size and area efficiency could require a smaller-bank based

architecture to increase the read bandwidth, at the expense of die-area. On the write-

latency side, these are much longer when compared to DRAM write-latencies due to

the non-volatile state change of the bitcell. For write-latencies, a separate write-back

cache could be used as a solution to buffer write operations for certain applications.

3.4 ReRAM Write Endurance Challenge

Conventional ReRAM bitcell write endurances are on the range of 105 to 108

cycles, while typical DRAM write endurance is greater than 1015 cycles. Figure 3-4

compares the write endurance ranges of DRAM against ReRAM. Write endurance

reflects the durability of the bitcell for write operation and is measured in the number

of write cycles. ReRAM bitcell, as it is, is over 7 orders of magnitude lower than

DRAM.The large difference in write endurance limits between ReRAM and DRAM is

a critical device challenge for ReRAM. If the write endurance limits are limited to 105

34

cycles (100,000 cycles), then typical applications that make use of main-memory would

not be supportable using ReRAM as a direct replacement for DRAM.

Figure 3-4 Write Endurance Ranges for DRAM vs ReRAM

DRAM write energy on average is around 19pJ/bit, while ReRAM write energy

is quoted as 65pJ/bit. I expect that write endurance has a tradeoff with data Retention

that could be leveraged for main-memory applications. Additionally, this tradeoff could

have benefits in lowering the write energy requirements, which is the second device

challenge I mentioned.

35

4 Area Exploration studies

One of the most common versions of ReRAM memory involves a “crossbar”

structure of two orthogonal strips of wordlines and bitlines, the intersection of which

produces both the resistive storage element and the selector device. Figure 4-1 shows

the Crossbar’s version of the ReRAM bitcell being comprised of the selector device

and the memory cell, both of which are sandwiched between the orthogonal bitlines

and wordline signal lines. This pattern can be continued to provide vertical stack-

ability of the memory, thereby increasing the effective density.

Figure 4-1 Cross-Section ReRAM bitcell

36

 These memory layers are fabricated on BEOL metal layers and can be stacked

to provide increased memory capacity and density. Additionally, these can be

integrated onto traditional CMOS processes, allowing for logic or ASIC circuits to be

placed in certain regions under the memory. In comparison to separate vertical high-

density memories, this technology helps manufacturers circumvent some of the

challenges with existing 3D ICs, including higher development costs, and reliability

with the TSV fabrication. An IC with integrated Logic and Memory layers (see Figure

4-2) increases the function per unit volume/area while reducing power consumption

significantly. The crossbar version of ReRAM memories is stackable and allows for

logic to be placed under the memory layer.

Figure 4-2 ReRAM Physical Integration.

As shown in Figure 4-2, while the actual memory cells are in a BEOL metal

layers, the peripheral circuits – such as, the word line decoder, column multiplexer, and

37

sense amplifier, would need to take up space in the substrate and lower metal layers

and forming blockage regions for logic circuits. However, this still leaves a majority

of unused space under ReRAM Memory Stack (more than 70% for a two-layer stack).

I propose using the unused space under ReRAM metal stack for CPU or other Logic

elements.

My aim for the physical design feasibility study was to explore a monolithic

processor core that can be physically integrated with a ReRAM memory on the same

chip. In this section, I attempt to integrate a standard-cell based synthesized RISC

processor circuit with a ReRAM crossbar memory circuit and analyze the area and

routing congestion that results from such an integration. I first present some of the

ReRAM integration constraints and the CAD methodology used to study the area

impact. I consider three different ReRAM integration and summarize the measured

results. Two different integration ReRAM-Processor configurations are presented in

this section with the area impact results obtained. Finally, I consider the physical

integration of a SRAM memory placed underneath the ReRAM array layout.

4.1 Crossbar ReRAM Integration Constraints

My initial study is based on the Crossbar implementation of ReRAM memory

which is CMOS compatible and back end of line (BEOL) stackable. CMOS

38

compatibility ensures that the exotic materials used for the ReRAM stack can be

deposited on top of standard CMOS fabrication techniques. One method of physically

realizing this type of integrated circuit involves a two-step process, where the CMOS

circuits are fabricated at a standard process foundry and then taken to a ReRAM

fabrication facility for the specialized ReRAM layers to be deposited on top, in a split-

fabrication like approach. Figure 4-3 presents the physical implementation of the

ReRAM bitcell into a standard CMOS process.

Crossbar ReRAM uses a Select device embedded with the Resistive cell (1S1R)

and the cells lie at the cross point of orthogonal metal layers, as shown in Figure 4-3

(a). The Figure 4-3 (b) shows the split-fabrication like approach described earlier,

where the specific ReRAM layers can be embedded on-top of, or even in the middle of

standard fabrication processes.

Figure 4-3 Crossbar ReRAM Bitcell (a) Orthogonal Bitcell Layout (b) ReRAM
integration with CMOS Process Figure source (Crossbar Inc., 2018)

39

Table 4-1 summarizes the key performance metrics of Crossbar’s ReRAM array.

I will briefly go over each of these characteristics and compare with DRAM

performance where applicable. The bitcell area is competitive with a DRAM bitcell

and has the potential to achieve higher density with increased vertical scaling. Also, as

noted in the table, the bandwidth per array is 4-8 bits. Therefore, to provide sufficient

bandwidth to a single core, I envision several arrays that are distributed across the full-

chip and are accessed in ganged mode, in a Distributed Shared Memory-like

architecture.

Key Parameter Performance

Area 4-16 F
2

Bandwidth per array 4-8 bits

Read Latency 200-700 ns

Write Latency 1 us

Cell Leakage 0.1 nA/cell

Program Energy 10-100 pJ/cell

Endurance > 10
5
 – 10

8
 cycles

Retention > 7-10 years

Scaling Potential < 10 nm

Ron/Roff ratio 100

Selectivity (I @V
R
, V

R/2
) > 10

6
 - 10

10

Table 4-1 Crossbar 1S1R ReRAM Parameters

40

Some of the critical parameters that pose a device challenge for ReRAM

replacing DRAM as a main-memory are the latency and write endurance limits. Both

read and write latency times are much higher than typical DRAM times, with write

latency being especially much higher. The Ron/Roff ratio in the table is a characteristic

of the selector device engineered by Crossbar, Inc. The crossbar ReRAM bitcell has a

high Ron/Roff ratio over 100 to reduce sneak path currents from unselected cells and a

low cell leakage current.

The program energy per bit is also significantly higher than DRAM, and

consequently, the write endurance for ReRAM is expected to be around 10^5 – 10^8

cycles, which is much lower than that of DRAM, which is quoted to be above 10^15

write cycles. This is a critical device challenge to be overcome in order to replace

DRAM for typical applications. The flash memory bitcell, however, has a much lower

write endurance of 10,000 to 100,000 cycles. This low write-endurance is is managed

by wear-leveling techniques to minimize the number of write operations to any

particular cell, along with flash memory’s application consisting largely of read

operations. ReRAM has high scaling potential, however, and is expected to be scalable

below 10nm.

Crossbar ReRAM technology integrates with standard logic processes, is

stackable vertically for increased density, and has a 1-4F2 cell size, depending on the

41

number of stacks. Although not all ReRAM variations in development allow for this

assumption, the general direction of ReRAM is moving towards increased density by

utilizing vertical scaling and integration with logic-process compatibility. This type of

ReRAM is organized so that the bitcells are stacked on higher metal layers which are

shown in Figure 4-2 as M11, M12, as an example. The bitcell layout of the ReRAM

could be simplified as a cross-section of adjacent metal lines, whose intersection

determines the location of the resistive storage element. Figure 4-4shows the bitcell

layout in 45nm technology used for my area study. The ReRAM bitcell dimension I

am using for the array is 1.4(2*)2 which is 106nm x 106nm at 45nm technology.

Figure 4-4 45nm ReRAM bitcell

The peripheral support circuitry for the ReRAM to perform the address decode,

row and column selection, and sense amplifier read and verify circuits would be

implemented in the substrate using standard CMOS layers, such as the diffusion,

polysilicon, and some of the lower metal layers. Embedding these peripheral circuits

42

into a processor circuit would have an area cost and is one of the focus of my area study.

Processor circuits are implemented using an Auto-Place-and-Route (APR) tool. This

tool takes a high-level design description netlist, such as VHDL or Verilog synthesized

netlist, and places the standard cells in order to meet timing and minimum area goals.

For my area study, I assess the impact of embedding the ReRAM peripheral circuits

into a processor logic. In traditional digital implementation flow, I model these

peripheral circuits with a blockage layer to indicate to the APR tool that standard cells

may not be placed in this region.

Figure 4-5 shows the memory array organization that can be formed to group

together multiple arrays and provide sufficient data bandwidth. A single ReRAM array,

shown on the left in the figure, consists of bitcells arranged in several rows and columns.

A single horizontal row, referred to as wordline, is selected during a read or write access

by wordline (WL) decoders. Multiple columns, also called bitlines, are sensed through

a column multiplexer (MUX) which is often placed below the array. A sense amplifier

(SA) compares the current sensed on the selected bitlines against a reference current to

decide on the data read out. This is done for both read and write operations, as write-

operations often involve a verify step to ensure that the write pulse was able to

successfully place the cell to the desired state. As can be seen in the diagram, these

peripheral circuits form a L-shape on the side and bottom of the array.

43

The physical layout of four single arrays is grouped into a mat, shown in Figure

4-5 on the right. The four arrays are rotated so that their peripheral circuits are placed

next to each other. This organization allows for sharing of control signals between the

arrays during an access. The peripheral circuits make use front-end-of-line (FEOL)

layers, such as the ones needed to create the transistors (diffusion, polysilicon, contact),

as well as the lower metal layers to connect the CMOS logic together. The ReRAM

array itself only uses BEOL layers, and the area underneath is available for the CPU

logic, as I mentioned before.

Figure 4-5 Memory Organization

The ReRAM peripheral circuits are the blocked regions during the APR digital

implementation and form a “cross” shape of blocked region, and are indicated in Figure

4-5. Any CPU logic blocks need to either fit under one of the ReRAM arrays or need

44

to have a method for connecting between two ReRAM array locations. While the

blocked region specifies that no standard cells may be placed in that location, there can

be limited restriction on the interconnect routing over these blocked regions. The

specific metal layers that are blocked have significant impact on the routability of the

overall integrated design. Completely blocking all metal routing over the blockage

region necessitates any routing connections to go around the blocked regions results in

significant additional routing area overhead with an integrated design.

Figure 4-6 Via tap points from ReRAM metal layer to periphery circuits

Figure 4-6 describes the routing approach I assumed for my area study. The

figure shows the close up of the physical interconnection between wordlines and the

wordline decoder in the peripheral circuit region. The horizontal bars on the figure are

wordlines coming from the ReRAM array to connect to an individual wordline driver,

45

which is often the connected to a drain node on one or more transistors. Therefore, this

connection needs to be able to route the high-metal line of the wordline (for example,

from metal-layer 11) to the diffusion node of a transistor. This means that this

connection has to go through multiple metal-via taps to descent to metal-1, and then

connect to a diffusion contact. Having the CPU logic interconnection lines through this

region poses a potential conflict with this transition. Therefore, I have identified a way

in which an uninterrupted feed-through path could be allocated for the CPU logic

interconnections. This feed-through path allows for global signals to route between

standard-cell logic groups of the CPU logic circuit. The top-down view shows

staggered via tap points that allows for a routing channel for signals to feedthrough

across blocked region. This approach is scalable as the number of ReRAM stack

increases. With higher stacking, there would be more via tap connections that would

be needed. The blocked region could expand to accommodate a larger staggered

connection from the higher memory metal layers to the base transistors below.

4.2 CAD Methodology

In this section, I go over the tool flow methodology I followed to perform my

area assessment. Standard EDA tools are used for performing the area analysis of a co-

located ReRAM with a processor, as shown in

46

Figure 4-7. The tool-flow starts with a design netlist to be synthesized. In the

figure, this is indicated as RISC-V processor netlist in Verilog (.v) format, since my

study involved a RISC-V processor. This behavioral Verilog netist is synthesized by

Synopsys Design Compiler into physically realizable individual standard-cells selected

from a design library. The process design kit (PDK) I used for my study is based on

45nm process node and makes use of design library from Nangate. The synthesized

netlist (_syn.v) output from the synthesis step is input to Cadence Encounter is used for

the APR step of the flow to produce the final GDSII layout. This is used in conjunction

with specific limitations on the blockage to embed the ReRAM peripheral logic within

the processor layout.

I used the design collateral files from North Carolina State University’s (NCSU)

45nm process design kit (PDK). I also needed standard cell design libraries at this

technology node. I initially looked at using one provided by Oklahoma State

University (OSU). I chose the open-source Berkeley RISC-V VSCALE processor as

the core for studying the processor-memory area impacts. The synthesizable Verilog

netlist of the core is called VSCALE and uses a 32-bit instruction set with a single-issue

in-order 3-stage architecture. The resulting layout was 59,672 sq um and operated at a

maximum frequency of 150MHz.

47

Figure 4-7 Digital Implementation Tool Flow of an integrated ReRAM RISC-V

Processor tile.

The OSU library for the 45nm process only provided 32 standard-cells, which

may not provide sufficient diversity for optimum choice of standard-cells in terms of

area and performance. This could cause the digital implementation to be overly

pessimistic in terms of area and power, and not be representative of real PDKs available

when manufacturing. As a result, I explored utilizing an alternative open-source PDK

from Nangate based on the same 45nm PDK but containing a larger number (134) of

standard cells. I repeated the Synthesis and APR step on the VSCALE processor to

obtain an overall physical layout area of 30,373 sq um at 250MHz clock frequency,

which was over 50% area reduction observed with this design kit. I attribute this area

reduction to be due to sufficient diversity in the standard-cells available, which enabled

48

the digital implementation to select an optimum standard-cell instance to minimize area

and delay. I used this Nangate PDK to perform relative area comparison studies.

To mimic the integration constraints listed in the previous section, two types of

blockage layers are indicated in the Cadence Encounter setting. The first is for the

placement blockage to prevent standard cells from being placed, and the second is

routing blockage for the specific metal layers to limit routing. Based on our discussion

with Crossbar, prior ReRAM area measurements indicated that a 25% memory to

periphery area ratio is a reasonable approximation for the two-layer memory stack. I

used this guideline for allocation of the blockage area. For this second type of

constraint, I mimic the restricted metal routing described in the previous section by

blocking metal layers 1-8 and allowing for the APR tool to route through the blocked

region using metal 9 and 10. The ReRAM memory layers are assumed to be in metal

layers 11 and 12 above the standard CMOS layers. Rather than mimicking routing

feedthrough channels, this allows for global interconnection signals that need to

connect across the blocked region limited routing options. A summary of the blockage

settings and metal allocation for my design is also provided in Figure 4-7.

4.3 Single ReRAM Cluster Integration

My first objective was to integrate the VSCALE processor with a ReRAM

memory to create a processor-memory tile that could be laid out in an array, based on

49

application needs. To begin with, I measure the stand-alone area of the VSCALE

processor core alone. The synthesized netlist targeted an operating frequency of

150MHz with a total of 59,672 standard cells at the 45nm process technology (nominal

process, 1v, 27c). I used Cadence Encounter to perform the APR and generate the

layout for the core alone. My approach measures minimum feasible area by iteratively

reducing the floorplan dimension and checking for congestion, Design Rule Check

(DRC), and connectivity violations. If the floorplan area provided to perform the APR

step is too small, then the tool will not be able to place all the standard-cells, make

necessary connections, and meet the timing constraints imposed for the design. DRC

is a check that ensures that the physical layers are drawn to meet the lithography rules

of the process. Figure 4-8 shows the generated layout of the standalone core with

power-rings around the core and a power-strap in the center.

The VSCALE core with the 45nm PDK, the core area consumed 30,373 sq. um.

The dimensions of the floorplan are 172um x 172um. The generated layout includes

the necessary standard-cells to implement the function described, as well as the

interconnections in metal to make the connections. This PDK allows for 10 metal

layers and the standard-cells are covered almost entirely by the metal signal lines. The

APR tool typically uses even-odd metal routing, meaning that even metal layers are

used for one direction, for example vertical, and odd metal-layers are used for

50

horizontal location. This allows for efficient packing of a high number of metal

interconnects. The floorplan also includes the power-rings in metal 9 and metal-10,

and a metal-strap in the center of the core to allow for sufficient power supply bias.

Figure 4-8 Layout of VSCALE Processor Core

Next, I talk about how embedding a ReRAM memory within the standalone core

could be accomplished. As I indicated in Figure 4-5, a single array will require an L-

shaped peripheral region surrounding it and is expected to have a relatively low

bandwidth of 4-8 bits per array. In order to deliver reasonable bandwidth, I expect

these arrays to be grouped together, in a mat, to form banks of arrays to meet the data

51

bandwidth requirement in parallel. Physically, I chose these to be placed back-to-back

in order to form one contiguous blockage region for higher area utilization.

I created a physical layout of the integrated ReRAM peripheral circuit with the

VSCALE core using the above physical constraints as inputs to the Cadence Encounter

tool. For this experiment, I used 4 ReRAM arrays, each of size 75um x 75um, which

corresponds to a memory capacity of about 0.5MB for a 2-layer ReRAM stack. Note

that crossbar has demonstrated feasibility of scaling to 8-layers for the ReRAM stack.

Since the peripheral region takes 25% of the ReRAM area, this amounted to a total

blocked region of 5600 sq. um for this configuration. The minimum feasible area was

measured by iteratively creating a floorplan of smaller dimensions until the design is

successfully placed and routed without any DRC or connectivity violations.

Figure 4-9 shows the generated layout of the ReRAM peripheral circuits

embedded into a single VSCALE core. This layout only shows the standard-cell and

blockage region information. The center cross (in red) denotes the blockage region,

we’ve described to the APR to keep out the standard cell placements. The rows of

standard cells (in blue) surround the blockage region complete. As mentioned before,

the blockage region is specified for four of the L-shaped peripheral circuits arranged in

a Cross configuration for my physical design study. This configuration has the

52

advantage of allowing for I/O connectivity between the ReRAM memory and the

processor, as well as allowing for connection between the overall tile which would need

to communicate with other blocks.

Figure 4-9 Blockage Region for ReRAM Peripheral Circuits

Figure 4-10 shows the final integrated ReRAM-Processor layout with all of the

metal layers up to metal-8, excluding metal-9 and metal-10. Each of the red-square

represents a single ReRAM array. The standard-cells and metal lines surround the L-

shaped peripheral region, which is on the corner of each of the ReRAM arrays. The

ReRAM arrays themselves will use higher metal layers, above metal-10 in this process

node. This generated layout required the minimum floorplan area to meet the design

and performance constraints without violating the DRC and connectivity rules. The

53

dimensions of the layout are 200um x 200um, with the individual ReRAM arrays being

of size 75um x 75um.

Figure 4-10 Layout of an integrated ReRAM RISC-V Processor tile.

 Table 4-2 summarizes the measured area and the impact penalty of integrating

a single ReRAM cluster with a RISC-V processor. The total area of this integrated

design was 40,026 sq. um. Each ReRAM array’s area was 75um x 75um, with the total

ReRAM dimension being 150um x 150um. This allows for a total data storage for all

four ReRAM arrays of 244kB, assuming a 5.62 ReRAM cell per layer. For a 2-level

54

stack, this translates to 488kB of total storage. The total blocked region blocked for

the ReRAM’s peripheral circuit was 5600 sq. um, which is 25% of the total ReRAM

area of 22,500 sq um, in line with the expected overhead for a 2-layer ReRAM stack.

Table 4-2 Integration Results

After accounting for the peripheral blockage area and the actual standard-cell

logic area of the processor, the total integrated layout incurs an additional overhead of

~11.3% in the 45nm process. The area penalty from the integration is measured as the

difference between the total area of the integrated design and the sum of the VSCALE

processor area and the ReRAM blocked region. This area penalty is mainly attributed

to additional area needed for the routing of signals due to the blocked area in the center,

around which there would be a higher incidence of routing congestion. There is also

minor contribution due to additional filler cells incurred due to the larger overall area

55

of the block. Filler cells are needed periodically to provide tap connections to the n-

well and p-substrate from the power supply. This ensures that the body node of the

transistors is well-biased. A larger area, therefore, requires more of these tap

connections, increasing the overall area needed as well. This overhead is the area

penalty due to additional area required for routing and standard-cell placement

inefficiencies caused by noncontiguous regions available for the processor.

4.4 Multiple ReRAM Cluster Integration

Due to the small number of bits that each array outputs, about 4-8 bits/array, I

expect many ReRAM arrays are tiled across the chip to form mats. These mats are

accessed in a ganged mode to provide sufficient bandwidth. To study the area impact

of such an approach, I studied the impact of multiple ReRAM arrays integrated into a

single core, as illustrated in Figure 4-11.

56

Figure 4-11 Embedding Multiple ReRAM Mat Clusters within a Larger
Processor

The previous area study used a single ReRAM array to fit within the VSCALE

core. VSCALE is a 32-bit integer core and is not representative of realistic cores which

tend to be larger and more complex. To correspondingly increase the core size, I scaled

the VSCALE processor’s data path from 32-bit to 256-bit. Figure 4-12 below shows

the scaled 256-bit VSCALE processor without any embedded ReRAM. The minimum

generated layout had a floorplan dimension of 533um by 533um and an area of 284,077

sq. um at the 45nm technology node using the FreePDK based Nangate standard cell

57

library. This larger core allows us to integrate multiple ReRAM mats into the VSCALE

design.

Figure 4-12 Scaled 256-bit VSCALE Processor Layout

Using the larger 256-bit VSCALE processor, I studied the impact of embedding

four of the mat clusters within them in a 2x2 tile pattern. For the ReRAM array size, I

aimed for an array of 1000 x 1000 matrix, and therefore used an array size of

109umx109um, making the mat size to be 218um x 218um. This size allowed us to

tile the 2x2 mat within the 256-bit VSCALE processor for the purpose of my study. I

iteratively varied the inter-tile cluster spacing to obtain the optimum spacing for

minimum overall area for a range of tile spacings from 50um to 400um. The minimum

58

area for each spacing parameter was found by iteratively reducing the floorplan

dimension to check for feasibility.

Figure 4-13. below illustrates the floor planning result at the extremes of the

inter-tile spacing when embedding ReRAM clusters within a larger circuit. If there is

not sufficient spacing between the ReRAM peripheral circuit’s blocked regions, then

network congestion occurs when the processor blocks are being placed between them

which cannot be resolved by the APR. On the other hand, if the spacing is too far apart,

the entire generated layout can fit between the tiles resulting in large unused spaces.

This can be seen Figure 4-13(a), which has an inter-crossbar spacing of 300um, and an

overall chip dimension of 750um x 750um. Figure 4-13(b) shows the minimum area

configuration for an inter-crossbar distance of 50um and a specified floorplan

dimension of 750um x 650um (width x height). Note that it might be possible to

optimize this layout manually and utilizing the areas in the corner to overcome this,

however manual layout is beyond the scope of my initial area study.

59

(a) Spacing too large (b) Mat spacing too close

Figure 4-13 Inter-Mat ReRAM Array Spacing causing Inefficient Layout

 Figure 4-14 shows one of the generated layouts with four clusters of ReRAM

arrays tiled and embedded within a 256-bit scaled VSCALE version. This layout shows

the minimum area possible for an inter-mat spacing of 200um. There are four ReRAM

mats, with each mat consisting of 4 arrays themselves. The total number of ReRAM

arrays in this layout is 16, each of which follows the dimensions in the previous section.

The design was obtained by iteratively reducing the overall floorplan size until the APR

generated the layout successfully for this specific inter-tile spacing. The APR tool itself

attempts 10 iterations by default to optimize the signal routing to meet the timing spec

60

in the minimum possible area. Once the connectivity is verified, the DRC checks are

performed to ensure that none of the physical design rules are violated.

Figure 4-14 Multiple ReRAM clusters integrated with a 256-bit RISC-V
Processor

The iterative process of finding the minimum area was repeated for a range of

inter-mat spacing from 50um to 400um and the results are presented in Table 4-3. The

minimum width represents the width of the minimum design, considering the width of

61

the combined ReRAM MAT widths, and the width of the spacing. The ReRAM mat

dimension is 218um x 218um, as I mentioned earlier. For example, at an inter-mat

spacing of 25um, the minimum width would be 2*218um+25um=461um. The

minimum area therefore would be square of 461, or 212,521 sq um. This type of

floorplan would have no spacing on the outer edge of the array and therefore is not a

feasible design. The chip area denotes the actual minimum floorplan area to realize the

processor-ReRAM integrated design.

Inter tile
spacing (um)

25 50 100 150 200 300 400

Min width
(um)

461 486 536 586 636 736 836

min area
(sq um)

212521 236196 287296 343396 404496 541696 698896

chip area
(sq um)

562500 487500 390000 390000 422500 562500 722500

stdcells only
(sq um)

223365 221981 221697 222471 221997 221465 221632

stdcell area
(sq um)

516402 441178 343797 343797 376257 516256 677012

stdcell
efficiency

39.71% 45.53% 56.85% 57.04% 52.54% 39.37% 30.68%

array area 190096 190096 190096 190096 190096 190096 190096
array
efficiency

33.79% 38.99% 48.74% 48.74% 44.99% 33.79% 26.31%

% penalty 0.71 0.49 0.19 0.19 0.29 0.71 1.20

Table 4-3 Summary of Inter-Mat Spacing on Area and Efficiency

The stdcells-only row lists the raw standard-cells area reported from the

synthesis tool, while the stdcell-area row lists the measured std-cell area from the APR

62

tool, to include the additional area needed for routing. As can be seen on the results,

this is often double of the raw standard-cell area. The stdcell efficiency reports the area

occupied by the std-cell over the overall floorplan area and is intended to be a metric

of how much usable space was devoted for the processor logic. At the optimum spacing

of 100um or 150um, I see the standard cell efficiency being close to 60%.

The array area row denotes the total ReRAM array area that are used within the

floorplan. Note that most of this array area makes use of higher-metal lines that don’t

coincide with the lower layers. As a result, there can be a high amount of overlap

between the stdcell and the ReRAM array area. This is reflected in the results that

show that at the optimum inter-mat spacing of 100um, the array efficiency is close to

50%. The final parameter, % penalty, denotes the additional area incurred from the

integrated ReRAM-Processor system. For the four MAT, the total area of the peripheral

region incurred 44,172 sq um. This is in-line with the 25% guideline that I followed

for the array-to-peripheral area ratio. The table results indicate that the optimum

configuration has a penalty of 19%.

The plots presented below in Figure 4-15 show the results of the optimal spacing

and minimum area as a function of the inter-crossbar spacing. The x-axis lists the inter-

tile spacing of the ReRAM mat blocks varying from 25um to 400um. Note that this

63

spacing is uniformly applied between all of the MAT blocks. The y-axis in the first

figure shows the area in sq mm.

Figure 4-15 Impact of Inter-MAT ReRAM cross spacing on Area

The min-area, as described earlier, lists the theoretical limit on the minimum

feasible floorplan, considering the spacing between the MAT blocks and the sizes of

the MAT blocks themselves. The chip area line denotes the minimum successfully

generated layout by the APR tool, given the timing constraints. I see that at large inter-

tile spacing for the MAT blocks, the realized design is close to the theoretical limit.

This is because the spacing between the MAT blocks is so large, that the entire design

64

is able to fit within the inside of the MAT arrays, similar to the design indicated in

Figure 3 12(a).

Figure 4-16 shows the impact of inter-mat spacing of the ReRAM blocks on the

array and standard cell efficiency. The x-axis varies the inter-mat spacing and the y-

axis reports the efficiency and penalty numbers as a percentage.

Figure 4-16 Impact of Inter-MAT ReRAM cross spacing on Efficiency

 The standard-cell efficiency peaks at 57% at the optimum spacing of 150um.

The ReRAM peripheral logic area occupies a total of 44,172 sq um, which accounts for

11.3% of the total design area of 390,000 sq um. The power rings surrounding the

floorplan also consume some area, approximately 13%. The remaining area numbers

65

could be accounted for filler cells, and unused standard-cells at the corner of the

floorplans. Since the area study is done in increments of 50um, a finer step might

indicate a lower feasible design than identified.

On the ReRAM array side, the efficiency peaks at 49%. The limitation on the

ReRAM side preventing the array from completely covering the provided area is the

peripheral circuits that align with each row and column. Completely covering the array

would mean that these peripheral circuits extend all the way to the end of the floorplan,

severely limiting the signal interconnections across the blocked regions. While the

inter-tile spacing dictates the spacing between the mat blocks, the overall floorplan

dimension dictates the spacing from the boundary of the design to the edge of the

peripheral region.

The third curve in fig shows the area penalty of integrating the two design blocks.

The area penalty is calculated by subtracting total design area from the individual

processor and ReRAM peripheral block area. This penalty accounts for the cost of

disrupting the processor floorplan area with a ReRAM peripheral block, largely due to

additional routing for signals between standard cell groups, with possible routing

around blockage regions.

To summarize, the results show that an optimum inter-ReRAM spacing exists

to maximize area efficiency at close to 50%. At 45nm, with my design configuration,

66

the optimum inter- spacing is 100um to 150um. Larger spacing (> 200um) leads to

inefficiency from unused synthesized areas (empty space) while smaller spacing

(<100um) leads to inefficiency from routing congestion between standard cell groups.

The optimum spacing produced a peak array efficiency of 50%, with around 20% area

overhead penalty for this configuration. For alternative configurations, the specific

optimal point could be affected by the relative size of the processor and the blocked

region due to the ReRAM array and would be worth investigating this relationship in a

future study.

The 256-bit VSCALE extrapolation only scales the data path portion of the

processor and will not model impacts of the control path of a more complex, realistic

processor. However, I am only interested in the impact of routing congestion from a

larger processor. For this purpose, extrapolating the data path is likely to have a higher

impact on the generated layout rather than from a more complex control path. This is

because I believe while complex control circuits might require more interconnects,

these connections would be spatially local. On the other hand, data-path connections

typically tend to span over longer distances to connect between subblocks. Therefore,

I believe the area impact results would be a conservative indication of more realistic

processor.

67

The total consumed area for the optimum layout was 0.4 sq. mm, with a total

ReRAM data storage of 4MB for a 2-level stack, for all four clusters combined. The

implementation shows a 2x2 array of ReRAM crosses integrated with a 256-bit integer

RISC-V processor. Using a ReRAM array of size 109um x 109um, the total ReRAM

data storage realized would be 4MB at 45nm process node.

Extrapolating these results to an 8-layer stack would create a 16MB ReRAM

memory integrated into the ReRAM-CPU tile with an area of 0.4 mm2. For a 400 mm2

die size, the above ReRAM array could be tiled 1000 times across the chip, to produce

a total storage capacity of 16GB ReRAM. Because an 8-layer stack would require

additional peripheral circuits to decode the wordline per stack and/or higher current

driving transistors, the number of cores will be scaled down. At the 16nm process,

assuming a 10x reduction in area, a 400 mm2 chip should be capable of delivering

160GB ReRAM storage with logic underneath assuming a 50% area efficiency.

Appendix A: Cadence Encounter Command File contains the final Cadence

Encounter command file used to specify the blockage settings and perform the APR to

generate the layout.

68

4.5 SRAM-ReRAM Integrations

One other configuration of interest is integrating an SRAM memory array

underneath the ReRAM memory. The motivation for this is an SRAM array that would

function as a write-back cache to an ReRAM main-memory so that the impact of

ReRAM write latency, which is on the order of 1us, could be minimized. For my study,

I have selected an open-source academic memory compiler, called OpenRAM [6],

created by UC Santa Cruz and OSU. This tool includes SRAM leaf cells for the 45nm

process using the same FreePDK45 design kit used by my standard-cell logic.

The SRAM bitcell used by the OpenRAM library at the 45nm node is shown in

Figure 4-17 and compared with a 45nm ReRAM cell, which is close to 100 times

smaller. The left side of the figure shows the ReRAM bitcell layout modeled as a cross-

section of two metal layers, with a bitcell size of 5.6*Feature2. At 45nm technology,

this translates to 106nm x 106nm per bit. The right side of the figure shows the bitcell

leaf-cell from the OpenRAM library provided by UC Santa Cruz and Oklahoma State

University at 45nm. The bitcell dimensions are 0.707um x 1.344um and is composed

of the conventional 6-transistor design. Since the academic version of the SRAM

bitcell can be 2.5x larger than commercial version, I can expect the difference between

the ReRAM and SRAM bitcells to be closer to 35x larger. Industry SRAM bitcells are

optimized for the specific process they are to be fabricated in, and therefore have special

69

SRAM DRC rules that allow the pitch of the metal and base layers to be drawn closer

than for regular logic, due to the regularity of the lithography pattern.

Figure 4-17 – Bitcell Relative Sizes at 45nm

Figure 4-18 shows the generated memory array bitcells (a) and the complete

generated memory (b) in the 45nm technology. Figure 4-18 (a) shows the regular

structure of two SRAM bitcell rows. The generated memory contains 128 rows and

256 columns and has a storage capacity of 4kB. The total area for the SRAM memory

is 194.1um by 207.86um.

70

(a)

(b)

Figure 4-18 - OpenRAM 45nm (a) Generated Bitcell Array (b) SRAM

Figure 4-19 shows four SRAM arrays placed together with four ReRAM array

on top. The SRAM arrays are rotated to allow for the I/O ports of the SRAM to be

accessed externally and not conflict with the central control region of the ReRAM array.

71

Figure 4-19 ReRAM Integrated with SRAM memory

The total SRAM capacity in this instance is 16kB (4kB each SRAM) with a total

layout area of 211,725 sq. mm. I have drawn the SRAM arrays rotated to allow for

their I/O ports on outside of tiles. The four ReRAM arrays each are drawn as a 115um

x 115um array, with a total data storage of 1.1 MB for a 2-level ReRAM stack, with

potential to scale to multiple layers based on fabrication capability.

Compared to the ReRAM-CPU layout, SRAM’s array region would largely be

limited to the lower metal layers (below metal-4). Therefore, ReRAM I/O connections

can be made on the higher regions without difficulty. Also, because the four SRAM

72

arrays are independent blocks, there is no need for the signal feedthroughs on the

peripheral blockage regions, which makes this a more straightforward implementation.

4.6 Memory Architecture Calculator (MAC)

My next plan with regards to the physical design study was to use the area

overhead numbers obtained to create a rough estimator on the die size, while being

integrated with different processor types. Since I are considering a tile-based

architecture, I looked at existing commercial and academic processors that have

multiple-cores that could be adopted in such a way.

I considered four processor types for the study:

1. Raven-3 RISC-V processor with 56kB L1 cache per core

2. Fujitsu Sparc64 XII processor with 128kB L1 cache per core

3. Intel Skylake-X processor with 64kB L1 cache per core

4. Intel Xeon Phi (Knights Landing) with 32kB L1 cache per core

My target process node for my in-house calculator was 16nm. I extrapolated

the area per core based on die-size measurements to estimate the per-core area for each

of the processors at 16nm. They are listed in Table 4-4. Each of the different provide

different functionality targeting their specific application, and consequently the area per

73

core varies based on the complexity. This is reflected in the peak performance results

listed for each processor.

Processor Area per
core

[mm2]

Avg Power
per core

[W]

Peak
Performance

[GFLOPS]

Power
Efficiency

[GFLOPS/W]

RISC-V 0.55 0.17 6 34

Sparc64 5.02 24.5 448 1.14

Intel Skylake 16.9 9.17 1152 6.98

Intel Xeon Phi 3.13 3.61 3456 13.29

Table 4-4 Area, Power, and Performance comparison of Processors

I created a web based Monolithic Architecture Calculator (MAC) using

JavaScript to provide rough estimates on what can "fit" in each chip dimension. Figure

4-20 has a screen-capture of the MAC interface.

Figure 4-20 MAC JavaScript Architectural Area Estimator

74

This can be used to assess architectural tradeoffs with various design options on

a Monolithic Memory-Processors System and have the specific instance count of the

different processor and memory controller. Users can specify cache size and number

of memory controllers on a 2D mesh NoC topology. The left-side of the frame is the

user-input, and the right-side summarizes the resulting characteristic of the chip based

on the parameters shown, when the user clicks on “CALCULATE”. User selects the

type of main-memory (ReRAM or DRAM), the die-size, the processor type. The user

also can select the ratio of area allocated between core and cache. The default value

shown of 0.85 specifies 85% allocated for the processor area with 15% reserved for the

SRAM cache area. The user can also specify the number of memory controllers, which

can be an iterative process based on the number of processors that can fit. The example

shown has a core processor to memory controller ratio of 1:1.

Appendix B: MAC Javascript Source Code has the complete JavaScript source

code for the MAC.

75

4.7 Alternative Floorplan arrangements (L, Crossbar, Fractal design)

In this chapter, I analyze 3D floor planning options on how to partition the

different blocks and I/O placement to minimize routing congestion and performance.

The previous experiment showed that integrating with a cross like connection

in the middle of a processor logic limits the overall array efficiency of the chip. Here

I am trading off the ability to connect to several discrete ReRAM memories locally to

processor tiles to provide high bandwidth. As an alternate, if memory capacity is of

prime importance, there is a way to approach near 100% array efficiency by utilizing

an L-shape for the overall memory.

The floorplan shown in Figure 4-21 shows a 3-instance grouping of VSCALE

processors (Single issue 3-stage in-order 32-bit integer RISC-V processor) underneath

a 1MB 2-layer stack ReRAM memory in the 45nm process, as the previous section.

The APR layout area APR area without ReRAM came out to be 304um x 304um =

92,712 sq. um, while adding this L-shaped ReRAM floorplan increased the area to

320um x 320um = 102,400 sq. um. This shows a negligible area overhead penalty

from incorporating ReRAM in this way: 102.4k/ (92.4k + 11k) = ~1, i.e., no increase

in area. I attribute this to the fact that since the available area for performing the APR

is contiguous, no additional routing area needed.

76

Figure 4-21 ReRAM with 3-core VSCALE processor

Depending on the array and processor size, each tile could be a self-contained

core along with a memory, as shown in Figure 4-22. A small region between the tiles

could be used for inter-tile routing channels and for network-on-chip (NoC) signals.

However, there is a limitation in the ReRAM array size being too large, as this increases

the read and write latency of the memory.

77

Figure 4-22 Independent Core with ReRAM block

Therefore, for designs that can tolerate a single interface point, it is possible to

achieve a much higher array efficiency for the chip by placing the memory peripheral

circuit alongside two edges of the chip. This ensures that maximum contiguous area is

available for the APR tool.

With the motivation of having ReRAM integrate with a tiled processor, there

are two floorplan options available based on the communication needs. In the case of

a star network topology, the fractal design shown in Figure 4-23(a) allows for every

ReRAM + Processor tile to be connected through the central node to any other tile. By

not closing off the fourth tile, interconnection congestion would be prevented. This type

78

of topology would typically be used in a server-client type of system with a need of

central network connection.

Figure 4-23 Alternative ReRAM-Processor integration floorplans showing (a)
Fractal approach for Star topologies and (b) Mesh approach for mini-core

parallel architectures

As an alternate, consider the massively parallel multi-processor approach where

each individual tile consists of a modest processor coupled with local memory to

provide higher power efficiency for certain tasks. These typically adopt a mesh-

architecture topology where the interconnect communication is handled by a separate

NoC (network-on-chip) control circuit. Figure 4-23(b) shows a possible approach of

how this type of chip could be implemented with the ReRAM tiles.

4.8 Conclusion

Three observations are of note with the results obtained so far. First, I have

shown that by making minor modifications to established standard tool flows, it is

79

feasible to create a hybrid chip utilizing ReRAM, logic, and embedded SRAM blocks.

Second, ReRAM density with respect to SRAM is quite favorable, especially using the

2-layer stack implementation. In the case of the core, floorplan results indicate that I

can integrate the peripheral logic with minimal area penalty, while gaining the ability

to create an integrated processor-memory system. Finally, I gave an overview of

alternate floorplans arrangements that maybe suitable for specific applications that

align with the memory access pattern.

80

5 ReRAM Device-Level Research Study

Based on my previous study, we believe that emerging memory technologies

such as ReRAM that can be integrated onto standard CMOS processes have a

significant advantage in replacing conventional DRAM as main-memory systems.

These memory systems provide highly parallel, low granularity memory systems that

support graph algorithms that are critical for machine learning and data science

applications. In this section, I cover the research study that addresses the challenges at

the device-level.

5.1 Motivation

ReRAM’s high write energy and write latency requirements, along with lower

write endurance, are key device-level challenges to be overcome when compared with

existing DRAM solutions. The higher write energy requirement for ReRAM (when

compared with DRAM) comes from the need to induce a physical change for storing

Non-Volatile data. The data-retention time typically targeted for Non-Volatile ReRAM

81

is typically around 10 years. However, ReRAM for Main-Memory applications do not

necessarily require non-volatility of data. Current DRAM solutions store the memory

for a few milliseconds before a refresh operation rewrites the data to preserve them

indefinitely, as long as the power supply to the chip is supplied. I propose that if I

reduce the data-retention requirement from 10 years to a much shorter time scale (for

example: 100 seconds), it can be possible to use a lower write energy during the

program operation. This lower data retention bitcell could be augmented with a

periodic refresh so that the data would be rewritten.

Several prior work on ReRAM for neuromorphic applications, have

demonstrated the switching between volatile and non-volatile states of these materials

to mimic Spike-Timing Dependent Plasticity (STDP) [17-21]. For example, previous

work by Shi, etc. [21] using Hexagonal Boron Nitride (h-BN) stacks-based ReRAM

has shown switching behavior between volatile and non-volatile states. There was an

observed “Self-Recovered region” which was an intermediate region between High and

Low electrical stress which induced a time delay before “resetting” of carbon filaments

once the stress was removed. I am not aware of anyone who is intentionally using the

plasticity of ReRAM as a temporary memory storage device in order to exploit it for

Main-Memory or DRAM replacement uses.

82

Based on reported characterization data for neuromorphic applications, there

exists an intermediate region between high and low electrical stress where the memory

retains the data for a much shorter time, but also has a lower electrical stress

requirement. This translates to a lower electrical voltage or current applied to the cell,

and/or for a shorter time. My approach is to use these materials in an intermediate

region between volatile and non-volatile state where the data is retained for a much

shorter time than is typically expected for non-volatile memory. In this intermediate

region, based on the electrical stress applied, the conductive filaments remain for a

shorter period, after which, the metal ions migrate back to the electrodes, relaxing the

cell’s state. Also, because this intermediate region requires less electrical stress than

the non-volatile state, this translates to a lower write-latency, and/or lower program

current/voltage to write to the cell. Additionally, this would also alleviate the

requirement for a higher-voltage supply and corresponding charge pump circuitry to be

included on the chip. This would make ReRAM-Processor integration more feasible

for general applications, and not just read-heavy applications.

5.2 Fabrication Approach

 Figure 5-1 shows an example of a Resistive Memory stack with two layers of

metal-oxide region for the resistive-switching. This figure represents a cross-section

of a ReRAM bitcell and exposes the material composition used to form the bitcell stack.

83

At the bottom of the stack, is a metal electrode formed with Platinum (Pt). The resistive

switching element is composed of two materials – an Aluminum Oxide (Al2O3) and

Titanium Oxide (TiO2). Closing out at the top of the ReRAM stack are two metal

electrodes – a Titanium (Ti) layer, and a Platinum (Pt) top electrode layer. This entire

stack could be fabricated on top of substrate or on top of metal, depending on the

process flow.

Figure 5-1 ReRAM Metal Stack

This ReRAM stack shown in the figure is one possible implementation of

ReRAM that prior literature has shown to display the short-term plasticity. Using such

a device, one possible scenario is that the data could be loaded into ReRAM from

storage and allow for the computations to take place on the data for a set duration. After

this set period, ReRAM data would be reloaded back from storage or refreshed from

84

ReRAM itself periodically, similar to what is done for DRAM memory. Alternate

operation modes could also be introduced that allow for varying levels of persistence

of memory depending on the level of write energy applied.

Oxide based ReRAM is attractive as the underlying metal insulator–metal

structure is simple, compact and CMOS-compatible. Also, these materials have been

observed to provide multi-level behavior and results in bipolar, asymmetric structure

which follows the ionic migration model of the STDP behavior. Based on my literature

survey, the following were identified as possible candidates for the ReRAM stack:

1. HfOx-based RRAM: TiN/HfO2/Ti/TiN, TiN/HfO2/Mg/W

2. Pt/Ta2O5-x/W

3. Ta/TaOx/TiO2/Ti

4. Ti/AlOx/ TiN

5. Au/Ti/h-BN/Cu

6. Pt/Al2O3/TiO2/Ti/Pt

All of the above have been observed to provide multi-level behavior and results

in bipolar, asymmetric structure which follows the ionic migration model of the STDP

behavior. Based on discussions with the UMD Nanofab lab, our universities’ in-house

fabrication and device testing facility, the final ReRAM stack combination

Pt/Al2O3/TiO2/Ti/Pt was feasible option and I chose to fabricate this stack, as shown

in Figure 5-1.

85

The process outline for fabricating the ReRAM device for the

Pt/Al2O3/TiO2/Ti/Pt metal stack is as follows:

1. Start with 4” silicon wafers covered by 200nm of Thermal SiO2

2. Perform Standard Clean and Rinse

3. Form Bottom Electrode: Physical Vapor Deposition (PVD) of Platinum=Pt
(60nm)

4. PVD of 5-nm Al2O3

5. PVD of 30-nm TiO2

6. PVD of 15nm Ti

7. Complete with Top Electrode: PVD of 60nm Pt

I used the following shadow-mask configuration as my initial fabrication, which

allows us to create the masks manually, without requiring an external mask supplier.

Figure 5-2 shows the initial ReRAM devices that I planned to fabricate. The devices

will be on the range of 6mm for proof of concept. The figure on the left shows the top-

down view of a 4” wafer with six devices of varying sizes, each having two probe points

for the top and bottom electrode. Note that these devices are the resistive switching

element alone and does not include the select device needed in an array to control

unselected cells’ leakage current. The figure on the right shows a 3D view of the

ReRAM stack and the connection to the bottom electrode plate in Platinum. The

marked spots denote the location of the probe landings for my characterization

measurements. The exact dimensions of the devices are provided in the next section

86

which goes over the fabrication approach in detail. Based on my understanding of the

resistive filament creation, I believe that the filament width will be localized and limited

based on the current and electrical stress applied. Therefore, the shortest path through

the oxide layers will limit the width of the filament.

Figure 5-2 UMD ReRAM Device Fabrication

The configuration in Figure 5-2 shows six discrete ReRAM devices that will be

fabricated. The top and bottom electrodes will be connected to test-probes to apply the

stress and measure the resistance of the path. My characterization plan is to study the

relationship between the resistance state of the device, data-retention time, and the

electrical stress applied. The nature of the electrical stress is a combination of many

parameters:

87

 Current Limitation (CL) – The program or write pulse can be controlled to not

exceed above a set current-limitation point. This prevents the cell and write-

path circuits from being exposed to excessively high amounts of current and

being damaged.

 Pulse Height (voltage) – The program operation involves applying a voltage at

a certain amplitude.

 Pulse Length (time) – The duration or the width of the write pulse applied.

 Pulse Period (time between pulses) – Certain write operations involve applying

multiple write pulses in succession to move the placement of the resistance state.

This induces the filament to be formed gradually and helps in avoiding over-

setting the bitcell.

5.3 Mask Generation

For the test devices, I use two masks to create the pattern needed, as shown in

Figure 5-3 below. The figure shows the top-down view of the masks used for the

fabrication. The combined overlay of the two masks is shown in Figure 5-3 (a). One

rectangular mask is used for the bottom electrode (Pt), which is Mask-1 in Figure 5-3

(b). Mask 2 in the figure is composed of a circular opening for the oxide layers and the

88

top electrodes (Al2O3/TiO2/Ti/Pt). A small alignment mark is placed on the top-right

corner to help with the positioning of the second mask.

(a) Overlay of Masks (b) Two masks used for device fabrication

Figure 5-3 Mask Configuration

I ordered 4” (100mm) Si wafers with the <100> orientation from University

Wafers to create my test ReRAM device structures on using Physical Vapor Deposition.

I initially used a 3D-printer to print a polymer mask to check for alignment and confirm

with UMD’s fab-lab staff, shown below on the left. Ultimaker Cura software (v 3.6.0)

was used to create the stereolithography file (.STL) CAD descriptions for the two

masks. The masks were printed on a Creality 3D CR-10s printer using PLA, with a

mask thickness of 0.5mm. Figure 5-4 shows the Cura generated mask file (a) and the

prototype 3d-printed mask (b).

For the final mask, I decided to create the devices with different sizes to study

the impact, and also changed the alignment marks to a circle (from a cross) to make it

easier to create the mask. Figure 5-4 shows the final mask configuration I used to create

89

the hard metal mask. Due to the higher temperature to which the mask would be

exposed during the PVD process and the low resolution of the features (order of mm),

I decided to use an Aluminum Shadow Mask for the features. I ordered 6061

Aluminum sheets (0.063” thick) from McMaster Carr.

(a) Cura 3D-Model of Mask Prototype

(b) 3D printed PLA mask prototype (c) Final Mask Configuration

Figure 5-4 Mask Prototype Creation

90

University of Maryland has an iReap Machine Lab with a ProtoTRAK SMX

milling station which I used to cut the features and create the mask. The dimensions

input for the first and second mask are given below. There are six devices of varying

dimensions that were fabricated. The milling tool has the option to cut geometric

shapes with specified location and dimensions.

For my mask generation, I used the circle and rectangle pattern to input the

features to be drawn shown in Figure 5-5. For both masks the lower-left (LL) and the

upper-right (UR) alignment marks were drawn as circles, which is an easier geometry

to draw. The Xo and Yo indicates the origin of the feature, which is the center for a

circle and the lower-left and upper-right coordinates for a rectangle. Mask 2 specifies

the actual location and dimension of the ReRAM stack. The bitcell diameters used are

two devices of 5.94mm, three devices of 7.56mm, and one device of 14.04mm.

91

Figure 5-5 Final Mask Configurations for Mask 1 (left) and Mask 2 (right)

Table 5-1 lists the dimensions and coordinates used to specify the location of

the features that were input into the milling tool for the two masks. With respect to the

center point of the mask, the respective X and Y coordinates for the different features

are explicitly specified. The dimensions for the circle that would be encompass the

ReRAM stack are also specified in the diameter parameter.

92

Xo Yo Mask 1 Features

-38 21

LL alignment mark,
Circle diameter = 7.56

26 -34

UR alignment mark,
Circle diameter = 7.56

-14 -28 LL coord Rectangle 1

13 -42 UR coord Rectangle 1

-38 6 LL coord Rectangle 2

-24 -21 UR coord Rectangle 2

-13 5 LL coord Rectangle 3

1 -22 UR coord Rectangle 3

13 -10 LL coord Rectangle 4

34 -21 UR coord Rectangle 4

13 6 LL coord Rectangle 5

34 -6 UR coord Rectangle 5

-25 39 LL coord Rectangle 6

23 13 UR coord Rectangle 6

Table 5-1 Mask Feature Specifications

The pictures below in Figure 5-6 (a) show the ProtoTrak SMX milling station

which allows the features’ coordinates and dimensions to be input. Figure 5-6 (b)

shows the features being cut into the aluminum sheet. Figure 5-6 (c) shows the final

two masks after the cut, with them overlaid on top of each other using the alignment

marks in Figure 5-6 (d). The edges of the masks were deburred to smooth them out.

Xo Yo Mask 2 Features

-38 21

LL alignment mark,
Circle diameter = 7.56

26 -34

UR alignment mark,
Circle diameter = 7.56

-7 -36 Circle 1, diameter = 7.56

19 -15 Circle 2, diameter = 5.94

-32 -1 Circle 3, diameter = 7.56

-6 -2 Circle 4, diameter = 7.56

18 0 Circle 5, diameter = 5.94

-12 26 Circle 6, diameter = 14.04

93

Figure 5-6 Mask Fabrication clockwise from top: (a) ProtoTRAK SMX Milling
Station (b) Sheet Mask being cut (c) Finished mask set (d) Finished Mask Set

overlaid

These two masks fabricated create the rectangular bottom electrode and the

circular metal-oxide ReRAM stack along with the top-electrode. My process used

Platinum and Titanium for the metal electrodes and Aluminum-Oxide and Titanium-

Oxide for the metal-oxide stack. I used UMD's Physical-Vapor-Deposition chamber to

sputter the materials to the areas, which is a feasible approach due to the larger

dimensions of these devices.

94

5.4 Device Fabrication

 I worked with UMD’s nanofab lab to fabricate the Pt/Al2O3/TiO2/Ti/Pt ReRAM

devices on the 4” (100mm) wafer using the aluminum masks I had previously milled.

As mentioned before, my motivation is to study the use of ReRAM devices in an

intermediate region between volatile and non-volatile state where the data is retained

for a much shorter time than is typically expected for non-volatile memory. In this

intermediate region, based on the electrical stress applied, the conductive filaments

remain for a shorter period, after which, the metal ions migrate back to the fill the

oxygen vacancies in the filament, relaxing the cell’s state. Also, because this

intermediate region requires less electrical stress than the non-volatile state, this

translates to a lower write-latency, and/or lower program current/voltage to write to the

cell.

The process outline for my device fabrication is shown in Figure 5-7. Figure

5-7(a) shows the initial SiO2 deposited onto the silicon substrate. I used 4” (100mm)

Si wafers covered by 200nm of Thermal SiO2. Fabrication of the devices was

performed using Physical Vapor Deposition (PVD). First, the bottom electrode was

formed of 60nm Platinum using the first mask (rectangular base), as shown in Figure

5-7(b). Then, the metal-oxide layers and the top-electrodes were deposited using the

95

second mask (circular). The thickness used were 5nm Al2O3, 30nm TiO2, 15nm Ti,

and 60nm Pt for the top electrode, as shown in Figure 5-7(c).

Figure 5-7 Fabrication flow for Pt/Al2O3/TiO2/Ti/Pt ReRAM structures (a)
Thermal SiO2 (b) Mask 1: PVD of bottom electrode (c) Mask 2: PVD of ReRAM

stack and top electrode

The material deposition was performed using the Denton Ebeam/thermal

evaporator. Figure 5-8 shows the PVD chamber setup used for the fabrication. On the

lower half of the chamber, shown in Figure 5-8(a), the E-Beam is generated and

directed to the crucible. The material to be sputtered is placed in the crucible and

magnets on the side of the chamber are used to direct the E-Beam towards the crucible.

The chamber is brought to a low-pressure environment to accelerate the conditions for

evaporation. A shutter resides over the crucible preventing any early evaporated

material from reaching the wafer, which is mounted on the upper half of the chamber.

A mirror mounted on the sidewall of the chamber allows for the material in the crucible

to be observed through a window, to ensure that the material has evaporated. Figure

5-8(b) shows the upper half of the PVD chamber. The wafer along with a hard-mask

96

is mounted onto the wafer-clamp facing the crucible (upside down). A sensor to the

side of the wafer clamp is used to measure the amount of deposited material, which is

used to calculate the thickness of the material deposited.

Figure 5-8 – (a) PVD chamber used for fabrication (b) Fabricated test wafer of
discrete devices with probe measurements

For Platinum, the evaporation temperature is 1768 deg-C (3214 deg-F). My

fabrication process began with loading the Denton E-Beam/Thermal evaporator with

the materials in the crucibles (see Figure 5-9 below).

97

Figure 5-9 - Crucible materials into PVD Chamber

 After cleaning the hard aluminum mask with Isopropyl Alcohol (IPA) to wipe

down any debris, the mask was clamped onto a wafer and mounted to the chamber.

Figure 5-10 shows the wafer clamped with the first mask and the platinum, which is

the bottom electrode, being deposit onto the wafer. The two-circular alignment

markers can be seen in the corners of the wafer. This is used as reference when

clamping the second mask onto this wafer.

Figure 5-10 – Platinum Deposition on First Mask

98

The above deposition process was repeated with the second mask to deposit the

remaining materials onto the wafer. These include the metal oxide materials

(Aluminum Oxide and Titanium Oxide), and the top metal electrodes (Titanium and

Platinum). Figure 8-11 shows the final fabricated wafer with three device diameters of

5.94mm, 7.56mm, and 14.04mm. Since the filament width will be largely localized to

the stress location, the shortest path through the oxide layers will limit the width of the

filament. Thus, the exterior dimensions of the bottom electrode or the top electrode

should be largely irrelevant.

Figure 5-11 PVD Chamber and MicroProbe Station

Figure 5-12 shows the probe landed on the wafer, the etch mark (b), and the

boundary of the top-electrode and metal stack, at a magnification of 2.5x. The figure

99

shows some of the surface deformities from the deposition, which is a limitation with

the equipment and process used.

(a) (b) (c)

Figure 5-12 - Die Photograph of Fabricated Devices (a) Probe Landed (b) Probe
etch mark (c) Top-electrode/Metal Stack boundary

In order to analyze the composition of the ReRAM stack, I took a cross-section

of the ReRAM bitcell. The Scanning Electron Microscopy (SEM) cross-section photo

and the EDS spectra of the stack are shown in Figure 5-13, confirming the presence of

the various materials deposited.

Figure 5-13 SEM Cross-section photo with EDS spectra of the ReRAM stack

100

SE is the Scanning electron image of the stack, where the stack can be seen as

the lighter region. Si displays the presence of the Silicon substrate and is largely located

beneath the stack. Pt displays the platinum element deposited in the stack layer. The

Aluminum did not show up local to the stack alone and could be an artifact of the tool.

Oxygen was detected in the stack and should be present in the Aluminum-Oxide and

Titanium Oxide layer. Titanium is also shown to be present slightly higher than the

rest of the layers, as part of the top electrode. Though the resolution of the individual

material position and thickness is quite low, I can use this EDS spectra to confirm the

presence and rough location of the various materials.

5.5 ReRAM Resistive Switching Behavior

The first part of my characterization consists of confirm the resistive switching

behavior. In this experiment, my intent was to confirm that the resistant state itself

could be altered between the low and high resistant states. Characterization was

performed on the fabricated devices at room temperature. The Agilent 4155C

parametric analyzer was used to drive the probe points and apply the program pulse.

Figure 5-14 shows the oscilloscope measurement of the applied voltage pulse. The

voltage ramps from 0v to a peak of 5v, with a step duration of 92ms, which was the

shortest pulse duration possible with the parametric analyzer.

101

Figure 5-14 – Oscilloscope Measurement on the Applied Program Pulse

Figure 5-15 shows the SET transition from a high-resistive-state (HRS) to a low-

resistive-state (LRS) and the RESET transition from HRS to LRS using bipolar

program mode operation. The program operation was performed by applying a voltage

from 0 to 6v with a current compliance of 100uA for SET operation and 1mA for

RESET operation. The x-axis shows the voltage applied and the y-axis shows the

current measured across the cell.

At the positive voltages, as the voltage ramps from 0v up to 4v, the current

measured is at 1uA, reflecting the state of the cell. For this cell, this seems to reflect

the open-circuit current of not a fully formed filament. At around 4v, I see the cell

transition to abruptly to a higher current state. This could reflect the conductive

filament being formed across the electrode material. Beyond 4v, the cell retains its

lower-resistance state. A subsequent SET pulse, ramping again from 0 to 6v, confirms

that the cell-state is retained and remains SET.

102

On the negative voltage side, as I ramp down the voltage from 0v to -6v, I see

that the cell is able to maintain the low resistance state (and the filament) for most of

the region. At -5.8v, the cell abruptly switches to a low-current/high-resistance state

again. I can visualize that the negative bias repaired the oxygen vacancies created

during the SET pulse, thus “breaking” the conductive filament between the two

electrodes. A subsequent RESET pulse, ramping from 0v to -6v, confirms that the

bitcell remains in a higher resistance state.

Figure 5-15 - ReRAM Switching between LRS and HRS in bipolar program
mode

Published literature has shown two modes of write operations for ReRAM

bitcells – bipolar and unipolar modes. Bipolar mode involves applying a positive

voltage for SET-going operations, while using a negative voltage for RESET-going

103

operations. Unipolar mode, on the other hand, uses positive voltage for both SET-going

and RESET-going operations. The difference between the two operations is determined

by the maximum voltage applied (higher for SET-going) and the current-compliance

limit applied (higher for RESET-going). The results shown previously used the bipolar

mode of operation. Unipolar mode is based on thermal acceleration of redox transitions

and is simpler to implement but can lower cycling endurance. Bipolar mode is based

on ionic migration assisted by electric field, has higher endurance due to the defects

being conserved and is therefore generally a more popular method of program [28].

TiO2 has been observed to switch in both bipolar and unipolar methods of

resistive switching. I confirmed resistive switching operation in unipolar mode as well,

as shown in Figure 5-16. The x-axis shows the voltage applied, and the y-axis shows

the measured current.

For SET, the program voltage was ramped to 6v, with the current compliance

set to 100uA, while for RESET, the program voltage was ramped to 3v, with a current

compliance of 1mA. The figure confirms both successful SET-going and RESET-going

operations. For SET-going cell starting at a high-resistance state (with low current

measured), at 3.8v, there is an abrupt change in current measured reflecting a state

transition to LRS state. After the transition, the current measured is higher, reflecting

104

a low-resistance state implying the creation of a filament. For RESET-going cell, the

current measured is linear with increased voltage, implying a constant resistance of

18.5K-. At 2.5v, the RESET-going cell’s measured current abruptly drops implying

a state transition to an open-circuit, HRS state.

Figure 5-16 - ReRAM Resistive switching in Unipolar program mode

5.6 Threshold Behavior at Low Current Compliance Limits

My next set of measurements were intended to confirm the threshold behavior

of ReRAMs. At low-current compliance limits, a program pulse does not affect the

state of the bitcell permanently. In this mode, the bitcell acts as a passive device,

105

allowing current to pass when the bias is present, but not affecting the overall state of

the bitcell. Figure 5-17 shows the threshold behavior of the device on an LRS cell.

Figure 5-17 - ReRAM Threshold behavior at low current compliance (Ic) limits

I performed the measurement by ramping the voltage from 0 to 6v, and again

from 0 to -6v for different current compliance levels. Different current compliance

limits (Ic) were applied, starting from a low current compliance of 1e-9 and increasing

to 1e-4, in orders of magnitude. The cell had an initial state of a low-resistance-state

(conducting), and therefore as soon as the voltage rise, the current measured is clamped

to the limit set by the compliance. At each successively higher current compliance

106

level, the bitcell’s state was not altered from its set/LRS state to a reset state/HRS, even

when the negative voltage bias was applied.

5.7 Time Dependent Volatility Behavior

I next characterized the data retention of the cell. Data retention is defined as

the duration after program for which the programmed state is maintained in the bitcell.

Previous work from literature survey [27] indicates that the initial conductance of the

bitcell is the key dependent variable for predicting amount of state change. The

plasticity model proposed in [18] for example lists the following relationship between

the change in conductance and the initial state.

∆𝐺 = 𝜆௧𝜆ீ

Here, G represents the initial conductance and t represents the change in time. This

compact model implies that the change in conductivity with time is proportional with

initial state of the bitcell. Conductance of the bitcell is measured as the inverse of the

resistance, 1/Rinit, where Rinit is the initial resistance.

My characterization method is as follows. I applied a program pulse in bipolar

mode consisting of either positive or negative voltage bias, depending on whether cell

was SET-going or RESET-going. My current compliance varied from 1e-9 to 1e-3 A.

107

For my experiment, I measured the cell resistance immediately after program (Rinit)

and after a wait-time of 5 minutes and 10 minutes to assess the change in resistance.

I start from an LRS bitcell or a RESET bitcell, in which there is no conductive

filament that has formed between the top and bottom electrode. Applying the program

pulse of different current compliance either successfully or unsuccessfully completes

the formation of the filament. As stronger, meaning one with higher current compliance,

program pulse is applied, the probability of the filament formation is higher.

Additionally, the thickness of the filament formed is also larger. Conversely, weaker,

or lower current compliance, may produce filaments that are thinner or not at all formed.

There is some movement of the filament after the program pulse which contributes to

the filament relaxing causing the breaking or thinning of the filament. I expect that

cells placed in intermediate states of resistance have a higher probability of this

happening, causing movement towards a more RESET state.

Figure 5-18 presents the summary of the data collected. The x-axis is the initial

resistance of the cell, measured immediately after the program pulse is applied, in log

scale. The y-axis is the change in resistance after 5 and 10 minutes had elapsed, also

presented in log scale. These results confirm the expected direction of resistance for

the bitcells whose initial resistance, Rinit was below 10-M. For these cells, I see that

for the most part, the change in resistance increased after 5 or 10 minutes, implying that

108

the bitcell became more reset, or moved towards a higher resistant state after the wait

time. For two bitcells in this region (below 10-M), there was no change, and for one

bitcell in this region (below 10-M), the bitcell reduced in resistance slightly. These

were anomalous behavior, whose cause needs to be investigated further. However, for

all other bitcells, there was an increase in resistance, which is in line with the expected

filament relaxation behavior.

Figure 5-18 - Change in Resistance after 5 and 10 minutes delay as a function of

the initial resistance. Log(Delta-Resistance) is calculated for the y-axis

109

For cells with Rinit above 10-M, I observed a decrease in resistance after the

10-min wait time, for these hard-Reset cells. These were very high resistance state

bitcells, whose resistance after the wait time shifted to a lower resistance state. This

was true for both the 5- and 10-minute wait time. It is unclear the exact mechanism for

this behavior. Other studies on single-crystal TiO2 ReRAM have indicated

electrochemical resistive switching behavior after a post-annealing step [55], which

could be a possible explanation. Since the commonality amongst these cells is that

they all are very high RESET state, I can theorize that this might be caused by a transfer

of defects from the top electrode to the bottom electrode, causing the bottom electrode

to be the defect reservoir. This behavior was described in [28] as complementary

switching (CS) during the absence of a current limitation with a positive voltage bias.

After the wait time, the oxygen defects could have migrated from the bottom electrode

back towards the top electrode causing the cell to move towards a lower-reset-state.

I categorized the measurement taken by the cell size and plotted the result in

Figure 5-19. The bitcell diameters for Cell 2, 3, and 6 were 5.94mm, 7.56mm, and

14.04mm, respectively. The x-axis is the initial resistance of the bitcell in log-scale,

and the y-axis is the change in resistance (Rdelay – Rinit), where Rdelay is the

measured resistance after the delay wait time, again plotted in log scale. The data

present here is for the combined 5- and 10-minute wait times. The plot confirms that

110

the behavior observed is present on multiple devices of varying sizes and is not a

function of the cell size. I do notice that the initial resistance of the cell seems to have

a slight relationship to the cell diameter, with larger cells having a lower initial

resistance. Although I did not focus the characterization on the impact of cell diameter,

this would be a study for future work.

Figure 5-19 - Resistance change over time grouped by Cell sizes with trend

observed across multiple devices. Diameters of Cell 2=5.94mm, cell 3=7.56mm,

cell 6=14.04mm. Log(Delta- Resistance) is calculated for the y-axis.

Using the data on the bitcells below 10-M, I fit the data to a linear equation of

the log-log data points. Equation modeling based on the observed data for cell

resistances below 10-M yields the following relationship.

111

𝑙𝑜𝑔(∆𝑅) = 1.64 ∗ log(𝑅௜௡௜௧) − 3.37

∆𝑅 =
𝑅௜௡௜௧

ଵ.଺ସ

10ଷ.ଷ଻

Here, Rinit is the initial resistance measured immediately after the program operation

and R is the change in resistance after a wait-time.

Figure 5-20 plots the fit of measured results against the predicted equation

model for bitcells with their initial resistance below 10-Ms. The R-square of the fit is

0.57.

Figure 5-20 - Predicted vs Observed change in resistance for cellstates with Rinit

below 10M. Log(Delta-Resistance) is calculated for the y-axis.

112

For my final set of experiments, I measure the effect of current compliance

applied to the data retention time as a function of time with measurements at 2 min, 4

min, and 8 min. The cell was initially placed in an LRS state and increasing amounts

of current compliance was applied. The program current compliance level affects the

placement of the cell, with low current compliance levels not successfully moving the

cell from an HRS to an LRS. Figure 5-21 demonstrates the observed cell relaxation

for the time range of around 10 minutes, collected at the following four specific points:

Immediately after program, 2 min, 4 min and 8 min. The x-axis tracks the time elapsed

after the program pulse, measured in seconds, while the y-axis tracks the actual

resistance measured. A read voltage of 50mV with a current compliance set to 1uA

was used for the measurement. I see the change in resistance of four bitcells over the

measured time period. The dashed lines in the plot denote possible range for

intermediately placed cell that have a high change in resistance over the time period.

Bitcells placed below the bottom dashed line would be well-SET cells (LRS), while

those placed above the top dashed line would be well-RESET cells (HRS).

113

Figure 5-21 - Resistance change for different Program Current Compliance
values

For this cell, I define a “well-SET” cell as below 100k, and a well RESET cell

of above 100M. The results show that a well-SET cell, formed by applying a high

amount of current compliance (Res_1e-3), is able to retain its SET value of 48k

through the measured time. Similarly, a well RESET cell (Res_1e-9), with a resistance

value of 5.7e9, remains RESET which a final measured value of 4.25e10. The two

intermediately placed cells (Res_1e-4 and Res_1e-5), show the resistance values

increase with a much higher delta change in resistance. The cell placed with a 1e-5A

current compliance (Res_1e-5), changed from 3.11e6 to 8.29e8. These

observations confirm the relaxation behavior of an intermediate cell with a filament

114

relaxing to break its conductive bond, resulting in a higher resistance state. Note that

this relaxed higher resistance state is still lower an order of magnitude lower than the

well RESET state of 4.25e10 with the Res_1e-9 current compliance. The results

indicate that well-set cell with a high current compliance of 1mA retained the state for

the full 8-min duration, while intermediate program Ic levels of 1e-4 and 1e-5 shifted

the cell state to two orders of magnitude higher resistance.

To study the effect of current compliance on the change in resistance, I plot the

observed data in a different way. Figure 5-22 shows the change in resistance as

function of the current compliance for three measurement points – immediately after

program (Rinit), 2 minutes and 8 minutes after program (R2min and R8min,

respectively). The x-axis tracks the program current compliance used (in amperes),

and the y-axis tracks the resistance measured on the bitcell. The program pulse was

applied at a specific current compliance level, and then the resulting resistance level

was measured at the three delay points. Note that I started with an HRS (RESET) cell

prior to the measurement. I observe that at 1e-9 and 1e-6, the cell remains in the HRS

state. At program current compliance of 1e-5 and 1e-4, there is a marked shift in the

bitcell resistance, starting at a lower resistance level and gradually moving to a higher

resistance level. At Ic of 1e-5, the bitcell resistance started at 3.11M and after 2

minutes, shifted to 60.7M, and after 8 minutes, measured to be 829M. Similarly,

115

for Ic of 1e-4, the bitcell resistance started at 0.7M and after 2 minutes, shifted to

14.3M, and after 8 minutes, measured to be 103M. Finally, the bitcell that was

programmed with an Ic of 1mA, remained as a SET cell, below 50k. These results

confirm that intermediate current compliance limits show the greatest change in

resistance.

Figure 5-22 - Resistance change as a function of Program Current Compliance.

One interesting observation to note is that even for the specific points where the

resistance does not shift, the Rinit datapoints all measure to be slightly lower resistance.

One possible cause of this could be due to the measurement following a program pulse

with a high voltage bias (6v) possibly having an effect on the state of the cell. This

116

could possibly be due to thermal effect from the high voltage applied during the

program pulse and is a topic for future exploration.

In this section, I presented data that shows that the cell’s data-retention time

could be modified by reducing the current compliance applied during the program pulse.

This intermediate current compliance acts as a digital volatile mode for the bitcell. A

system making use of the cell in the digital volatile mode must calibrate the read

threshold currents for this lower range, to properly interpret the intermediate state as

well.

5.8 Impact on Write Energy and Endurance

In this section, I estimate the benefit in write-endurance that can be gained from

the lower write-current applied. From write-energy point of view, I see that the

intermediate mixed-volatility state requires 1-2 orders of magnitude less write-current.

Instead of 1mA, applying 10uA might suffice to program the cell in the intermediate

state. The write energy is the product of the current, voltage, and the duration of the

stress applied to the cell. From a write-stress point of view, the cell is in this

intermediate mode is now seeing 100x lower write energy per write operation. The

following equation from [33] relates the relationship between the energy applied per

cycle to the maximum amount of energy tolerated by the cell.

117

𝐸௠௔௫ = 𝑁௖௠௔௫ ∗ 𝐸ଵି௖௬௖௟௘

Here, Emax is the maximum energy that the ReRAM bitcell’s dielectric material

can sustain, E1cycle is the energy seen by the cell in one cycle, and Ncmax is the maximum

number of write cycles that can be performed. Ncmax is the measure of write-endurance

for the cell. As the equation points out, there is an inverse relationship between the

energy applied per cycle to the overall number of write cycles tolerated by the cell.

Since I apply 100x lower write energy per cycle, I can expect that the Ncmax

would increase by 100x. My original stated write-endurance for ReRAM was 10^5 to

10^8 cycles. This can therefore be expected to be increased to 10^7 to 10^10 cycles.

Although this is still not near the write endurance tolerated by the DRAM cell, this

amount of improvement allows for the cell to approach the write-endurance limits

needed for main-memory applications. Furthermore, by combining wear-leveling

techniques used in flash memory chips, the effective write-endurance could be further

increased.

In terms of the total write energy, there is an increased amount of write cycles

needed to perform the refresh in the cases where the data needs to be maintained for

long periods of time. For the calculation given above, there is a 100x reduction in the

write energy applied per pulse. However, after 100 refresh cycles, where the data is

written back to the cell during the refresh cycle, we lose the benefit of the write energy

and write endurance to the cell. In this case, for those data where the data needs to be

118

persistent, we may selectively apply a high write energy to begin with to store the data

in a non-volatile state. In addition to the write-endurance impact, there is an impact to

the overall system performance as well. Since write energy is a function of the current

amplitude and the duration of the program pulse, the lower write energy could also

translate to a faster write cycle. For certain applications, having the lower write cycle

might be critical for overall system performance where the shorter write latencies could

be more easily hidden and prevent stalls due to write operations.

5.9 Post-Characterization SEM

I did a final SEM photo of the characterized wafer to assess the thickness of the

material deposited. I used Tescan GAIA FIB/SEM machine from UMD’s AIM lab to

perform this measurement. I first performed a FIB (Focused Ion Beam) cut on the

wafer to ensure a sharp cross-section edge to make the measurement. Figure 5-23

shows the wafer material inside the SEM chamber. The wafer is sliced and mounted

onto a vice inside the chamber. The figure shows the wafer positioned directly under

the microscope.

119

Figure 5-23 - Sliced Sample inside GAIA SEM Chamber

 Figure 5-24 shows the inverted cross-section photo of the wafer. Table 5-2

summarizes the measured thickness of the materials against the target thickness.

Figure 5-24 – SEM Thickness Measurement

120

Layer # Material Target Thickness

(nm)

Thickness Measured

(nm)

1 Platinum (Pt) 60 73

2 Aluminum Oxide (Al2O3) 5
59

3 Titanium Oxide (TiO2) 30

4 Titanium (Ti) 15 14

5 Platinum (Pt) 60 47

Table 5-2 – SEM Analysis of Deposited Thickness

The measurement showed that the material deposited is on the order of the target

thickness of the different materials I targeted. The aluminum and titanium oxide

material could not be differentiated in the SEM photo mode, but I estimate the sum

thickness to be larger than the target thickness of 35nm. Since this device was not a

virgin material, the process of applying the electrical stress likely caused the material

to diffuse into adjacent layers. This can be seen at the bottom of the wafer, being

diffused into the silicon. Overall, the thickness of the material measured appears to be

slightly larger than my intended thickness overall. In the future, using smaller mask

dimensions and alternate deposition process might more accurately control the

deposition of the materials.

121

5.10 Conclusion and Future Work

A ReRAM device composed of a TiO2/AlO2 metal-oxide stack was fabricated,

and characterization results were analyzed. Resistive switching and threshold

behaviors were observed. Additionally, time-dependent relaxation of the cell resistance

was observed, causing those cells placed in intermediate cell states, by using a lowered

program current compliance, to see the greatest shift. This is in-line with my target use

of using lower write-energy to place the cell in a mixed-volatile state having a lower

data retention time.

As mentioned in the beginning of the chapter, the motivation for this research

work is to verify that we are able to observe that ReRAM could be operated ina n

intermediate state where the formed filament of oxygen vacancies in the metal oxide is

able to repair itself after a period of time. The experiment results are a proof-of-concept

of the possibility of ReRAM as a digital volatile memory. With regards to scaling, I

expect the observed behavior to be retained, since scaling occurs in the dimension of

the ReRAM metal planes and typically not as much in the thickness between layers.

Since the filament is localized to the points of the stress, the movement of the oxygen

vacancies should follow at a similar rate even at advanced nodes. Volume data on this

phenomenon would provide more data points which would lead to better averaging of

the program current compliance and the expected rate of the relaxation.

Several points of observation merit a closer look. I have mentioned these in the

experimental discussion, with regards to anomalous points of data observed for very

122

high resistance bitcells and the change in resistance after a delay. These can be further

mapped to a function of the current compliance applied and the sequence of preceding

program pulses. Due to the large dimensions of my bitcell, it is possible that multiple

filaments have formed in parallel, that may be the cause of the cell behavior at the very

high resistance states (above 10 M). For this reason, future work can try to make the

dimensions smaller, towards the target dimensions seen in the intended application.

Oxygen partial pressure has been known to have a strong impact on the

movement and retention of oxygen vacancies in metal oxides [55, 56]. The effect of

oxygen partial pressure in introducing contaminants to the material layers during the

fabrication process needs to be studied more closely. The PVD fabrication for my

experiment was performed in a low-pressure chamber, however there could be oxygen

contaminants between the layers. Specifically, between the mask steps, where the top

electrode of Titanium might have oxidized to form TiO2. The SEM analysis did not

have sufficient resolution to identify the regions clearly. Future work can analyze the

material fabricated with higher resolution. In the operational mode we expect to use,

the temperature ranges between -40C to 100C, and therefore we do expect a high

variation from the oxygen partial pressure on the relaxation of the oxygen vacancies.

In space applications, the lower oxygen partial pressure might slow the movement and

relaxation of the oxygen vacancies, thus increasing the data retention of the filaments

created in the intermediate state.

123

Lastly, the biggest change is to gather volume data for the characterization

results so that the noise could be further isolated, and the cell retention relationship

could be more robustly developed for design of the memory system application. This

requires fabricating a full array, with more than 1000 bitcells so that statistical analysis

could be performed to more completely characterize the bitcell behavior.

124

6 Architecture-Level Simulations

In the next thrust of my research work, I looked into architecture-level simulations

that would provide the impact of various design configurations in my ReRAM

architecture. I compare this to a conventional DRAM based architecture and vary key

parameters to analyze the impact of them. I provide a brief introduction into the

simulation methodology I used and then provide the results of my baseline architecture

comparison. I next study the impact of a central ReRAM based design with varying

number of cores on the performance and the energy consumption of the architecture.

6.1 SST Simulator

SST is a simulation tool developed by Sandia National Laboratories, which

provides a flexible framework as a “Parallel Discrete-Event Simulator” and allows for

a multitude of custom simulators. The tool has demonstrated scaling to over 512

processors, and comes with many built-in simulation models for processors, memory,

and network, including DRAMSIM. The tool follows a modular OpenMPI interface

based on linking together various components (see Figure 6-1 from the SST website).

125

The figure shows the operation of the simulation framework driven by an SST core

engine that keeps track of the instantiated elements, components, and the links in the

simulation. Each component represents a physical structure in the architecture, such

as a CPU, the network router, the memory, or the cache, for example. Each component

is connected to another component through a link with a latency property, which is used

to track the timing of the simulation. This framework allows for modular use of

different elements that are developed outside of Sandia. For example, to model the

DRAM memory, I used DRAMSIM3 as the backend memory model.

Reference: http://sst-simulator.org

Figure 6-1 SST Component-based Framework

The SST framework is component based, cycle-accurate simulator for fast

comparison of different architectures. I have used SST to model the ReRAM-CPU

architecture using the following external components (element libraries):

● MemHierarchy - Cache and Memory

● DRAMSim - DDR DRAM Memory

126

● Miranda - Pattern-based CPU model

● Merlin - Network router model and NIC

● Messier - Model ReRAM with asymmetric read & write latencies

6.2 Baseline Architecture Comparison

I performed an initial simulation on the STREAM and GUPS benchmark on the

architecture shown in Figure 6-2. The DRAM architecture was roughly based on the

Intel Knights Landing platform and a comparative architecture using ReRAM instead

of DRAM was used. The left side of the figure shows the baseline DRAM architecture.

A mesh topology with 6 rows and 8 columns is used to support 36 CPU processor units,

along with dedicated L1 and L2 cache blocks. Additionally, there are six memory

controllers that connect to 4GB DDR3 main memory blocks, to provide a total capacity

of 24GB.

On the right side of the figure, the ReRAM architecture that I used is presented.

This version shows a tiled architecture, again with 36 CPU processor units with

dedicated L1 and L2 cache blocks. The main memory in this architecture, however,

consists of 36 ReRAM blocks each of 0.9GB located adjacent to the CPU tiles, along

with the memory controller. This is in-line with the tiled ReRAM-CPU layout that I

presented earlier. This architecture also uses a mesh topology of 9 rows by 9 columns.

127

Figure 6-2 Architecture Comparison

The key architecture parameters are provided in Table 6-1 for comparison. I

used our in-house DRAMSIM2 simulator to model a dual-channel DDR3 Micron

device with a speed grade of 1333-J. For the ReRAM memory, I used the Messier

element in SST to model asymmetrical read and write latencies of 200ns, and 1us,

respectively. The peak memory bandwidth for DRAM is 10.4 GB/s per channel, for

an aggregate bandwidth of 124.8GB/s. A very high NoC link bandwidth of 96GB/s per

link was simulated to allow the NoC latency not to be an issue for the comparison.

128

Table 6-1 Summary of SST Architecture Details

The following lists the pseudo code for both benchmarks.

STREAM Benchmark: a[i] = b[i] + k * c[i];

MemoryOpRequest* read_b = new MemoryOpRequest(start_b + (i * reqLength), reqLength, READ);

MemoryOpRequest* read_c = new MemoryOpRequest(start_c + (i * reqLength), reqLength, READ);

MemoryOpRequest* write_a = new MemoryOpRequest(start_a + (i * reqLength), reqLength, WRITE);

write_a->addDependency(read_b->getRequestID());

write_a->addDependency(read_c->getRequestID());

GUPS Benchmark: a[b[i]];

MemoryOpRequest* readAddr = new MemoryOpRequest(addr, reqLength, READ);

MemoryOpRequest* writeAddr = new MemoryOpRequest(addr, reqLength, WRITE);

writeAddr->addDependency(readAddr->getRequestID());

The STREAM benchmark consists of two read operations followed by a

dependent write operation. The GUPS benchmark has a read and a dependent write

129

operation, with the address being randomly generated. The STREAM benchmark has

dense memory access, meaning that the address locations in memory are accessed in

sequential order and therefore I expected that DRAM’s higher-access granularity would

be more favorable for this benchmark. The GUPS benchmark has sparse memory

access, for which I expect ReRAM’s low-access granularity to be more favorable.

Figure 6-3 shows the SST simulation result of the comparison between DRAM

and ReRAM based main memory architecture. The y-axis in the plot reports the

execution time of the simulation, where a lower number is better (faster). The

simulation was performed with a Miss Status Hold Register (MSHR) queue depth of 2,

meaning that at any time, two outstanding requests could be stalled at the individual

memory controller. The plot shows the results for both Stream and GUPS benchmarks

for DRAM, and two version of ReRAM – one with 200ns write latency and a second

with 1us write latency, both versions have a read latency of 200ns. The access latency

for DRAM is set by DRAMSIM as a function of the pending requests and stalls.

130

Figure 6-3 SST Simulation Result

The comparison show that DRAM outperforms ReRAM for Stream applications

regardless of the write latency times. My simulation result shows that when the write-

latency is reduced, for the STREAM benchmark, there is no noticeable improvement

with the improved ReRAM write-time, and DRAM performs more favorably as

expected. Because of the ratio of read to write operations is 2 to 1, the effect of a “faster”

write latency does not improve the overall execution time in this scenario. For GUPS

benchmark, however, ReRAM slightly outperforms DRAM in the shorter write latency

configuration. However, DRAM still outperforms ReRAM when the write latency is

1us. This is due to shorter request length of GUPS and the irregular access pattern not

allowing for the write requests to be re-ordered and thus mitigated.

131

The memory latency breakdown of both simulations is presented in Figure 6-4.

The latency is reported from both the memory controller point of view, and from the

CPU overall point of view. The memory controller latency is largely dominated by the

memory latency itself, with some additional overhead depending on the number of

stalls seen by the requests. As seen in the figure, there is a huge discrepancy between

the two. For DRAM, the average memory controller latency for both benchmarks were

32ns. However, the average CPU latency for STREAM was 194ns, while for GUPS

was considerably higher at 951ns. This goes back to my original motivation of

addressing the memory bandwidth wall problem resulting in these huge discrepancies.

The problem is worse for GUPS due to its inherent finer granularity which prevents

access overhead from being amortized over a larger amount of data.

For the STREAM benchmark, the latency reported from ReRAM’s memory

controller point of view was close and slightly higher than the average overall latency

from CPU point of view. The reason for the CPU latency being lower can be explained

by a higher percentage of cache hit with the STREAM benchmark that allows for 67%

of the accesses to be serviced by on-board caches. Since cache access is much lower

than the ReRAM main-memory access, the overall latency is slightly lower. For the

GUPS benchmark, however, the DRAM trend is also present with ReRAM – the overall

CPU latency is much higher than the memory latency itself. Here, this implies again

132

that there is a higher number of stalls that cause the performance of the system to be

limited, not by the memory latency but by queuing of the requests.

Figure 6-4 Memory Latency Breakdown, Queue Depth=2

With regards to the impact of the write-latency, STREAM benchmark reported

very little change between 200ns write time and 1us write time, as I saw in the previous

simulation study. With GUPS however, I see that average access latency, which is a

combination of the read and write times, is reduced with the “faster” 200ns write

latency time. The ratio for write-to-read is also higher with GUPS with 1-to-1 vs 1-

to-2 with STREAM, causing the higher write latency to negatively impact the GUPS

more.

133

The difference between the memory latency and the overall latency is an

indication of the amount of stall occurring in the architecture. Because the access

pattern is random, the cache hit rate with the GUPS benchmark is close to 0%,

combined with the queue depth of 2, this causes more of the memory requests to be

stalled at the CPU with the GUPS benchmark. The results imply that finer access

granularity on ReRAM benefits GUPS benchmark with 200ns write latency. For the

1us write latency, the results show no ReRAM advantage for the GUPS benchmark. In

the STREAM case, DRAM performs better over ReRAM regardless of the write-

latency.

6.3 Impact of Memory Parallelism for ReRAM

Memory queue depth and the number of memory controllers are some of the

key parameters that affect overall system performance. To assess the impact of the

queue depth on the performance, I increased the MSHR queue depth from 2 to 10 at

the Memory Controller. The results are presented in Figure 6-5. The y-axis again is

the execution time of the simulation with lower execution time meaning faster

performance of the architecture. Two additional sets of information are presented from

the previous graph – the results with queue depth of 10 (5x queue depth from previous)

for ReRAM.

134

Figure 6-5 Impact of Queue Depth

In comparison with the queue depth of 2, I see a significant improvement in the

execution time in the case of STREAM benchmarks for both the slow and fast write

latency times. There was little to no improvement of the performance as the queue

depth was increased for the GUPS benchmark. This implies that increasing the queue

allowed for more memory requests to arrive at the memory controller, and potentially

be combined due to any locality of the memory requests. The increased queue depth

helped efficient scheduling of multiple requests that may be related in the STREAM

case. The STREAM memory mapping was assigned to be interleaved with an 8B offset,

135

which allowed for the parallelism of the architecture to help efficient servicing of the

memory requests. There was minimal change with the GUPS benchmark due to limited

temporal locality, with the cache miss rate being close to 100%.

For my next study, I observed the impact of the number of memory controllers

on the performance. To do this, I increased the number of memory controllers to be

twice as the original architecture, again using mesh topology. Figure 6-6 shows the

impact on the performance. The two additional sets of data are for the ReRAM

simulations with the number of memory controllers being 72, while the previous

simulation used 36 memory controllers. The impact of the increased can be seen most

drastically in the GUPS simulation for both the slow and fast write ReRAM memories.

136

Figure 6-6 Impact of Queue Depth and Multiple Mem-Controllers

For the STREAM benchmark, queue depth helped improve the performance by

efficient scheduling of multiple requests that may be related. Additionally, since the

memory address mapping was interleaved across banks with an 8-Byte offset, the

increased queue depth allowed for parallel processing of memory requests. The cache

miss rate for the STREAM benchmark was noted to be 37%. For the GUPS benchmark,

there was minimal change to the performance improvement due to the increased queue

depth. This can be attributed to little spatial locality, with a near 100% cache miss rate.

137

Increasing the number of memory controllers improved both STREAM and

GUPS, with a larger improvement for GUPS benchmark. This implies that the higher

queue depth within a memory controller is beneficial for STREAM benchmarks to

allow for more efficient grouping of memory requests to take advantage of spatial

locality. For sparse memory access benchmarks, such as in the case of the GUPS,

independent parallel memory controllers are needed to allow for parallel servicing of

memory requests.

6.4 Motivation for Central ReRAM Design

At the architectural level, SST simulations were used to help answer the

question of what performance benefits can be gained at the expense of non-volatility or

data-retention. I utilized SST to model non-symmetric heterogeneous NoC

architectures to support the monolithic ReRAM-CPU architecture. Based on my

previous simulation results, I believe that a hybrid memory system utilizing both

DRAM and ReRAM would be beneficial to deliver the advantages relevant for each

technology based on the benchmark and application need. Additionally, this approach

allows different processor type to be integrated into the same chip, including GPUs

and/or accelerators. Figure 6-7 shows the floorplan of such a system.

From my area studies, I know that interspersing ReRAM peripheral logic within

a core incurs a significant area penalty. Furthermore, since each core does not have a

138

dedicated ReRAM tile, and because graph algorithms do have irregular sparse access

patterns, the memory architecture needs to support requests from any processor on the

chip. The centrally located ReRAM block in Figure 6-7 is designed to act as a single

embedded memory IP with a separate internal NoC based on the torus topology. In

addition to the NoC router circuits, the area underneath the ReRAM array could be used

to store cache memory that can act as the last-level-cache for the memory. Four DRAM

memory controllers are placed in the corner to allow access to an external DRAM

memory off-chip. This hybrid memory system would allow for ReRAM to function as

the Main-Memory and rely on DRAM as either a Last-Level-Cache (LLC) or as a

selective cache for write-intensive applications only.

Figure 6-7 Hybrid ReRAM-DRAM System Floorplan

139

The ReRAM memory controller would coordinate access to n number of banks,

where n needs to be selected to tradeoff between fine-grain granularity and reducing

area overhead. The bank controller will also be capable of supporting Streaming Mode

to perform a burst-mode from adjacent 8 banks to match DRAM granularity and

improve streaming bandwidth. Figure 6-8 shows the design for the ReRAM memory

controller, which coordinates multiple banks. With each bank, a bank controller will

contain an incoming request queue, a data-buffer to store the read and write data (64-

bits), and the circuit to initiate the Read/Write kickoff signal to all 16 arrays.

Figure 6-8 ReRAM Memory Controller Design

I performed architectural simulation using SST to model the system floorplan

shown in Figure 6-7, and to select the optimal ratio and grouping. My performance

results, presented in the next section, indicate the impact of the write-timing on this

140

architecture. Additionally, based on the size of the network needed to facilitate this

approach, I also looked into alternative NoC topologies that might better meet the

throughput required. The next chapter goes over the NoC topology study results. Once

an optimal configuration is selected, I could generate the overall ReRAM embedded

block design & external interface block. This block can be used to generate a floorplan

layout and provide area estimates to identify placement of individual components to

achieve such a system.

6.5 Area Floorplan Central ReRAM Design

I performed a next level estimate for the bank and memory controller circuits

that would reside beneath the ReRAM. I used the 45nm layout, shown in Figure 6-9,

to estimate I obtained previously for my repeating block. The total layout area shown

in the figure is 625um x 625um = 400,000 sq um for the 4MB 2-level stack. The

vscale_core circuit had a standard-cell efficiency in this space of 60% for a total

consumed area of 240,000 sq um.

141

Figure 6-9 – Memory Footprint for Central ReRAM Design

I propose placing the following circuits underneath the ReRAM block: Bank Controller,

Memory Controller, NoC router, and SRAM cache. To estimate the areas for the bank

and memory controller, I synthesized a representative Verilog file to model the

functions and used it to estimate the APR area. I extrapolate this by using the area

reported from the VSCALE_CORE layout study where the standard cell area was

22,088 sq um, and the APR area was 30,373 sq um.

The bank controller logic has three main functions, as shown in Figure 6-10: an

incoming request queue, a circuit to initiate the read and write kickoff signals to all 16

arrays, and a data buffer to store the read and write data. I model a 32B register file for

the incoming request to support eight 32-bit command requests. A 64B register file is

142

used to model the data-buffer to store pending read and write data. The synthesized

area for this circuit was 4,162 sq um, which translates to 5,723 sq um after the APR

step. As a square block, this circuit could be expected to take up 76um x 76um of area

underneath the ReRAM array.

Figure 6-10 – Bank Controller Area

The memory controller logic coordinates 8 different banks and has the following

functions:

 Address decode to select one of 8 banks, with additional control logic to select

multiple in stream-mode

 Incoming request queue of 32B to support eight requests of 32-bit commands

 Control logic to reorder pending requests

 Data buffer of 256B to store read and write data.

The synthesized netlist for this logic reported a total area of 16,147 sq um, which

I extrapolate to be 22,204 sq um after the APR step. Since this logic block will be

shared among 8 banks, this circuit could be expected to use a square footprint of 18um

x 18um for each bank.

143

The Bank, Memory, and NoC controller will be placed in a central area of the

ReRAM mat, which has an area of 343x343um. The spacing between the arrays within

a bank is 125um. Figure 6-11 shows the relative sizes and placement of the blocks,

with the bank controller (B) being 75x75um, and the memory controller (M) being

18x18um, which is shared among 8 banks. The remaining area in the block can be used

for the NoC router.

Figure 6-11 – Placement of Control Logic, Buffers, and SRAM

SRAM arrays will surround the central area with size of 125umx125um. These

SRAM arrays can be used as the last-level cache on the chip and can operate

independently from the main-memory ReRAM control logic. In one bank, I can fit 3

144

of these SRAM arrays. Assuming 75% array efficiency and using the academic

OpenRAM bitcell which has a size of 1.344um x .707um, the total SRAM storage per

array is 4.1kB. A commercial version of the SRAM bitcell could foreseeably be drawn

2.5x smaller, and thus achieve 10kB of SRAM capacity per array.

Finally, I consider the routing channel to connect the main-memory and the

independently operating SRAM cache memories to the NoC router endpoints. The

NoC interconnects can be drawn in metal-7 and metal-8 which are available to be used

in the regions between the ReRAM arrays and over the SRAM arrays. This is

illustrated in Figure 6-12 below. The horizontal tracks are metal-7 and the vertical

tracks are in metal-8 and these would provide a global interconnect channel to the

ReRAM and SRAM arrays.

Figure 6-12 – Interconnect Routing over Central ReRAM Floorplan

145

For the NoC routing channel, I propose a total target of 32B interconnect width

and allocate 16B for Main-Mem and 16B for the SRAM Cache in order to keep the two

memory systems separate and to allow for different priorities and address schemes to

be implemented between them. The available spacing for this in the floorplan above is

125um wide. This requires a metal pitch of .5um in the metal-7 and metal-8 for this

routing which should be achievable in this technology.

6.6 Write Performance Impact of ReRAM

For the next phase of my simulation efforts, I focused on the Central ReRAM

architecture surrounded by several CPU modules. As mentioned earlier, such a central

architecture has several possible advantages over a tiled-CPU network in cases where

the memory access pattern is not localized to the tiles immediately above it. In my

prior benchmark simulation results, I found this to be true. Additionally, separating the

CPU modules allows for a contiguous area for the design implementation and avoids

having to incur the area penalty I had observed.

I first performed a high-level comparison using the SST simulation framework

to compare the DRAM and ReRAM based architectures shown in Figure 6-13. The

DRAM figure shows a central tiled CPU architecture with 6 memory controller (MC)

access points, 3 on each side, to connect to external DDR4 devices. The ReRAM

146

architecture shows centrally located ReRAM arrays, grouped by banks, which are

accessed by surrounding CPU processors (labeled as C).

Figure 6-13 - DRAM ReRAM Architecture Comparison

For my simulation, I assumed the following system specifications. If one bank

needs to provide 64-bits request width, and assuming that ReRAM is capable of a per-

array bandwidth of 4 bits, then for a single bank, I would need to access 16 arrays in

ganged mode. In order to provide a sustainable BW of 16B/ns, assuming 200ns

ReRAM latency, I would need to group 400 banks per core. Therefore, a single core

needs to coordinate with 400 banks for reasonable bandwidth performance. Tying in

my previous area calculations, a single bank of 4MB (assuming a 2-layer ReRAM

stack) at the 16nm is estimated to take up 0.4mm2 in area. A full-chip die area of

686mm2 can fit 8575 banks, assuming 50% array efficiency. This can support

8575/400 = 21 cores for a VLIW type of architecture with 8B granularity. This

147

translates to a full-chip memory capacity of 8575 banks * 4 MB/bank = 32 GB. With

an 8-level stack, this capacity scales to 128GB. As the vertical stack increases the

capacity scales, but would require higher ReRAM peripheral area usage, leaving less

amount of unused space underneath the memory. For my simulation of the ReRAM’s

mesh topology, I used a ratio of 8 banks per memory controller to provide a total

number of 1000 memory controllers on chip. The system ratio of Core to Memory-

Controllers to Banks to Array is 21:1000:400:16.

The DRAM architecture was based on the Intel Knights Landing platform [23]

and a comparative architecture using ReRAM instead of DRAM was used. The

characteristics are listed in Table 6-2. The CPU model used 8 issues per core per cycle

and the mesh NoC topology is used. I used the hardware-verified DRAMSIM3

simulator to model a dual-rank DDR4-2666 DRAM device operating at 2.66GHz and

also a High-Bandwidth-Memory-2 (HBM2) version of DRAM main memory. For

ReRAM, I assumed a centrally located memory IP with 1000 access memory

controllers with the support circuits and bank-select logic located underneath the

memory, while the CPUs surround the array.

148

Table 6-2 - Architectural Parameters

In order to understand the impact of the longer write latency of ReRAM, I

compared DRAM with two versions of ReRAM: SlowWrite and FastWrite. For the

ReRAM SlowWrite version, I used a write-latency of 1us, while for the FastWrite

version, I used 200ns. The read latency was set to 200ns for both versions of the

ReRAM. Figure 6-14 summarizes the result of the architectural simulation for the

STREAM benchmark. The y-axis in the top plot shows the overall execution time in

ms, with DRAM over 2x faster than the ReRAM-slowWrite option. The ReRAM

FastWrite with 200ns latency is slightly faster, but still performs worse than the DRAM

configuration.

149

The memory latency comparison, however, shows a much higher delay

difference between the two architectures. The DRAM memory latency on average is

32ns, which is over 8x faster than ReRAM_SlowWrite. However, the CPU perceived

latency is only 2x faster, despite this large difference. The MSHR occupancy

comparison shows the reason for the discrepancy, with DRAM having a much higher

occupancy resulting in a greater number of bottlenecks at the memory controller and

stalls from the CPU point of view.

150

Figure 6-14 - SST STREAM Benchmark Comparison for 21 cores

151

Figure 6-15 shows the results for the GUPS benchmark, which has a finer access

granularity of 8B. Again, the results show that overall DRAM much longer RunTime,

by 1.5x when compared to the ReRAM_SlowWrite case. At the memory level, DRAM

latency is faster, but from CPU point of view, overall perceived latency is slower due

to a bottleneck at memory controller, which is shown in the MSHR_occupancy

comparison.

For the STREAM benchmark, DRAM is faster overall by 2x, and by 1.5x for

the GUPS benchmark. Though there are more pending requests due to the limited

number of memory controllers with the DRAM architecture, the higher latency with

ReRAM results in an overall longer latency time. This observed trend was consistent

for both STREAM and GUPS benchmarks at the 21-core level.

Next, I increased the number of cores to 68 cores, which is the number used in

the Intel KNL chip. I simulated the comparison with both 21 cores and 68 cores, and

the results are shown in Figure 9-4. The results indicate that when the number of cores

is low (21), DRAM-based architecture outperforms ReRAM, even for GUPS type of

algorithms. Although there was a small performance improvement with the

ReRAM_FastWrite version, this still was not enough to overcome DRAM architecture

performance.

152

Figure 6-15 - SST GUPS Benchmark Comparison for 21 cores

153

However, when the number of cores was increased from 21 to 68 cores, I see

that in both STREAM and GUPS based benchmarks, ReRAM is able to outperform

DRAM-based architecture. This is due to the higher amount of memory access requests

needed with the higher core count. This requirement is more easily met by a more

parallel memory system such as the one architected with the ReRAM based main

memory. I see this reflected in the bottom plot in the figure of the memory latency

breakdown for the stream benchmark. Comparing the impact of increasing core count

on the CPU perceived latency, I see a sharp increase for DRAM, while minimal impact

to the ReRAM scenarios. This increase in latency can be attributed to a higher amount

of bottleneck resulting in more stalls. Therefore, as the core count is increased, there

needs to be enough parallel request to fully exploit the high amount of parallelism

afforded by ReRAM and overcome the higher latency with ReRAM.

154

Figure 6-16 – Impact of Increasing Core Count

155

Table 6-3 compares the memory bandwidth processed in each of the simulated

conditions. At lower core count, DRAM based architecture provides STREAM

bandwidth of 76GB/s is nearly 40% higher than the one provided through ReRAM

based architecture. At higher core count, ReRAM provides a higher bandwidth of

138GB/s, while the DRAM-based architecture’s STREAM bandwidth is 30% lower at

95GB/s.

Bandwidth

(GB/s)

Cores DRAM ReRAM_SlowWrite ReRAM_FastWrite

GUPS 21 1.36 0.89 1.07

68 1.53 1.94 2.51

STREAM 21 76 37.45 47.07

68 95.6 136.63 138.6

Table 6-3 Bandwidth Comparison

6.7 Impact of Core Count

Based on the previous section, I see that the advantages of the Monolithic

ReRAM architecture’s parallelism can only be exploited when there are sufficient

number of accesses, realized at higher core counts. To study the impact of the core

count, I performed a set of simulations varying the core count and compared the

performance on a ReRAM architecture with a write-latency of 1us. In addition to the

156

DDR4 version for the DRAM architecture, I also used an HBM2 version for the DRAM

model. Figure 6-17 shows the SST simulation result of the comparison as a function

of the core count, from 20=1 up to 29=512. The x-axis is the core-count and the y-axis

is the execution time.

If I look at the STREAM benchmark result for DRAM-DDR4, as the core count

increases, the execution time reduces at a constant slope, implying an improvement in

performance gained through the higher processing power. However, this trend

saturates at around 8 cores, beyond which the simulation time improves at a slower rate.

A similar trend exists for the DRAM-HBM implementation as well, with the execution

time being lower, but having a similar inflection point which is on the order of the

number of memory controllers for the DRAM implementation. For the ReRAM

implementation, the execution time much higher due to the higher memory latency but

falls at a similar rate as the DRAM implementations. The difference, however, is that

ReRAM’s inflection point is much higher, above 250-core count.

157

Figure 6-17 - Performance Comparison between DRAM and ReRAM system
using STREAM and GUPS benchmarks (note: Log-Scale X & Y axis)

158

Both DRAM-DDR4 and DRAM-HBM outperform ReRAM in the low core

count for both benchmarks. HBM is able to perform slightly better than DRAM due to

its higher bandwidth and proximity with the CPU. However, starting at 64 cores,

ReRAM begins to outperform both DRAM devices with a low execution time. Figure

6-18 summarizes the bandwidth comparison between ReRAM, DRAM-DDR4, and

DRAM-HBM2 architectures. In the STREAM bandwidth plot, the star represents the

reported 90+ GB/s number from Intel Knights Landing, which corroborates with my

simulation results.

159

Figure 6-18 - Bandwidth Comparison between DRAM and ReRAM system using
STREAM and GUPS benchmarks (note: Log-Scale X & Y axis)

160

At the inflection point of 64 cores, ReRAM outperforms DRAM-DDR4 by 30%

for the STREAM benchmark case and meets the performance of HBM2-based

architecture. The results indicate that at very low core counts (less than 64), DRAM

outperforms ReRAM due to its much lower inherent access latency for both

benchmarks. However, as core count increases, DRAM cannot keep up with the data

bandwidth needs, while ReRAM's parallelism compensates for its higher memory

latency. This can be further illustrated when I analyze the read latency contribution

from the different system components. At the memory level, DRAM latency is 8x faster

than ReRAM. Yet, at the CPU level, the overall perceived latency for DRAM is only

2x faster at a core count of 16. This manifests in the DRAM architecture as bottleneck

of the memory requests at the miss status holding register (MSHR), the hardware

structure for tracking outstanding misses. For ReRAM, due to the high amount of

parallelism, the memory requests are processed without having to hold them. At the

higher core counts, there is a sufficient amount of access requests to take advantage of

the memory parallelism offered by the ReRAM architecture.

The results confirm that with sufficient processing power, the highly parallel

ReRAM with long latencies performs better than high-speed DRAM with limited

memory controllers. The cross-over point when ReRAM outperforms is 85GB/s for

DRAM-DDR4 and 135GB/s for DRAM-HBM2 device with the STREAM benchmark.

161

One interesting note is with the slight worsening of performance with HBM DRAM at

very high core count of 512. Because of HBM's higher bandwidth interface, the low-

access granularity of GUPS suffers with HBM due to stalls from prior access requests.

6.8 Energy Comparison

I also calculated the total energy dissipated for the DRAM-DDR4 system for

comparison against ReRAM. For the CPU and network power dissipation, I

extrapolated from Intel's Knights Landing power specification. For DRAM, my

simulations for the 16GB dual rank DDR4 2400MHz DIMM model reported average

energy per bit dissipation of 19.5pJ/bit. For ReRAM, I used energy numbers of

64pJ/bit for write (reported in Crossbar’s whitepaper) and 0.5pJ/bit for read operations

assuming a read current of 5uA, a 2V voltage bias, and a cell-sensing time of 50ns.

Figure 6-19 shows the energy-delay plot for DRAM and ReRAM architectures for both

benchmarks. The x-axis in the plot is the total delay to complete the simulation, while

the y-axis is the energy consumed in mJ, as a product of the power (voltage * current)

and duration of the power consumption. These points were obtained from the different

core counts I used in the previous section. The energy-delay cross product is a metric

used to assess the impact that a reduction in delay would provide in terms of energy.

162

For the STREAM energy-delay plot, for both DRAM and ReRAM, as the core

count is increased, resulting in lower delay, I see little impact on the energy consumed.

This is because, at these points, increasing the core count reduces the overall duration

of power consumption, which is taken up by the higher number of core power.

However, I see an inflection point, after which there is very little reduction in delay by

increasing core count, but there is a much higher energy penalty. This is the knee of

the curve observed, where throwing more processing power does little to provide

improvement in performance. This inflection point is at higher core count, similar to

the performance plot I saw in the previous section. A similar trend is seen for GUPS

benchmark, with its inflection point being much higher for ReRAM, due to the

advantage that ReRAM offers in terms of finer access granularity.

163

Figure 6-19- Energy-Delay Plot of DRAM-DDR4 and ReRAM system using
STREAM and GUPS benchmarks (note: Log-Scale X axis)

164

The optimal operating point on the energy-delay tradeoff is circled on the figure,

indicating that ReRAM performs at or better than DRAM at both benchmarks. I

observe that, overall, ReRAM delivers lowest delay for both benchmarks, as seen in

the performance comparison. This is achieved at the higher-core counts, where

ReRAM as a main memory is able to provide an energy efficient, especially for GUPS

where high access granularity of DRAM incurs additional penalty. This energy

efficiency comes primarily as a result of faster execution time, which reduces the

duration of CPU and NoC power dissipation.

165

7 NoC Topology Impact

7.1 Motivation

 ReRAM based main memory architectures offer advantages in terms of

scalability, density, and fine-access granularity. These architectures are capable of

delivering high connectivity and low access granularity. To truly exploit the parallelism

offered by ReRAM architectures, a robust Network-On-Chip (NoC) topology and

optimum scaling of core count is critical to ensure low packet latency while being able

to offer the high throughput in communication.

 In this chapter, I compare different NoC topologies for a ReRAM based main-

memory system and study the effect on speedup as the number of cores scales on-chip.

Based on architectural simulation results from SST on streaming and GUPS

benchmarks, I observe that fat-tree and torus topologies provide performance gains of

78% and 39%, respectively. I also observed that optimal core and memory controller

configuration have a bigger impact at moderate to high number of cores than the

topology. Performance comparison of a ReRAM-based main-memory architecture

166

against a conventional DRAM-based architecture indicate a gain of 30% with 64 cores.

Power, cost, and performance tradeoff analysis are also presented.

 Figure 7-1 (a) shows a conventional CPU chip connected to on-chip DRAM

High Bandwidth Memory (HBM) devices through a silicon interposer. Figure 7-1 (b),

illustrates an integrated CPU processor with ReRAM main-memory on the same chip,

enabling a high-number of connections between the two systems. In contrast, the

conventional on-chip DRAM solutions are limited in the number of connections,

through memory controller access points, to the on-chip HBM or DDR4 DRAM

devices.

Figure 7-1 - Comparison of (a) Conventional off-chip main-memory system with
(b) Integrated CPU die with ReRAM layers on-chip

 As mentioned before, to support reasonable sustained bandwidth requirements

in a system, a high number of these ReRAM arrays need to be accessed in parallel.

ReRAM being on-chip allows these connections to occur directly through metal-vias,

rather than through an on-chip I/O port, an external interposer for HBM, or large TSVs

in the case of 3D-ICs.

167

 The resulting system requires a robust Network-on-Chip (NoC) between the

many core and 1000s of memory controller points on the chip. Conventional NoC is

based on ring and mesh like topologies and are typically built for 100s of access points.

With our highly parallel memory-CPU memory architecture, these topologies may not

be able to support the higher network throughput needed, especially for future process

nodes. In this paper, I compare performance and power metrics between a DRAM and

ReRAM system, look at the effect of different network-on-chip topologies on the

system performance, and investigate optimal memory controller configuration for a

hybrid ReRAM-DRAM memory system.

 The rest of the chapter is organized as follows. Section 2 provides a short

background of the NoC topologies I investigated, and the simulation methodology I

followed. Section 3 presents the results and discussion of the effect of the NoC topology,

and the optimal DRAM Memory controller configuration. Section 4 presents the

conclusion.

7.2 Background

Based on previous work [11], a homogenous 2D-Mesh topology for the

Network-On-Chip (NoC) is unlikely to keep up with the relatively high communication

need of the ReRAM-architecture I envision. In order to support low latency across the

168

chip, I performed a survey of NoC topologies that can support high network capacity

for a large number of nodes on-chip. In this section, I perform a brief summary of NoC

topologies of interest, and the performance metrics used to measure them. The

topologies that have been physically fabricated by other research projects or in the

industry are shown in Figure 7-2, implemented as NoC or as datacenter network

topologies.

Figure 7-2 Comparison of various NoC topologies

Some of the metrics that are used to compare the network performance are node-

degree, diameter, and bisection width. The node-degree of a topology denotes the

number of ports connected to each node and reflects the input-output complexity of the

network. A high node-degree reduces the average path-delay but increases the

complexity of the implementation. The diameter is the worst-case path delay in the

169

network and reflects the maximum shortest path between any two nodes. The bisection

width is the minimum number of links that needs to be bisect, or cut, in order to divide

the topology into two separate networks. This parameter is used to indicate the

parallelism of the network. Ring and bus networks have a fixed bisection width.

1. Bus: This topology consists of a common routing channel to which multiple

devices connect to communicate with each other. It allows for a simple

implementation, and is the paradigm used in older system-on-chip type

implementations. However, the single common bus prevents simultaneous

communications between devices and requires bus arbitration policies to

allocate the resource between the devices. Therefore, this type of topology is

not scalable as the number of devices increase.

2. Crossbar: The crossbar topology allows for multiple parallel connection

between different input and output permutations. The result is a topology that

is low latency with higher throughput than the bus topology. The IBM Power5

architecture uses a crossbar topology. However, as the number of nodes

increase the matrix expands to an additional row and a column, resulting in a

high overhead. Therefore, this topology cannot support a scalable architecture.

3. Ring: The ring topology consists of a closed bus with the communication

direction restricted to one direction. Each node has two neighbors (degree=2)

170

and the “first” and “last” nodes are connected to each other. The information

packet travels along the ring from the source until the destination is reached.

The communication scheme is simpler and requires lower area to implement.

The bisection width is 2, and the diameter is n/2, where n is the number of nodes.

Architectures that have used the ring topology include the IBM Cell and earlier

Intel architectures, such as Knights Ferry.

4. Mesh: The mesh topology consists of m rows by n columns to support m*n

nodes. At each intersection, a router directs the direction of the packet to take

the shortest path to the destination. Higher path diversity makes multiple

simultaneous packet transmission possible. The architecture is easy to layout.

The bisection width is min(m, n), the diameter is (M+N-2), and the node degree

is 5 for the central nodes, 4 for edge nodes and 3 for corner nodes. The Tilera

100-core CMP and the Intel Knights Landing uses this topology in their

architecture.

5. Torus: This topology is similar to Mesh with the end points in the network being

connected to each other. This has the added advantage of allowing for better

fairness due to limiting maximum number of hops, while slightly increased

complexity and area cost. This leads to better path diversity than mesh and

improves the diameter of the network. The bisection width is 2*min(m, n), the

171

diameter is (m/2)+(n/2), and the node degree is 5 for all nodes. Currently, 3-

dimension torus networks are used in some supercomputer networks, such as

the CRAY XT3 and IBM BlueGene.

6. Hoffman-Singleton: The Hoffman-Singleton is a high-radix symmetric graph.

It limits the number of connections between any two nodes to two hops but is

more complex to implement on a 2D die. This topology is currently used in

large scale datacenters, such as the high-radix CRAY XE6.

Table 7-1 summarizes the relative advantages and disadvantages of the different NoC

topologies.

TOPOLOGY ADVANTAGE DISADVANTAGE

BUS Simple implementation Simultaneous communication
between devices not possible

CROSSBAR Multiple parallel connection
possible

Not scalable as number of
nodes increase

RING Simpler communication scheme;
lower area to implement

Slower implementation as data
packet travels through all nodes

MESH Higher path diversity; Ease of
layout

Higher cost to implement than
previous models

TORUS Reduces worst-case path from
Mesh implementation;

Slightly more complexity in
wiring than Mesh

HOFFMAN-
SINGLETON

Two hops between any two
nodes

Complex communication
scheme; higher cost for

implementation

Table 7-1 Comparison of NoC Topologies

A NoC topology’s performance is highly dependent and specific to the

application and hardware architecture. I looked into modeling tools that allow us to

172

assess performance impact of various topologies such as mesh, torus, and non-

symmetric heterogenous NoC architectures which might be needed to support the

Monolithic ReRAM CPU architecture. To support this, I have used the SST (Structural

Simulation Toolkit) to model the different heterogeneous NoC architectures.

7.2.1 ReRAM-based Main-Memory Architecture

For ReRAM memories, the read and write latencies are considerably higher than

DRAM memory latencies. For ReRAM memories, a trade-off exists between the

number of bits accessed from a single word-line and the access latency. In order to limit

the latency, per-array bandwidth are typically low as shown in Figure 7-3. The figure

shows a ReRAM array with wordline (WL) decoders selecting a single row in the array.

A column multiplexer (MUX) circuit at the bottom of the array is used to select a few

of the bitcells in the selected wordline to read from. The bitline current from the

selected columns is then used by a sense amplifier to differentiate between a logic high

and logic low read value. This operation is done for a few cells in an array. In order

to provide sufficient bandwidth, several of these mini array banks would need to be

accessed in a parallel ganged mode. As shown in the figure, multiple arrays are

accessed in parallel together to provide n times the per array bandwidth.

173

Figure 7-3 - ReRAM Array Access

 At the system level, the sustained bandwidth is calculated as a function of the

per-array bandwidth, the arrays per bank, the number of banks, and the access latency.

The following equation can be used to calculate the number of banks needed on a single

chip in order to meet a desired sustained bandwidth target.

Bandwidth, BW =
(BitsPerArray ∗ ArrayPerBank ∗ Banks)

(AccessLatency)

 For example, in order to provide a sustained bandwidth (BW) of 16B/ns,

assuming an access latency of 200ns, four bits per array, and 16 arrays per bank, 400

banks would be needed.

BW =
4 ∗ 16 ∗ 400

200ns
= 16

B

ns

 My sustained BW calculation indicates that each core needs to access 400 banks

in parallel to deliver 16B/ns, to provide sufficient bandwidth for real-world applications.

Note that I chose a per-bank access granularity of 8B, which is desirable for fine-access

granularity applications, and therefore have 16 arrays per bank. ReRAM architectures

174

require high amount of parallel memory accesses. The high access time is amortized

by accessing multiple arrays at once. Multiple processors would need to access these

arrays in order to fully exploit the fine access granularity provided by ReRAM. This

necessitates the need for a highly efficient network-on-chip connection topology to

service the requests between the multi-processor system and the memory system.

 A tiled floorplan, consisting of memory-processor tiles, incurs a relatively high

area overhead of 20% caused by the embedding the ReRAM peripheral circuits with

the CPU logic [25]. The inefficiency is caused by the CPU logic circuits not having

contiguous space for the digital implementation. Additionally, the memory access

patterns based on our simulation results also pointed to the fact that they are not

dedicated to the memory immediately above it. Therefore, the overall architecture

needs to support memory access patterns to any of the memory within the chip. Rather

than a tiled floorplan, I selected a centrally located ReRAM type of floorplan, as shown

in Figure 7-4.

175

Figure 7-4 - Hybrid ReRAM-DRAM System

This type of central-memory floorplan will allow for the ReRAM to be treated

as an embedded unit with their own internal NoC network. Additionally, the CPU cores

can be independent of the memory, and be implemented with a contiguous area

floorplan. DRAM memory controllers could also be provided for cache, to be

selectively used for write-intensive or sequential access type of algorithms.

7.2.2 NoC Topologies of Interest

 As mentioned before, a homogeneous 2D-Mesh topology for the Network-On-

Chip (NoC) is unlikely to keep up with the relatively high communication need of the

ReRAM-architecture I envision. In order to support low latency across the chip, I

selected a set of NoC topologies that can support high network capacity for a large

number of nodes on-chip.

176

 Based on previous area studies, I calculated that it is feasible to have more than

1000 individual memory banks, each needing to be accessed independently. This would

entail over 1000 network endpoints, which maybe fairly large for a simple mesh or

torus type of NoC topology. Therefore, I selected topologies, even ones not typical for

NoCs, following trends in supercomputers, where 1000s of network endpoints is

commonplace. I consider the following four topologies of interest to evaluate my

performance comparison: mesh, torus, fattree, and dragonfly. Figure 7-5 illustrates the

high-level connections of the different components for each topology. In the figure,

the rectangles denote the component to be connected, the small circle denotes the router

endpoints, and the lines denote the links and connections between the endpoints. These

four topologies can be modeled in the architectural simulator that I had chosen, SST.

The next subsection summarizes the simulation details.

177

Figure 7-5 - Overview Diagram of NoC Topologies Simulated

1. 2D Mesh: Mesh is the simplest and most widely used NoC topologies

due to its ease of physical layout. For my study, I limited the comparison to a

two-dimensional mesh which consists of an array layout. Every network switch

is connected to four neighboring switches and one component, which could

either be a processor or a memory controller.

2. 2D Torus: This topology is similar to mesh with the added connection

between the endpoints. This has the advantage of allowing for better fairness

178

due to limiting maximum number of hops, while slightly increased complexity

and area cost.

3. Fat-Tree: Also known as flattened butterfly, the topology follows a

hierarchical layout. The higher-level root nodes have more connections than the

leaf nodes [38]. In my study, I use a 3-tier fat-tree Noc topology for my

experiments.

4. Dragonfly: The dragonfly network is a high-order radix topology that is

also hierarchical in nature. Switches are clustered together in groups with high

inter-group connections. Intra-group connections between other groups are

formed to provide high connectivity. The number of connections between any

two nodes is limited three hops (Local-Global-Local) but requires more

complex physical implementation [39].

7.2.3 Simulation Methodology

 My simulation environment consists of the SST (Structural Simulation Toolkit)

to model and evaluate the different memory architectures and NoC topologies. As

before, I made use of the following external element libraries to model the different

system components.

 Miranda - Pattern-based CPU model to model the individual processor

on STREAM and GUPS benchmarks

179

 Merlin - Network-On-Chip router model to model the different

topologies and specify the connection links between the different components.

 MemHierarchy - L1 and L2 cache model

 DRAMSim3 - DRAM Memory model for DDR4 and HBM2 devices

 Messier - ReRAM Memory model with asymmetrical read and write

latencies

7.3 Experiment Results & Analysis

In this section, I present the NoC topology comparison simulation results

comparing the four topologies: Mesh, Torus, Fattree, and Dragonfly. Additionally, I

also studied the impact of higher number of memory controllers to support a hybrid

ReRAM-DRAM architecture. Figure 7-6 shows the central ReRAM torus topology,

with the access points to the CPU lying on the boundary in darker green color.

Figure 7-6 - Torus Configuration for Central ReRAM Architecture

180

7.3.1 NoC Topology Evaluation

 The SST architectural simulation result presented in the previous chapter used

a Mesh topology for the comparison between DRAM and ReRAM. That work showed

the configurations that are optimal to take advantage of ReRAM, which are sparse

access patterns and higher core counts. Next, I studied the impact of various NoC

topologies presented in Section 2 on the highly parallel ReRAM architecture described

in the previous chapter. I simulated the different topologies using a link bandwidth of

1, 2, 4, 8, and 16GB/sec for all topologies. The network parameters for the various

topologies are provided in Table 7-2. The input and output buffer sizes were set to 2KB,

with 2 virtual channels and a flit size of 16B. The mesh and torus are two-dimensional

arrays of 34 rows and 35 columns to meet the maximum number of nodes for the

simulation range. The fat-tree network is a 3-level tree, with 2048 hosts.

Table 7-2 – Network Sizing Parameters

181

 At the lowest and middle level, there are 256 routers per level, with 8 upper and

8 lower links each. At the top-level of the fat-tree, there are 64 routers with 32 links.

The fattree topology was simulated using a deterministic routing algorithm that only

relies on the source and destination address, rather than the current state of the network.

The dragonfly network has a high radix of upto 30 links per router at the lowest level.

Minimal routing algorithm was used on the dragon fly topology, which selects the route

based on the shortest path to the destination. The table also summarizes the total links

present in the network for the simulation ranges of my experiment.

 Figure 7-7 shows the summary of the NoC comparison simulation results in

terms of the raw execution time for a system with 16, 32, and 64 cores for STREAM

and GUPS benchmarks. The link bandwidth was kept at 8 GB/s for all simulations.

The x-axis is the number of cores and the y-axis is the total execution time. For the

STREAM benchmark, I see that at the lowest core count simulated of 16, mesh has a

much higher execution time than all of the other three topologies, with the fat-tree

providing the best performance. This trend is much more prevalent for the GUPS

benchmark, where the MESH is close to 2x slower performance than the fattree

topology. Since GUPS requires higher number of separate connections to provide

memory access to the CPU, it would have a higher load on the network.

182

 As the core count increases, I see the specific topology having less impact on

the performance. This could be due to the contention points being more spread apart,

due to more originators of the memory requests. While the memory access points are

very high (1000), the number of cores is only 16, this causes the network paths near the

CPUs to be more congested. As I increase the number of cores, the contention is

alleviated by spreading apart the location of the memory request origins.

183

Figure 7-7 - NoC Topology Performance: Impact of Cores

184

 The results show the impact of cores by keeping the link bandwidth constant at

8GB/sec for all topologies. For both benchmarks, I observe a consistent trend in the

performance as follows. Mesh topology delivered the highest execution time, followed

by torus, then dragonfly, and finally fattree topology. As the number of cores increase,

the performance improves, although saturates and the network topology has less impact

on the overall performance. This is especially notable for the the GUPS benchmark at

the 16-core configuration. Here, mesh had much higher execution time due to network

contention owing its sparse finer access granularity.

 I next computed the speedup of scaling the performance using the lowest core

count, 16, as the baseline. The speedup is used to assess how much faster parallelizing

the system improves the system performance, and is calculated by

ExecutionTimeେ୭୰ୣ୧

ExecutionTimeଵ଺

Table 7-3 shows the effectiveness of scaling up for the different cores from a baseline

of 16 cores.

185

Table 7-3 - Speedup for different NoC Topologies (baseline: 16 cores)

 Figure 7-8 shows the impact of the link bandwidth on the performance, while

keeping the number of cores constant at 32.

186

Figure 7-8 - NoC Topology Performance: Impact of Link Bandwidth

187

 While mesh generally performs worst, at very low link bandwidths I see that

dragonfly has a degraded performance, worse than both mesh and torus topologies. I

looked at two network statistics to explain this anomaly at the 1GB/s link bandwidth

scenario. The send-packet-count metric for torus had a higher (5x) number of packets

sent overall. This indicates a higher number of hops needed for torus than the higher-

order dragonfly, as expected. The output-port-stalls metric, however, showed that the

dragonfly topology had a 6-orders of magnitude higher stall count than with dragonfly.

This is likely due to Dragonfly using a greedy locally optimized routing algorithm that

can cause local link saturation resulting in a bottleneck.

 Similar results of poor performance of dragonfly over torus and fat-tree at low

message sizes was reported in other works [42, 43]. Torus performed well overall for

the benchmarks I simulated, at both reasonable link bandwidths of 4GB/s and above.

Although, fat-tree topology had the lowest execution time, the marginal performance

improvement seen over torus may not justify the added complexity at these ranges.

Using Mesh topology as a baseline, at a link bandwidth of 2GB/s, fattree performed

78% better, while dragonfly and torus performed 35% and 39% better, respectively, for

the GUPS benchmark.

188

 The tradeoff between the complexity of the topology and the performance

attained in terms of execution time is graphed in Figure 7-9 for the STREAM

benchmark.

Figure 7-9 - NoC Topology Tradeoff: Execution Time vs Aggregate Bandwidth
for STREAM benchmark (Note: Log Scale X & Y axis)

 The total concurrent aggregate bandwidth is computed by multiplying the per-

link bandwidth by the number of links summarized in Table 7-2. This is a rough proxy

for the cost of the topology, in terms of both area, design complexity, and power

dissipated by the NoC. Here, Torus topology offers the best trade-off in terms of

complexity and delay, while Fattree topology can deliver the lowest execution time, at

189

the cost of higher number of links. Mesh topology also delivered reasonable execution

times with low cost. Dragonfly has a poor tradeoff at the lower bandwidth ranges based

on the specific configuration that I had chosen. Future work will focus on selecting the

optimal configuration of hosts/router and routers per group to reduce link saturation

and produce a more balanced dragonfly network. Varying the workload and introducing

additional benchmarks suites would yield a more rigorous comparison of the different

architectures.

7.3.2 DRAM Memory Controller Optimization

 In my final set of experiments, I performed sensitivity analysis on the number

of memory controllers (MC) in a conventional DRAM system. The motivation for this

final study was to optimize on the number of memory controllers in hybrid DRAM-

ReRAM System referred in Figure 7-4. For this study, I used a simple mesh topology

and varied the number of memory controllers to 2, 4, 6, and 8 for the full range of cores

(upto 512 cores).

 Figure 7-10 shows the execution time comparison for STREAM and GUPS

benchmark. Again, scaling the cores improves the performance to a point, after which

the performance saturates. At lower core counts, a higher number of memory controller

cannot be fully utilized. The biggest improvement can be seen from two memory

controllers to four for a specific core count.

190

Figure 7-10 - DRAM Performance: Impact of Cores and Memory Controller

191

 Figure 7-11 shows the speedup comparison, using the slowest overall

configuration of 1 core and 2 memory controllers as the baseline. The plot shows that

for both benchmarks, increasing the memory controllers has a marginal benefit. A

configuration of 64 cores and 4 memory controllers seems to be an optimal trade-off

between performance and cost. For the hybrid DRAM-ReRAM main-memory solution,

having four DRAM Memory controller access points offered the highest performance

gain.

192

Figure 7-11 - DRAM Speedup: Impact of Cores and Memory Controller (note:
Log-Scale X axis)

193

7.4 Conclusion

 ReRAM as a main-memory delivers several advantages over conventional

DRAM in terms of scaling, capacity, and performance for sparse-access patterns in

support of parallel computations. Power-efficiency is also achieved due to the on-chip

data access communication path. At higher core counts, ReRAM is able to surpass

DRAM performance and results in lower energy cost. Torus Noc topology performed

well in my simulation and might be preferred over fat-tree and dragonfly due to its

simpler implementation and lower cost.

194

8 ReRAM as Trusted On-Chip Main Memory

8.1 Motivation

DRAM as a main-memory is one of the vulnerable points in a hardware system

due to it being located off-chip. This opens the system up to snooping on the system

bus, side-channel attacks on the memory data through mechanisms like row-hammering

attack by malicious devices. Embedded DRAM variations, like eDRAM are limited in

capacity and cannot accommodate space needed for real-word application workloads.

Additionally, as DRAM faces scaling issues as a high-density memory, emerging

memory technologies are being explored as alternatives. One promising alternative for

this application is ReRAM, which is scalable, vertically stackable, and because of the

possibility of integration with standard logic process, can deliver higher density as a

main-memory solution. The key differentiator with this approach involves a ReRAM

memory array that integrates directly with a logic processor underneath, eliminating

the need to go off-chip.

195

ReRAM as an on-chip trusted main-memory which is impervious to side-

channel attacks, leaves the memory more protected and prevents snooping of the bus.

Additionally, by controlling the write energy applied during a program, I can selectively

reduce the data-retention time and prevent the cold-boot access, a concern with non-

volatile systems. Area studies and measurement results on a fabricated test structure

demonstrating the cell relaxation is presented. Architectural performance comparison

against a DRAM system shows a 30% improvement.

Secure processor architecture requires addressing both processor and off-chip

memory access vulnerabilities. In conventional system architectures, critical data in

RAM is typically located off-chip in DRAM and could be comprised due to two major

security vulnerabilities. The first is bus-snooping, 1 in Figure 8-1, on the connection

between the processor chip and a Main-Memory system that is located off-chip. The

second concern is DRAMs vulnerability to Row-Hammer Attacks, 2 in Figure 8-1,

whereby accessing a bitcell repeatedly in succession, an adversary is able to introduce

data disturbance on a bit in an adjacent column.

196

Figure 8-1 - Vulnerabilities in Main Memory

In addition to these security vulnerabilities, DRAM as a high-density memory

is reported as facing scaling issues and being vulnerable to failure at advanced

technology nodes [16]. Being located off-chip, DRAM has to interface to the processor

system through a limited set of memory controller access points. This is especially true

for multi-processor systems, as shown in Figure 6-7, where the interface to the main-

memory system is through a limited set of memory controllers, often on the order of 4-

8 access points per chip. This limited set of connections leads to performance

bottlenecks which result to high latencies at the system level, despite low memory

latencies. On-chip DRAM options, such as embedded DRAM (eDRAM), are not viable

options due to their larger bitcell size and limited capacity. The key advantage of

ReRAM, from a system-vulnerability and performance point of view, is that they are

197

On-Chip, allowing for the processor to be directly connected to the memory. ReRAM

functioning as an on-chip main-memory, enhances both the performance and security

of the system.

ReRAM, being a non-volatile memory, does have its challenges [11]. Being a

non-volatile memory, it is especially vulnerable to cold-boot type of attacks, where data

could be recovered from the hard-disk. At the device level, ReRAM’s read and write

latencies are much longer than DRAM. The write endurance limits are also much lower

than what DRAM is able to deliver, which poses an issue for typical applications to be

supported. My solution to this is that by controlling the write-energy applied which

has an advantage for both performance and security of these ReRAM-based Main-

Memory architectures.

8.2 Background

I will go briefly into the bitcell operation mechanism. A conductive filament is

grown in the middle layer by applying electrical stress, which allows for the resistance

of the device to be modified. Figure 8-2 shows a cross-section of a resistive memory

and the resistance modifying behavior. In ReRAM, when the conductive filament is

created, the cell is in low-resistance-state (LRS). On the other hand, when the filament

is broken by, for example, applying a high-voltage of the opposite polarity, the filament

198

is broken causing the bitcell to be open-circuit, in a high-resistance-state (HRS). The

filament is created or broken in the middle dielectric layer(s) by applying a high enough

current or voltage causing a dielectric breakdown. These materials are engineered so

that the breakdown is not permanent and is reversible, upto a certain number of cycles.

The write endurance specifies the number of these write cycles before the bitcell fails

and can no longer transition.

Figure 8-2 - ReRAM Resistance Creation

8.2.1 Integrated Processor-ReRAM Architecture

An integrated Processor-ReRAM architecture layout has the flexibility to be

configured in many ways. The data access pattern between the processors and the

memory systems for the application space would be a key determinant. Figure 8-3

199

shows two possible approaches. The tiled configuration consists of individual ReRAM

arrays embedded into a larger processor. These processor-ReRAM tiles are ideal for

highly local data accesses where each processor computes on workload in the main-

memory located over its tile. The central ReRAM configuration shows a high number

of individual ReRAM arrays located centrally, surrounded by multiple processors. This

configuration is desired for access patterns that are sparse and random, requiring any-

to-any connection between the processor and an individual array. In this study, my area

analysis focused on the tiled approach.

 Figure 8-3 - Integrated ReRAM-Configuration

200

8.2.2 ReRAM Security Implications

From a system architecture point of view, using ReRAM as a main memory that

is integrated directly onto a processor enables several security advantages. Figure 8-4

illustrates an on-chip ReRAM based main memory solution, with the connections

between the multiple processor subsystem and the ReRAM arrays handled by a

Network-On-Chip interconnection. By being on-chip, ReRAM is impervious to side-

channel analysis. All of the communication channels between the processor and

memory is through on-chip metal vias and thus not available for bus-snooping.

Additionally, ReRAM is also not susceptible to the data-disturbance seen in DRAM

through the Row-Hammer attack. Memory systems are susceptible to cold-boot type

of physical attacks to recover data. In this form of attack, an adversary that has physical

access to the hardware performs a memory dump of the RAM in order to obtain

encryption keys or other sensitive data. Even without power, DRAM main memory

remains stable for a short duration, before the charge on the bitcell is dissipated. This

is characterized as the time between refresh cycles, which is often set as 65ms as a

conservative specification. In a cold-boot attack, this data recovery time is extended by

the adversary lowering the temperature of the memory module. This slows the

discharge on the DRAM bitcells capacitor, thereby retaining the data on the bitcell well

past the refresh time needed.

201

Figure 8-4 - ReRAM-based Main-Memory Solution

Since this attack exploits an intrinsic hardware vulnerability, it poses a serious

threat even for trusted platforms [30]. Cold-boot attacks are even more problematic for

nonvolatile memories. ReRAM as a non-volatile memory retains data without power,

with a typical data-retention time of 10 years. This makes ReRAM-based main

memories to be especially susceptible to these types of physical attacks to recover data

from a system.

8.3 Proposed Approach

My solution for ReRAM’s cold-boot attack problem comes from the insight that

ReRAM for main-memory applications do not necessarily require non-volatility of data.

Currently, DRAM as a main memory is volatile and extends its data remanence with

periodically through a refresh operation from storage. If I are able to selectively control

202

the data-retention time of the ReRAM by applying a lower write-energy, I would be

able to reduce the impact of cold-boot type of attacks by preventing the data from being

available for long times. Figure 8-5 illustrates ReRAM behavior operating in three

different modes based on the electrical stress applied. The electrical stress is indicated

in the figure’s y-axis by controlling the current compliance limit applied during the

program operation. What this would mean is a system where the main memory retains

the data for a short time, on the order of a few milliseconds. I can mitigate the data-loss

by apply a periodic refresh, which is a manageable solution similar to how DRAM deals

with data discharge on its bitcell. Furthermore, studies on the impact of temperature on

data retention indicate high stability for ReRAM bitcells [32]. This implies that

ReRAM’s data retention time may be unaffected by external lowering of the

temperature, bolstering it against cold-boot type of attacks.

203

Figure 8-5 - ReRAM Three Modes of Operation

ReRAM’s data-retention time is a function of the energy applied to the cell as a

function of the voltage and current applied during a Program or a write operation. If a

lower write energy is applied, that would result in either a lower program voltage and/or

lower write latency, both of which have positive performance implications.

Additionally, a RESET cell (LRS) in the digital volatile mode must also be placed in

this lower state in order to make it non differentiable to an unpowered read attack.

Additionally, lower write energy would also result in improved write endurance

for the cell, which is one of the device challenges with ReRAM technologies [11].

Finally, lower data retention time also helps prevent cold-boot ReRAM data from being

accessible by a malicious adversary.

204

8.4 Analysis and Discussion

In the Chapter 5, I demonstrated that the digital volatile ReRAM behavior of the

data is automatically lost after a short duration. I did this by fabricating discrete

ReRAM devices in order to observe the programmed cell relaxing from a set to a reset

value. I used Physical Vapor Deposition (PVD) to create my ReRAM stack using

Platinum and Titanium for the top and bottom electrodes, and Aluminum Oxide and

Titanium Oxide for the dielectric layer. The selection of this particular ReRAM stack

was based on prior work that had demonstrated short term-time-dependent plasticity

(STDP) to mimic neuron behavior [22, 35].

The results presented in the previous chapter, demonstrates the observed cell

relaxation after a duration of 10 minutes. From a system security point of view, this

relaxation behavior can be exploited to ensure that certain critical information could be

programmed in an intermediate region so that the data is lost after a set duration. The

effect of temperature on the data-retention, specifically whether cold temperature will

extend the data retention time is something to be explored.

As mentioned in section 2 of this chapter, previous studies showed little impact

of temperature on the data stability of ReRAM devices [32]. The primary mechanism

of resistance creation in TiO2 based resistive memories is through the creation of

oxygen vacancies through redox reactions, rather than dominantly from thermally

based mechanisms like with Phase Change Memories (PCM). However, since redox

205

reactions could be accelerated by heat, there might be a slow-down in the relaxation

time in the case of a lower-temperature. This particular effect was not studied as part

of this work and would be a good extension of this research for the future.

ReRAM as a main-memory delivers several advantages over conventional

DRAM in terms of scaling, capacity, and performance for sparse-access patterns in

support of parallel computations. Power-efficiency is also achieved due to the on-chip

data access communication path. In addition to these performance benefits, on-chip

ReRAM main memory can be a trusted hardware resource. There is no off-chip system

bus snooping and no vulnerability to row-hammer hardware attacks.

In this paper, I presented the opportunity for ReRAM to be leveraged as mixed

volatility main memory based on the electrical stress applied. The low data-retention

time avoids Cold-Boot physical attack on the system by clearing the data over short

time. There would also be a tradeoff of lower write energy leading to improved write

endurance which is an effect to be studied in future work. Additionally, the

experimental study could be repeated at lower and higher temperature in order to

evaluate the effect of temperature on the data retention and the behavior in the cold-

boot scenario.

206

9 Conclusion

A monolithic processor that integrates ReRAM memory and processor requires

optimum configuration of the Core, NoC Topology, and memory controller at the

architecture level to fully exploit the advantages. The core/CPU needs to be able to

issue multiple non-blocking memory requests per cycle. This can be achieved through

superscalar or multi-threading processors with SIMD flexible scatter-gather memory

requests [11]. The Network-On-Chip needs to support high-throughput, which can be

realized by incorporating higher-dimensional alternative NoC topologies. The ratio of

Memory Controllers to cores need to be optimized to balance the area incurred against

the need for parallelism. A summary of the key contribution is presented in the table

below.

In this work, I have demonstrated a method for evaluating integrated ReRAM-

Processor type of architectures using standard EDA tools. I also presented an overview

of Crossbar ReRAM technology that has been demonstrated in fabricated silicon chips

that allow this novel on-chip main memory architecture. My layout results indicate that

207

I can integrate a cluster of ReRAM mat arrays with a processor logic underneath and

incur an area penalty of 18% and an overall area efficiency of 50%. Based on the

memory access patterns, however, I noted that a central ReRAM approach would allow

for independent development of the ReRAM and Processor logic. The area under the

ReRAM array could be used to support SRAM cache array and the NoC interconnect

logic.

Knowledge Area Contribution

Physical Design Digital Implementation of Integrated ReRAM-CPU solution

 Area analysis showed a 20% penalty with 50% area
efficiency

 Floorplan of controller circuits underneath Central ReRAM
block

Device Level Fabrication of Resistive Test Structure by milling aluminum
mask and performing PVD of test structure

 Demonstrated digital volatile cell behavior and confirmed
bipolar program switching operation

 100x lower write energy per write possible in digital volatile
state with similar lower write endurance

Architecture Level ReRAM performs favorably with higher parallel requests

 Queue depth impacted dense memory access pattern

 Reducing ReRAM Write latency from 200ns to 1us
improved the bandwidth by 25% for GUPS benchmark

 Fat-tree and torus NoC topologies provide performance
gains of 78% and 39%, at bandwidth constrained scenario

 Torus NoC topology performed well across varying core
count and link bandwidths

Table 9-1 - Summary of Key Contributions

The device-level research work I performed demonstrated that ReRAM could be

used in a mixed-volatile state where a SET programmed cell could be placed to lose its’

208

value over time. This has several advantages such as lower write energy, which

translates to lower write current and/or lower write latency, and improved write

endurance due to the lower write energy applied. Additionally, controlling the volatility

of the data in this manner, opens the memory technology to be used in many ways to

selectively retain data for security or data persistence.

Finally, architectural simulations comparing ReRAM and DRAM based

architectures showed that ReRAM-based main memory architectures outperform at

higher core counts, where their high amount of memory parallelism can be sufficiently

utilized. My simulations showed the cross-over point where ReRAM outperforms

DRAM-DDR4 to be at 64 cores for the STREAM benchmark. My NoC topology

comparison indicated both Fat-Tree and Torus topologies to have good performance for

my configuration, with torus being an optimal choice due to its simplicity of

implementation.

ReRAM as a main-memory delivers several advantages over conventional DRAM

in terms of scaling, capacity, and performance for sparse-access patterns in support of

parallel computations. Power-efficiency is also achieved due to the on-chip data access

communication path. In addition to these performance benefits, on-chip ReRAM main

memory can be a trusted hardware resource. There is no off-chip system bus snooping

and no vulnerability to row-hammer hardware attacks. In this paper, I presented the

209

opportunity for ReRAM to be leveraged as mixed volatility main memory based on the

electrical stress applied. The low data-retention time avoids Cold-Boot physical attack

on the system by clearing the data over short time. There would also be a tradeoff of

lower write energy leading to improved write endurance which is an effect to be studied

in future work.

210

10 Future Work

In this chapter, I summarize future work of the different research aspects that

were investigated in terms of physical-design, device-level, and architecture-level.

Physical Design: With the increased complexity of integrating two distinct full-

chip like designs, floor-planning placement of the blocks, their orientation, and location

of the I/O ports will be critical in minimizing routing congestion. The next future work

can explore floor-planning and digital implementation of the central ReRAM approach

with multiple surrounding processor cores, NoC router circuitry, and any additional

hardware accelerators for optimal performance of graphical processing applications.

This will allow to quantitively evaluate placement options for the multi-core central

ReRAM fabric to maximize I/O bandwidth to individual tiles and the intra-tile

communication network needed. Thermal dissipation of the underlying logic circuits

through the ReRAM BEOL layers is a possible concern that needs to be looked at.

The current area study was limited to a simple RISC-V processor in an academic

45nm technology. The next course of study can include more complex and divergent

processors to stress the connectivity to the memory bank network. Additionally,

extending to a more advanced process nodes with a process design kit (PDK) from a

211

foundry such as TSMC, GlobalFoundries, SEMS, would make the diversity of

standard-cell logic more accurate in the area estimations.

Device-Level: Several points of observation merit a closer look. Volume data

on the observed volatile state is critical to provide more data points which would lead

to better averaging of the program current compliance and the expected rate of the

relaxation. As mentioned in Ch. 5, volume data for the characterization results would

be useful to isolate noise and model the cell retention relationship more robustly. This

requires fabricating a full array, with more than 1000 bitcells so that statistical analysis

could be performed to more completely characterize the bitcell behavior.

Further analysis on the behavior for very high resistance bitcells and the increase

in resistance after a delay needs to be analyzed. These can be further mapped to a

model of the current compliance applied and the sequence of preceding program pulses.

As for the dimensions of the cell, future work can try to make the dimensions smaller,

towards the target dimensions seen in the intended application in order to minimize the

creation of parallel filaments. Future work on the effect of oxygen partial pressure can

be analyzed to identify any impurities created during the fabrication process. In regard

to the trusted memory application, the effect of temperature on the data retention is

critical in assessing the cold-boot attack approach discussed in chapter 8.

Architecture-Level: The impact of core count showed a inflection point for

both ReRAM and DRAM based architecture where the system performance saturates

212

at a point near the number of memory controllers. While this point was above the

number of memory controllers for DRAM, it was well below that for ReRAM. Future

work can explore the reason for this difference. One possible reason could be the

differing memory models used. ReRAM used a simple Messier memory model from

SST to model the latencies as a constant value. While for the DRAM, DRAMSIM was

used to more accurately model the effect of reordering and stalls from pending requests.

On the NoC topology studied, further work is needed on optimizing the design

configurations of the different topologies. For the dragonfly configuration, this would

be the ratio of the number of groups, hosts, and routers. For mesh and torus topologies,

a more optimal approach would be to scale the router array for each core count. Finally,

an architectural simulation of the hybrid ReRAM-DRAM approach would be valuable

to investigate a solution where the best points of each technology is exploited.

213

11 References

1. Y. Chen, C. Petti, “ReRAM technology evolution for storage class memory

application,” 2016 46th European Solid-State Device Research Conference

(ESSDERC), Lausanne, 2016, pp. 432-435.

2. Sung Hyun Jo, Kuk-Hwan Kim, and Ii Lu, “High-Density Crossbar Arrays

Based on a Si Memristive System,” Nano Letters, 2009, Vol. 9 No (2), pp. 870-

874

3. G. C. Adam, B. D. Hoskins, M. Prezioso, F. M. Bayat, B. Chakrabarti and D.

B. Strukov, "Highly-uniform multi-layer ReRAM crossbar circuits," 2016 46th

European Solid-State Device Research Conference (ESSDERC), Lausanne,

2016, pp. 436-439.

4. Sung Hyun Jo, T. Kumar, S. Narayanan, W. D. Lu and H. Nazarian, "3D-

stackable crossbar resistive memory based on Field Assisted Superlinear

214

Threshold (FAST) selector," 2014 IEEE International Electron Devices Meeting,

San Francisco, CA, 2014, pp. 6.7.1-6.7.4.

5. I. Bhati, M. T. Chang, Z. Chishti, S. L. Lu and B. Jacob, "DRAM Refresh

Mechanisms, Penalties, and Trade-Offs," in IEEE Transactions on Computers,

2016, vol. 65, no. 1, pp. 108-121.

6. M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, M. Sarwar, "OpenRAM:

An Open-Source Memory Compiler," Proceedings of the 35th International

Conference on Computer-Aided Design (ICCAD), 2016.

7. T. Y. Liu et al., "A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm

technology," 2013 IEEE International Solid-State Circuits Conference Digest of

Technical Papers, San Francisco, CA, 2013, pp. 210-211.

8. R. Fackenthal et al., "19.7 A 16Gb ReRAM with 200MB/s write and 1GB/s read

in 27nm technology," 2014 IEEE International Solid-State Circuits Conference

Digest of Technical Papers (ISSCC), San Francisco, CA, 2014, pp. 338-339.

9. A. Fumarola et al., "Accelerating machine learning with Non-Volatile Memory:

Exploring device and circuit tradeoffs," 2016 IEEE International Conference on

Rebooting Computing (ICRC), San Diego, CA, 2016, pp. 1-8.

215

10. MRAM-info. (2016, August). STT-MRAM: Introduction and market status.

Retrieved from MRAM-info: https://www.mram-info.com/stt-mram

11. Meenatchi Jagasivamani, Candace Walden, Devesh Singh, Luyi Kang, Shang

Li, Mehdi Asnaashari, Sylvain Dubois, Bruce Jacob, and Donald Yeung.

“Memory Systems Challenges in Realizing Monolithic Computers.” In

Proceedings of the 4th International Symposium on Memory Systems

(MEMSYS-IV). National Harbor, MD. October 2018.

12. Emerging Technology and Architecture for Big-data Analytics, by Anupam

Chattopadhyay, Chip Hong Chang, Hao Yu (Chapter 4: Compute-in-Memory

Architecture for Data-Intensive Kernels)

13. Shrunk-2-D: A Physical Design Methodology to Build Commercial-Quality

Monolithic 3-D ICs, by Shreepad Panth, Kambiz Samad, Yang Du, and Sung

Kyu Lim

14. Circuit design for beyond von Neumann applications using emerging memory:

From nonvolatile logics to neuromorphic computing by Ii-Hao Chen; Win-San

Khwa ; Jun-Yi Li ; Ii-Yu Lin ; Huan-Ting Lin ; Yongpan Liu ; Yu Wang ;

Huaqiang Wu ; Huazhong Yang ; Meng-Fan Chang

15. A 16Mb dual-mode ReRAM macro with sub-14ns computing-in-memory and

memory functions enabled by self-write termination scheme by Ii-Hao Chen;

216

In-Jang Lin; Li-Ya Lai; Shuangchen Li; Chien-Hua Hsu; Huan-Ting Lin; Heng-

Yuan Lee; Jian-Ii Su; Yuan Xie; Shyh-Shyuan Sheu; Meng-Fan Chang

16. ITRS Roadmap. International technology roadmap for semiconductors.

Semiconductor Industry Association, 2017.

17. Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, C. Tao, " Coexistence of diode-like volatile

and multilevel nonvolatile resistive switching in a ZrO 2 /TiO 2 stack structure

", Nanotechnology, vol. 26, no. 39, pp. 391001, Sep. 2015.

18. M. Prezioso, F. Merrikh, B. Hoskins, K. Likharev and D. Strukov, “Self-

adaptive spike-time-dependent plasticity of metal-oxide memristors”, 2015,

arXiv preprint arXiv:1505.05549

19. C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, Y.

Xie, "Overcoming the challenges of crossbar resistive memory architectures",

High Performance Computer Architecture (HPCA) 2015 IEEE 21st

International Symposium on. IEEE, pp. 476-488, 2015.

20. H. Zhang, N. Xiao, F. Liu, Z. Chen, "Leader: Accelerating ReRAM-based main

memory by leveraging access latency discrepancy in crossbar arrays", DATE,

pp. 756-761, 2016.

217

21. Y. Shi, C. Pan, V. Chen, N. Raghavan, et. Al, “Coexistence of volatile and

nonvolatile resistive switching in 2D h-bn based electronic synapses,” IEDM

pp.119-122, 2017.

22. W Banerjee, Q Liu, H Lv, S Long, M Liu, “Electronic imitation of behavioral

and psychological synaptic activities using TiO x/Al 2 O 3-based memristor

devices,” Nanoscale 9 (38), 14442-14450.

23. J. Jeffers, J. Reinders, and A. Sodani, “Knights landing overview, ”Intel Xeon

Phi Processor High Performance Programming, pp. 15–24, 2016.

24. Katam, N. K., Mukhanov, O. A., & Pedram, M. (2018). Superconducting

Magnetic Field Programmable Gate Array. IEEE Transactions on Applied

Superconductivity, 28(2), 1–12. doi: 10.1109/tasc.2018.2797262.

25. M. Jagasivamani, C. Walden, D. Singh, L. Kang, S. Li, M. Asnaashari, S.

Dubois, D. Yeung, B. Jacob. “Design for ReRAM-based Main-Memory

Architectures." In Proceedings of the International Symposium on Memory

Systems, Washington D.C., October 2019.

26. Lei Wang, CiHui Yang, Jing In, and Shan Gai, Emerging Nonvolatile Memories

to Go Beyond Scaling Limits of Conventional CMOS Nanodevices, Journal of

Nanomaterials, vol. 2014, Article ID 927696, 10 pages, 2014.

218

27. Ielmini, D. (2016). Resistive switching memories based on metal oxides:

Mechanisms, reliability and scaling. Semiconductor Science and

Technology,31(6), 063002. doi:10.1088/0268- 1242/31/6/063002

28. ReRAM Memory — Crossbar. (n.d.). Retrieved from https://crossbar-

inc.com/en/

29. Jakub Szefer, Principles of Secure Processor Architecture Design, in Synthesis

Lectures on Computer Architecture, Morgan Claypool Publishers, October 2018.

30. J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson,

William Paul, Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and

Edward W. Felten.2009. Lest I remember: cold-boot attacks on encryption keys.

Commun. ACM 52, 5 (May 2009), 91-98. DOI:

https://doi.org/10.1145/1506409.1506429.

31. M. Jagasivamani, C. Walden, D. Singh, L. Kang, S. Li, M. Asnaashari, S.

Dubois, B. Jacob, and D. Yeung. “Analyzing the Monolithic Integration of a

ReRAM-based Main Memory into a CPU's Die.”, in IEEE Micro (Special Issue

on Monolithic 3D Architectures), November/December 2019.

219

32. Ambrosi, E., Bricalli, A., Laudato, M., Ielmini, D. (2019). Impact of oxide and

electrode materials on the switching characteristics of oxide ReRAM devices.

Faraday Discussions, 213, 8798. doi: 10.1039/c8fd00106e

33. Nail, C., Molas, G., Blaise, P., Piccolboni, G., Sklenard, B., Cagli, C., …

Perniola, L. (2016). Understanding RRAM endurance, retention and window

margin trade-off using experimental results and simulations. 2016 IEEE

International Electron Devices Meeting (IEDM). doi:

10.1109/iedm.2016.7838346

34. Zhang, Y., Feng, D., Liu, J., Tong, W., Wu, B., Fang, C. (2017). A Novel

ReRAM-based Main Memory Structure for Optimizing Access Latency and

Reliability. Proceedings of the 54th Annual Design Automation Conference

2017 on – DAC 17. doi:10.1145/3061639.3062191.

35. Prezioso, M., Bayat, F. M., Hoskins, B., Likharev, K., Strukov, D. (2016). Self-

Adaptive Spike-Time-Dependent Plasticity of Metal-Oxide Memristors.

Scientific Reports,6(1). doi:10.1038/srep21331

36. Ge, J., & Chaker, M. (2017). Oxygen Vacancies Control Transition of Resistive

Switching Mode in Single-Crystal TiO2 Memory Device. ACS Applied

Materials & Interfaces,9(19), 16327-16334. doi:10.1021/acsami.7b03527.

220

37. B. Akin, C. Chou, J. Park, C. J. Hughes, and R. Agarwal, “Dynamic fine-

grained sparse memory accesses," in Proceedings of the International

Symposium on Memory Systems, MEMSYS '18, (New York, NY, USA), pp.

85-97, ACM, 2018.

38. N. Moussa, F. Nasri, and R. Tourki, “Noc architecture comparison with

network simulator ns2," International Journal of Engineering Trends and

Technology, vol. 13, no. 7, pp. 340-346, 2014.

39. J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-scalable

dragonfly topology,"2008 International Symposium on Computer Architecture,

2008.

40. A. F. Rodrigues, R. C. Murphy, P. Kogge, and K. D. Underwood, “Poster

reception|the structural simulation toolkit," Proceedings of the 2006 ACM/IEEE

conference on Supercomputing - SC 06, 2006.

41. Crossbar Inc., “Crossbar ReRAM Technology White Paper." 2017.

42. N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale, “Evaluating hpc

networks via simulation of parallel workloads," SC16: International Conference

for High Performance Computing, Networking, Storage and Analysis, 2016.

221

43. A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Analyzing

network health and congestion in dragonfly-based supercomputers," 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS), 2016.

44. J. Seo and B. Kim, “Read margin analysis in an reram crossbar array," 2016

IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), 2016.

45. S. V and N. Chiplunkar, “Design and implementation of mesh and torus for

network on chip based system," 2015 International Conference on Trends in

Automation, Communications and Computing Technology (I-TACT-15), 2015.

46. M. M. Kim, J. D. Davis, M. Oskin, and T. Austin, “Polymorphic on-chip

networks," 2008 International Symposium on Computer Architecture, 2008.

47. M. M. Kim, M. Mehrara, M. Oskin, and T. Austin, “Architectural implications

of brick and mortar silicon manufacturing," Proceedings of the 34th annual

international symposium on Computer architecture – ISCA 07, 2007.

48. X. Liu, S. Mohanraj, M. Pioro, and D. Medhi, “Multipath routing from a trac

engineering perspective: How beneficial is it?," pp. 143-154, 10 2014.

49. R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote,

“Outstanding research problems in noc design: System, microarchitecture, and

circuit perspectives," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 28, no. 1, pp. 3-21, 2009.

222

50. K. S. Solnushkin, “Automated design of two-layer fat-tree networks."

http://arxiv.org/abs/1301.6179, January 2013. arXiv:1301.6179.

51. K. S. Solnushkin, “Automated design of torus networks."

http://arxiv.org/abs/1301.6180, January 2013.arXiv:1301.6180.

52. F. J. Andujar, S. Coll, M. Alonso, P. Lopez, and J.-M. Martinez, “Powar," vol.

15, pp. 1-22, 2019.

53. Z. Wang and S. Ma, Networks-on-chip: from implementations to programming

paradigms. Morgan Kaufmann, 2015.

54. Kannan, S., Karimi, N., Sinanoglu, O., Karri, R. (2015). Security

Vulnerabilities of Emerging Nonvolatile Main Memories and Countermeasures.

IEEE Transactions on Computer- Aided Design of Integrated Circuits and

Systems,34(1), 2-15. doi:10.1109/tcad.2014.2369741

55. Shewmon, P. (1989). Diffusion in solids. Warrendale, PA: Minerals, Metals &

Materials Society.

56. Bertaud, T., Sowinska, M., Walczyk, D., Walczyk, C., Kubotsch, S., Wenger, C.,

& Schroeder, T. (2012). Resistive switching of Ti/HfO2-based memory devices:

impact of the atmosphere and the oxygen partial pressure. IOP Conference

Series: Materials Science and Engineering, 41, 012018.

223

Appendix A: Cadence Encounter Command File

The following is the final Cadence Encounter command file script used to implement

the four-cluster blockage regions and perform the APR to generate the final layout.

Cadence Encounter Command File
Design: Integrated ReRAM with Scaled VSCALE Processor
Meenatchi Jagasivamani 2018

set_global _enable_mmmc_by_default_flow $CTE::mmmc_default
suppressMessage ENCEXT-2799
getVersion
win
set ::TimeLib::tsgMarkCellLatchConstructFlag 1

set conf_in_tran_delay {120.0ps}
allow for random io placement

set defHierChar {/}
set distributed_client_message_echo {1}
set init_assign_buffer {0}

set init_gnd_net {VSS}
set init_pwr_net {VDD}

Read in Libraries
set init_lef_file
{/homes/mjagasiv/research/Nangate/NangateOpenCellLibrary_PDKv1_3_v2010_

12/Back_End/lef/NangateOpenCellLibrary.lef}

Read in design netlist
set init_top_cell {vscale_core256}

set init_verilog {vscale_core256.vh}

set lsgOCPGainMult 1.000000
set opt_buf_footprint {buf}
set opt_delay_footprint {buf}

224

set opt_inv_footprint {inv}

set pegDefaultResScaleFactor 1.000000
set pegDetailResScaleFactor 1.000000
set timing_library_float_precision_tol 0.000010
set timing_library_load_pin_cap_indices {}
set tso_post_client_restore_command {update_timing ;
write_eco_opt_db ;}

set init_mmmc_file vscale_core256.view

####### Begin Initializing Design
init_design
getIoFlowFlag
setIoFlowFlag 0

Specify Floorplan
floorPlan -site FreePDK45_38x28_10R_NP_162NW_34O -s 1000 1000 20 20 20
20

Specify blockage for standard-cell placement and Metal Layers
Four separate clusters

createPlaceBlockage -box 289.5 628 507.5 655
createPlaceBlockage -box 385 532.5 412 750.5
createRouteBlk -box 291.5 630 505.5 653 -layer 1 2 3
4 5 6 7 8 9 10

createRouteBlk -box 387 534.5 410 748.5 -layer 1 2 3
4 5 6 7 8 9 10

createPlaceBlockage -box 532.5 628 750.5 655
createPlaceBlockage -box 628 532.5 655 750.5
createRouteBlk -box 534.5 630 748.5 653 -layer 1 2 3
4 5 6 7 8 9 10

createRouteBlk -box 630 534.5 653 748.5 -layer 1 2 3
4 5 6 7 8 9 10

createPlaceBlockage -box 289.5 385 507.5 412
createPlaceBlockage -box 385 289.5 412 507.5
createRouteBlk -box 291.5 387 505.5 410 -layer 1 2 3
4 5 6 7 8 9 10

createRouteBlk -box 387 291.5 410 505.5 -layer 1 2 3
4 5 6 7 8 9 10

createPlaceBlockage -box 532.5 385 750.5 412
createPlaceBlockage -box 628 289.5 655 507.5

225

createRouteBlk -box 534.5 387 748.5 410 -layer 1 2 3
4 5 6 7 8 9 10

createRouteBlk -box 630 291.5 653 505.5 -layer 1 2 3
4 5 6 7 8 9 10

Global VDD and VSS nets
clearGlobalNets
globalNetConnect VDD -type pgpin -pin VDD -inst * -all -override
globalNetConnect VDD -type tiehi -inst * -all -override
globalNetConnect VSS -type pgpin -pin VSS -inst * -all -override
globalNetConnect VSS -type tielo -inst * -all -override

set sprCreateIeRingNets {}
set sprCreateIeRingLayers {}

set sprCreateIeRingWidth 1.0
set sprCreateIeRingSpacing 1.0
set sprCreateIeRingOffset 1.0
set sprCreateIeRingThreshold 1.0
set sprCreateIeRingJogDistance 1.0

Create power & ground rings
addRing -skip_via_on_wire_shape Noshape -skip_via_on_pin Standardcell -
center 1 -stacked_via_top_layer metal10 -type core_rin

gs -jog_distance 0.8 -threshold 0.8 -nets {VSS VDD} -follow core -
stacked_via_bottom_layer metal1 -layer {bottom metal9 top m

etal9 right metal10 left metal10} -width 5 -spacing 5 -offset 0.8

set sprCreateIeStripeNets {}
set sprCreateIeStripeLayers {}

set sprCreateIeStripeWidth 10.0
set sprCreateIeStripeSpacing 2.0
set sprCreateIeStripeThreshold 1.0

Create power grid
addStripe -skip_via_on_wire_shape Noshape -block_ring_top_layer_limit

metal10 -max_same_layer_jog_length 1.6 -padcore_ring_bo
ttom_layer_limit metal9 -number_of_sets 3 -skip_via_on_pin Standardcell
-stacked_via_top_layer metal10 -padcore_ring_top_laye

r_limit metal10 -spacing 2 -merge_stripes_value 0.095 -layer metal10 -
block_ring_bottom_layer_limit metal10 -width 2 -nets {V
DD VSS} -stacked_via_bottom_layer metal9

Connect Power and Ground nets
createPGPin -net VDD VDD
createPGPin -net VSS VSS
sroute -connect { blockPin padPin padRing corePin floatingStripe } -
layerChangeRange { metal1 metal10 } -blockPinTarget { nea

226

restTarget } -padPinPortConnect { allPort oneGeom } -padPinTarget
{ nearestTarget } -corePinTarget { firstAfterRowEnd } -floa
tingStripeTarget { blockring padring ring stripe ringpin blockpin
followpin } -allowJogging 1 -crossoverViaLayerRange { metal
1 metal10 } -nets { VDD VSS } -allowLayerChange 1 -blockPin useLef -
targetViaLayerRange { metal1 metal10 }

Place standard cells
setPlaceMode -fp false
placeDesign
checkPlace
checkPinAssignment

Route signals
trialRoute -maxRouteLayer 8 -highEffort

Apply timing constraints
####### timing route -- preCTS
create_constraint_mode -name SDCvscale_core256 -sdc_files

{vscale_core256.sdc}
create_analysis_view -name typ -constraint_mode {SDCvscale_core256} -
delay_corner {default}
set_analysis_view -setup {typ} -hold {typ}
timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -
numPaths 50 -prefix v_core256_preCTS -outDir timingRep
orts
setEndCapMode -reset
setEndCapMode -boundary_tap false

######### clock tree synthesis
createClockTreeSpec -bufferList {CLKBUF_X1 CLKBUF_X2 CLKBUF_X3 BUF_X1

BUF_X16 BUF_X2 BUF_X32 BUF_X4 BUF_X8 } -output clock.sp
ec -routeClkNet

specifyClockTree -clkfile clock.spec
setCTSMode -engine ck

clockDesign -specFile clock.spec -outDir clock_report -
fixedInstBeforeCTS

######## RC extraction
setDrawView place
timeDesign -reportOnly -pathReports -drvReports -slackReports -numPaths
50 -prefix v_core256 -outDir timingReports
setNanoRouteMode -quiet -timingEngine {}
setNanoRouteMode -quiet -routeWithTimingDriven 1
setNanoRouteMode -quiet -routeWithSiDriven 1
setNanoRouteMode -quiet -routeWithSiPostRouteFix 0
setNanoRouteMode -quiet -drouteStartIteration default
setNanoRouteMode -quiet -routeTopRoutingLayer default
setNanoRouteMode -quiet -routeBottomRoutingLayer default
setNanoRouteMode -quiet -drouteEndIteration default
setNanoRouteMode -quiet -routeWithTimingDriven true
setNanoRouteMode -quiet -routeWithSiDriven true
#setNanoRouteMode routeWithECO true

227

snapFPlan -guide -block -stdCell -pinBlk -ptnCore -placeBlk -macroPin -
pin
globalDetailRoute

Add filler cells and perform parasitic extraction
getFillerMode -quiet
addFiller -cell FILLCELL_X2 FILLCELL_X4 FILLCELL_X8 FILLCELL_X16
FILLCELL_X32 -prefix FILL_
extractRC
timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths
50 -prefix v_core256_postRoute -outDir timingReports

########## power measurement
set_power_analysis_mode -reset
set_power_analysis_mode -method static -corner max -create_binary_db
true -write_static_currents true -honor_negative_energy
true -ignore_control_signals true
set_power_output_dir -reset

set_power_output_dir ./
set_default_switching_activity -reset

set_default_switching_activity -input_activity 0.2 -period 10.0
read_activity_file -reset
set_power -reset
set_powerup_analysis -reset
set_dynamic_power_simulation -reset

report_power -rail_analysis_format VS -outfile .//v_core256.rpt

############## verify connectivity (LVS)
verifyConnectivity -type all -noAntenna -error 1000 -warning 50

########## verify geometry (DRC)
setVerifyGeometryMode -area { 0 0 0 0 } -minWidth true -minSpacing true
-minArea true -sameNet true -short true -overlap true
 -offRGrid false -offMGrid true -mergedMGridCheck true -minHole true -
implantCheck true -minimumCut true -minStep true -viaEn
closure true -antenna false -insuffMetalOverlap true -pinInBlkg false -
diffCellViol true -sameCellViol false -padFillerCellsO
verlap true -routingBlkgPinOverlap false -routingCellBlkgOverlap true -
regRoutingOnly false -stackedViasOnRegNet false -wireE
xt true -useNonDefaultSpacing false -maxWidth true -maxNonPrefLength -1
-error 1000

verifyGeometry

######## Rerun detailed route with ECO mode
setNanoRouteMode -quiet -routeWithEco 1
setNanoRouteMode -quiet -drouteStartIteration default
setNanoRouteMode -quiet -routeTopRoutingLayer default
setNanoRouteMode -quiet -routeBottomRoutingLayer default
setNanoRouteMode -quiet -drouteEndIteration default
setNanoRouteMode -quiet -routeWithTimingDriven true
setNanoRouteMode -quiet -routeWithSiDriven true
routeDesign -globalDetail
verifyGeometry
setLayerPreference violation -isVisible 1

228

violationBrowser -all -no_display_false
verifyConnectivity -type all -noAntenna -error 1000 -warning 50

######### Timing report
timeDesign -reportOnly -pathReports -drvReports -slackReports -numPaths
50 -prefix v_core256 -outDir timingReports

Stream out and save design

streamOut v_core256.gds -
mapFile ../FreePDK45/osu_soc/lib/files/gds2_encounter.map -libName
libJuly5 -structureName v_core256
 -stripes 1 -units 1000 -mode ALL

saveNetlist v_core256_PR.v
saveDesign v_core256.enc
summaryReport -noHtml -outfile summaryReport.rpt
reportGateCount -level 5 -limit 100 -outfile v_core256.gateCount
reportNetStat

229

Appendix B: MAC Javascript Source Code

The following is the Javascript source code for the Monolithic Architecture

Calculator (MAC) mentioned in Section 4.6.

<html>
<head>
 <title>Monolithic Architecture Calculator</title>
<style>
p {
 font-family: Tahoma, Geneva, sans-serif;
}

table, th, td {
 margin-left:15px;
 border: 1px solid black;
 border-collapse: collapse;
}
th, td {
 padding: 10px;
}
* {
 box-sizing: border-box;
 font-family: Tahoma, Geneva, sans-serif;
}

.row {
 display: flex;
 border-style: double;
 border-width: thick;
}

.input_form {
 padding:0px;
 margin:0px;
 margin-left: 25px;
}

230

/* Create two equal columns that sits next to each other */

.column {
 flex: 50%;
 padding: 10px;
 border-style: double;
 border-width: thin;

}

.slidecontainer {
 margin-left: 25px;
}

.slider {
 -webkit-appearance: none;
 width: 50%;
 height: 10px;
 //border-radius: 5px;
 background: #d3d3d3;
 outline: none;

 opacity: 0.7;
 -webkit-transition: .2s;
 transition: opacity .2s;
}

.slider:hover {
 opacity: 1;
}

.slider::-webkit-slider-thumb {
 -webkit-appearance: none;
 appearance: none;
 width: 25px;
 height: 25px;
 // border-radius: 50%;
 background: #537d9b;
 cursor: pointer;
}

.slider::-moz-range-thumb {
 width: 25px;
 height: 25px;
 // border-radius: 50%;
 background: #537d9b;
 cursor: pointer;
}

</style>
<script language=javascript type="text/javascript">

231

function round(value, precision) {

 var multiplier = Math.pow(10, precision || 0);
 return Math.round(value * multiplier) / multiplier;
}
function calculate(){

 var memSelected = document.getElementById('memory_type');
 var networkSelected = document.getElementsByName('networkT');
 var procSelected = document.getElementsByName('procT');
 var procT = document.getElementById('procT');
 var diesize = document.getElementById("diesize");
 var numMCs = document.getElementById("Input_numMC").value;
 var slideCol = document.getElementById("cache_ratio");
 var cache_ratio = slideCol.value;
 var l2l3_ratio = slideCol2.value;

 //var cache_ratio = document.getElementById("cache_ratio").value;

 var availArea=diesize.value;
 //calculate available area based on memory type selected
 var CPoverhead = 0;

 if (memSelected.value == "NVR") {
 //charge pump % area -> typical flash ratio
 //Reference: 7% of 16nm Micron NAND flash diesize of 173 mm^2

 CPOverhead=0.07*173;
 availArea = availArea-CPoverhead;

 } else if (memSelected.value == "dram") {
 //no charge pump, but external Memory controller interface logic
 // Typical 10% area
 //Reference: 10% of 16nm Micron NAND flash diesize of 173 mm^2

 CPOverhead=0.1*173;
 availArea = availArea-CPoverhead;

 } else if (memSelected.value == "VR") {
 //charge pump % area -> half of typical flash ratio

 //Reference: 3.5% of 16nm Micron NAND flash diesize of 173 mm^2
 CPOverhead=0.035*173;
 availArea = availArea-CPoverhead;
 }

 //calculate NoC overhead

 if (networkSelected[0].checked) {
 //Mesh -- upto 4 links per node
 //TODO placeholder 10% overhead

232

 availArea = availArea*0.9;
 } else if (networkSelected[1].checked) {
 //Hoffman-Singleton -- upto 3 links per node
 //TODO placeholder 7% overhead

 availArea = availArea*0.93;
 }

 //Calculate available SRAM Cache area

 //Reference: IEDM 2013, TSMC 6T SRAM bit cell area for 16nm: 0.07
sq. micron
 //Using typical value of 70% array efficiency for overhead circuitry

 var SRAMcellsize=0.07;
 var SRAMarea=(1-cache_ratio)*availArea*1000000*0.7;
 var SRAMsize = SRAMarea/(SRAMcellsize*1024*1024*8);

 document.getElementById("Total_Cache").innerHTML =
round(SRAMsize,1)+" MB";

 document.getElementById("L2").innerHTML = "L2:
"+round(SRAMsize*l2l3_ratio,1)+" MB";

 document.getElementById("L3").innerHTML = "L3:
"+round(SRAMsize*(1-l2l3_ratio),1)+" MB";

 //Fixed 32kB size for Queuing buffer of Memory controller --
supports 512 depth of 512 bits

 var MCBuffer_area=(SRAMcellsize*32*1024*8/1000000)/0.7;

 //set processor area

 var procSize = 0.0284077;
 if (procSelected[0].checked) {
 //Raven-3 RISC-V: Scaled 0.46x from 28nm node
 procSize = 0.46*1.19; //mm^2
 } else if (procSelected[1].checked) {
 //Fujitsu Sparc64 X+: Scaled 0.46x from 28nm node
 procSize = 0.46*10.907; //mm^2
 } else if (procSelected[2].checked) {
 //Intel Skylake-X CPU core (14nm)

 procSize = 16.9; //mm^2
 } else if (procSelected[3].checked) {
 //Intel Xeon-Phi core -- knights landing (14nm)

 procSize = 3.13; //mm^2
 }

 var Procarea= cache_ratio*availArea;
 var numProcessors = Procarea/procSize; //initial value ignoring ReRAM
congestion penalty

233

 //calculate Main-Memory bandwidth, latency
 //for ReRAM (default), bw=8*4 bits per memory controller
 var bw = 32*numMCs;
 var rLatency = 200;
 var wLatency = 1000;

 //Power numbers derived based on McPAT memory access model
 //Crossbar for ReRAM cell energy number

 var rPwr=4.24; //W
 var wPwr=41.86; //W

 //Calculate # of Mem Controllers under SRAM

 if (memSelected.value == "dram") {
 //charge pump % area -> typical flash ratio
 //Reference: 7% of 16nm Micron NAND flash diesize of 173 mm^2

 document.getElementById("Total_ReRAM").innerHTML = "External MM
";

 document.getElementById("Total_ReRAM2").innerHTML = " ";
 document.getElementById("Total_ReRAM8").innerHTML = " ";

 //128 bits per memory controller
 bw = 128*numMCs;
 rLatency = 55;
 wLatency = 55;
 rPwr=0; //W
 wPwr=0; //W

 } else if (numMCs>0) {

 //calculate ReRAM storage amount
 //Assumptions: 50% array efficiency

 //Cell-size at 16nm: 0.011236 sq-um at 45nm --> scales down
by 10x at 16nm
 //Reference: Crossbar ReRAM
 // Avail area = with 25% periphery overhead + congestion
penalty

 var MMArea = availArea*0.5; //50% array efficiency
 var ReRAMcellsize=0.011236/10;
 var
ReRAMsize=MMArea*1000000/(ReRAMcellsize*1024*1024*1024*8);
 //check if numMemory Controllers entered is invalid
 var MMGranularity=ReRAMsize*2*1024/numMCs;

 /////////////Calculat congestion penalty
////////////////////

 var congestion = 0.12; //congestion penalty is function of
of MCs

 //remove RERAM periphery circuit area -- applies to Proc and
Cache

234

 availArea = availArea*(1-0.5*0.25);
 //remove Memory-Controller queuing buffer area
 availArea = availArea-(numMCs*MCBuffer_area);

 if (numMCs <= (availArea/procSize)) {

 congestion = 0.12*(numMCs/(availArea*0.88/procSize));
//numMCs/numProcTiles (approx)
 } else {
 congestion =

congestion+0.04*Math.log2((numMCs/(availArea/procSize)));
//numMCs/numProcTiles (approx)
 var tmpArea = availArea*(1-congestion); //not
available for either proc or sram
 congestion =

congestion+0.04*Math.log2((numMCs/(tmpArea/procSize)));
//numMCs/numProcTiles (approx)
 }
 if (congestion<0)

document.getElementById("debug").innerHTML = " **** ERROR: INVALID
Congestion Penalty parameter **** " ;

 //document.getElementById("debug").innerHTML = "

numproctiles="+(availArea*0.88/procSize)+" MMarea="+MMArea;
 //document.getElementById("debug").innerHTML = "
MCBuffer_area="+MCBuffer_area*numMCs;

 //recalculate after removing wasted area for congestion
 availArea = availArea*(1-congestion); //not available for
either proc or sram
 ReRAMsize=MMArea*1000000/(ReRAMcellsize*1024*1024*1024*8);
 MMGranularity=ReRAMsize*2*1024/numMCs;

 if (MMGranularity > 1) {

 document.getElementById("Total_ReRAM").innerHTML =
round(ReRAMsize,1)+" GB ";//congestion="+congestion;

 document.getElementById("Total_ReRAM2").innerHTML =
round(ReRAMsize*2,1)+" GB for 2-layer stack ";

 document.getElementById("Total_ReRAM8").innerHTML =
round(ReRAMsize*8,1)+" GB for 8-layer stack";
 } else {

 document.getElementById("Total_ReRAM").innerHTML =
"ERROR -- too high # of Memory Controllers";

 document.getElementById("Total_ReRAM2").innerHTML = "
";

 document.getElementById("Total_ReRAM8").innerHTML = "
";
 bw=0;
 rLatency=0;

235

 wrLatency=0;
 }

 //update num processors after considering reram congestion
penalty
 Procarea= cache_ratio*availArea;
 numProcessors = Procarea/procSize;
 } else {

 document.getElementById("Total_ReRAM").innerHTML = "0 GB ";
 document.getElementById("Total_ReRAM2").innerHTML = "0 GB ";
 document.getElementById("Total_ReRAM8").innerHTML = "0 GB ";
 bw=0;
 rLatency=0;
 wLatency=0;
 }

 if (availArea <= 0) {

 document.getElementById("NumMC").innerHTML = "ERROR --
Invalid Configuration";

 document.getElementById("NumProc").innerHTML = " ";
 } else {

 document.getElementById("NumMC").innerHTML =
round(numMCs,0);

 document.getElementById("NumProc").innerHTML =
round(numProcessors,0);
 }
 //calculate number of NoC controllers: 1 per tile
 var numNoCs = numMCs;

 if (networkSelected[0].checked) {
 //Mesh -- upto 4 links per node
 //TODO placeholder 10% overhead
 numNoCs = numMCs;

 } else if (networkSelected[1].checked) {
 //Hoffman-Singleton -- upto 3 links per node
 //TODO placeholder 7% overhead

 numNoCs = numMCs*0.75;
 }

 // document.getElementById("NumNoc").innerHTML = round(numNoCs,0);

 //add NoC Latency

 if (networkSelected[0].checked) {
 //Mesh -- upto 4 links per node
 //TODO placeholder 10% overhead

 //rLatency = rLatency * 1.1;
 //wLatency = wLatency * 1.1;
 } else if (networkSelected[1].checked) {
 //Hoffman-Singleton -- upto 3 links per node

236

 //TODO placeholder 7% overhead

 //rLatency = rLatency * 1.07;
 //wLatency = wLatency * 1.07;
 }
 //convert to bytes
 bw=round(bw,0)
 bw = bw/8;

 document.getElementById("bw").innerHTML = round(bw,2);
 document.getElementById("latency").innerHTML = round(rLatency,2)+"
ns & "+round(wLatency,2);

 //calculate power consumption for Processor, MM, SRAM
 pwr = 0; // unit mW/Hz
 performance = 0;
 //for Processor:

 if (procSelected[0].checked) {
 //RISC-V Ref IEEE Micro 2016: 961MHz, 173mW, 34GFLOPS/w

 //pwr = 0.173*numProcessors/961; //w/MHz
 pwr = 0.173*numProcessors; //w
 performance = 34; //GFLOPS/W

 } else if (procSelected[1].checked) {
 //Sparc Ref: Fujitsu Sparc64 X+ wikipedia 392W, 448GFLOPS, 3.5GHz
 //pwr = 392*(numProcessors/16)/3500; //w/MHz
 pwr = 392*(numProcessors/16); //w

 performance = 448/392; //GFLOPS/W at 1.4GHz
 } else if (procSelected[2].checked) {
 //Intel Skylake-X CPU core (14nm) spec: 165W, 1152 GFLOPS at

4.4GHz (turbo)
 //pwr = 165*(numProcessors/18)/4400; //w/MHz
 pwr = 165*(numProcessors/18); //w
 performance = 1152/165; //GFLOPS/W at 1GHz

 } else if (procSelected[3].checked) {
 //Intel Knights Landing/Mill Xeon Phi (14nm) spec: 260W, 3456

GFLOPS at 1.7GHz (turbo)
 //pwr = 260*(numProcessors/72)/1700; //w/MHz
 pwr = 260*(numProcessors/72); //w
 performance = 3456/260; //GFLOPS/W at 1GHz
 }

 document.getElementById("pwr").innerHTML = "Processor:
"+round(pwr,3)+" w";

 if (memSelected.value == "dram")
 document.getElementById("pwr_MM").innerHTML = " ";
 else

 document.getElementById("pwr_MM").innerHTML = "Main-Memory:
Read: "+round(rPwr,2)+" W & Write: "+round(wPwr,2)+" W";

237

 document.getElementById("performance").innerHTML =
round(performance,2)+" GFLOPS/W ";

}
</script>

</head>

<body>
<h2>Monolithic Architecture Calculator (MAC)</h2>

Purpose: Preliminary estimates on what can "fit" in a given chip
dimension and assess architectural tradeoffs with various design options

on a Memory-Processors System.

 Process Node: 16nm

<div class="row" >

<div class="column" >
<form name="calc" action="post">
<p>
1) Main Memory Type:
<select id="memory_type">
 <option value=NVR>Non-Volatile ReRAM </option>
 <option value=dram>DRAM</option>
 <option value=VR>Volatile ReRAM</option>
</select>

2) Die-Size [mm^2]: <input type=text id="diesize" size=10 value="686">

 <div class="input_form"></div>

3) Select Processor Core Type:
 <div class="input_form">
 <input type="radio" id="riscv"
 name="procT" value="riscv">
 <label for="riscv">Raven-3 RISC-V w/56kB L1 per core </label>

 <input type="radio" id="sparc"
 name="procT" value="sparc">
 <label for="sparc">Sparc64 XII w/128kB L1 per core </label>

 <input type="radio" id="gpu"
 name="procT" value="gpu">
 <label for="gpu">Intel Skylake-X w/64kB L1 per core </label>

 <input type="radio" id="knl"
 name="procT" value="knl" checked="checked">
 <label for="gpu">Intel Xeon Phi (Knights Landing) w/32kB L1 per core
</label>

 </div>

238

4) Core-to-Cache Area ratio for SRAM Cache on Chip (0 to 1):

 (0:all SRAM; 1: all Processor, no SRAM):

<div class="slidecontainer">

 <input type="range" min="0" max="1" step="0.05" value="0.85"
id="cache_ratio" class="slider">
 Value:
<script>

var slideCol = document.getElementById("cache_ratio");
var y = document.getElementById("f");
y.innerHTML = slideCol.value;

slideCol.oninput = function() {
 y.innerHTML = this.value;
}

</script>

</div>

5) Number of Memory Controllers: <input type=text id="Input_numMC"
size=10 value="131">

 <div class="input_form"></div>

6) Network Topology:
 <div class="input_form">

 <input type="radio" id="mesh"
 name="networkT" value="mesh" checked="checked">
 <label for="mesh">Mesh network</label>

 <!---
 <input type="radio" id="singleton"
 name="networkT" value="singleton" disabled>
 <label for="singleton">Hoffman-Singleton Graph</label>

 -->
 </div>

---<p
align="center">
<input type=button value="CALCULATE" onClick="calculate()"></p>
</form>
</div>
<div class="column" >
 Final Architecture Configuration for given die-size and components:

<table>
 <tr>
 <th>Parameter</th>
 <th>Value</th>

239

 </tr>
 <tr>
 <td>Total Main Memory Storage Size </td>
 <td>

 </td>
 </tr>
 <tr>
 <td>Total SRAM Cache Size
 <p>L2-to-L3 ratio: <p>
<div class="slidecontainer">

 <input type="range" min="0" max="1" step="0.05" value="1" id="l2_l3"
class="slider"> <p>

<script>

var slideCol2 = document.getElementById("l2_l3");
var y2 = document.getElementById("l2l3");
y2.innerHTML = slideCol2.value;

slideCol2.oninput = function() {
 y2.innerHTML = this.value;
}

</script>

</div>
 </td>
 <td>

</td>
 </tr>
 <tr>
 <td>Number of Processors

 Number of Memory Controllers

 <!-- Number of NoC Controllers
 -->
 </td>
 <td>

 <!--
 -->
 </td>
 </tr>
 <tr>
 <td>Main Memory (MM) Bandwidth </td>
 <td> bytes per access </td>
 </tr>
 <tr>
 <td>MM Read & Write Latency </td>
 <td> ns </td>
 </tr>
 <tr>
 <td>Power Consumption </td>

240

 <td>

 </td>
 </tr>
 <tr>
 <td>Energy Efficiency </td>
 <td> </td>
 </tr>
</table>
</div>

</div>

<hr>

<div align="right"><small>
 University of Maryland, College Park, MD

 Electrical and Computer Engineering

 Memory Systems Research Group
 <i>

Posted by: Meenatchi Jagasivamani

 mjagasiv@terpmail.umd.edu.</i>
</small></div>

</body>

</html>

