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As DRAM faces scaling issues as a high-density memory, emerging 

technologies are being explored as alternatives.  One promising candidate is 

Resistive Memories (ReRAM), which is scalable, vertically stackable, and because 

of the possibility of integration with standard logic process, can deliver higher 

density as a main-memory solution.  The key differentiator with this approach 

involves a ReRAM memory array that integrates directly with a logic processor 

underneath.   



 

In this research work, I explore ReRAM as a main-memory alternative at 

three levels of detail – at the device level, the physical-design level, and finally at 

the architecture level.  I begin with an overview of ReRAM and compare with 

alternate technologies.  I look at the physical design of the solution and present the 

results of area studies on integrating a VSCALE processor at the 45nm technology 

node with a ReRAM bit-cell array.  The area study was performed based on 

parameters specified by my collaborators at Crossbar Inc.  The results showed that 

the optimum operating point is at 50% array efficiency with a VSCALE processor, 

and that this configuration incurs an area penalty of 18%.   

Two of the key challenges for ReRAM with respect to DRAM performance 

include the higher write latency requirement (typically on the order of 1us) and the 

lower write endurance (typically less than 10^8 cycles).  This compares with 

DRAM write-latency times of less than 30ns (depending on technology node and 

generation) and write endurance of more than 10^15 write cycles.   In this research 

work, I explore the possibility of utilizing the ReRAM cell in an intermediate state 

between non-volatile state and threshold state, where I intentionally tradeoff the 

write energy for a much lower data retention.  This allows the chip to more easily 

replace existing DRAM-like main memory applications, without requiring higher 

write programming current or accommodating for a longer write latency.  I 

performed this evaluation both at the device-level and at the architecture level.   



 

At the device-level, I used UMD’s Nano-fab lab to construct a Metal-Oxide 

based ReRAM bitcells on which I characterized the relationship between data-

retention and write current applied.  My fabricated ReRAM was composed of 

Titanium-Oxide and Aluminum Oxide.  I also confirmed the behavior of a mixed-

volatility state where a formed filament relaxes over time to move to a high-

resistance level.  Based on my experimental measurements, operating in the mixed 

volatile state would reduce write energy by 10 to 100x, and thereby improve the 

write endurance. 

Finally, at the architecture-level, I used the Structural Simulation Toolkit 

(SST) to characterize a ReRAM-based main-memory system and compare with a 

DRAM-based one using our research group’s DRAMSIM3 tool.  I also 

characterized the sensitivity of various architectural parameters (core-to-memory 

controller ratio, queue depth, NoC topology) on system performance on stream and 

gups-based graph benchmarks which indicated that the torus topology will provide 

reasonable performance.  Impact of the number of parallel processors indicated that 

at low processor counts, DRAM outperforms ReRAM due to its faster memory 

latency.  However, at high processor counts, ReRAM with its higher number of 

parallel connections is able to deliver higher system performance than DRAM.   
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1 Introduction 

 

1.1 Motivation and Problem Description 

The memory bus is a major limiting factor to overall system performance.  

Current system performance is limited between the processing power’s data needs and 

the data rate received by the memory system, with CPU request rate typically 3-4x 

faster than the data rate received from the overall memory system.  System architects 

have come to accept the limitation due to the memory bandwidth wall and have focused 

on modifying memory access patterns and increasing parallelism in the computation 

layer in order to increase instruction throughput.   

There are several mitigation strategies that are currently employed to address 

this problem.  Hardware techniques include employing multiple levels of cache 

memory blocks.  This relies on memory access requests being either temporally or 

spatially related, allowing for access requests to be serviced using data present in the 

cache blocks.  Software techniques include prefetch to load specific data for an 

application or managing the access patterns by locating data in a predictable pattern in 
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the memory.  Finally, system-level techniques include introducing multiple memory 

controllers for bandwidth and incorporating high-bandwidth memories.  While all of 

these techniques mitigate some of the issues, as the computational system becomes 

increasingly parallel, the memory parallelism imposes an upper limit on the overall 

system performance.  Figure 1-1 illustrates a conventional system and depicts the 

problem.   

 

Figure 1-1 Motivation: Memory Bandwidth Wall 

This figure shows multiple CPU processors that are embedded within a single 

chip, to perform the computations.  These multiple CPUs generate several memory 

requests in parallel, often independent of each other.  Each CPU is connected to 

multiple levels of cache memory blocks, often with the final level (Last Level Cache) 

being a shared memory block.  The cache blocks attempt to service the data 

requirements of the CPU if the requested address is within the confines of the data 



3 

contained with the cache.  Any misses in the requested data would necessitate an access 

to an external main memory, typically DRAM, to fetch the data and fill the cache block.  

As can be seen in the figure, the external main memory is often located off-chip and 

are accessed through a few memory controller circuits embedded on chip.  The memory 

controller itself has the ability to queue pending incoming memory requests, while the 

external memory is servicing the requests.  

Figure 1-1 denotes six such CPU units, however modern systems could make 

use of close to 100 such CPU units.  As the number of independent CPU or processor 

units increase, so does the number of independent memory access requests and the 

likelihood for a bottleneck at the memory controller.  This causes memory requests 

from the CPU to be stalled while pending requests are serviced by the main memory.  

The result is that while DRAM device-level memory latency is on the order of 10s of 

nanoseconds, due to this bottleneck of memory requests, from the CPU’s point of view, 

the perceived memory access latency ends up being much higher, on the order of 100s 

of nanoseconds for large parallel systems.    

Thus, we can observe that the system is fundamentally limited by the number of 

wires that connect the processor and the memory chip.  This bandwidth wall stems from 

the limited number of memory access points that exist in current systems.  Due to the 

number of pins required to make a connection to an external DRAM subsystem (ex: 

DIMM), the DRAM memory controllers on-chip are often limited to six or eight per 
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chip.  Our proposed approach seeks to alleviate this bandwidth wall problem directly 

by utilizing a memory technology, ReRAM, that allows for higher numbers of access 

connections between the processor and the memory subsystems. 

 

1.2 Proposed Approach 

Emerging memory technologies are currently being explored by industry and 

academia to address both scalability concerns with conventional solutions and 

improved power-performance capabilities [1].  One promising memory technology is 

Resistive Memories which utilize creation of a high or low resistance state in a device 

to correspond to a digital value of 0 or 1.  The resistance states are modified by creating 

a conductive filament in a dielectric material.  The filaments could be either oxide-

based (OxRAM) or metal ion based (CBRAM) and are controlled by applying specific 

high voltage or current pulse(s) of a specific shape [2,3,4].  In comparison with DRAM, 

ReRAM promises nonvolatility combined with better scalability, CMOS back-end-of-

line (BEOL) compatibility, reasonable switching speeds for read, and higher density 

when stacked.  Integrated Logic and ReRAM Integrated Circuits open the doorway for 

enabling more intuitive implementation of addressing the memory bandwidth wall 

problem without requiring complete redesign of long-standing software to hardware 

design techniques. 
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Our proposed solution for addressing the memory bandwidth wall described 

earlier involves using ReRAM as a main-memory replacement for DRAM and 

integrating it to the CPU logic on the same chip.  This is different from 3D stacked-die 

types of approaches that make use physical integration of discrete dies, as shown in 

Figure 1-2. Our solution, which we call Monolithic Computer, involves the ReRAM 

cells residing in metal layers which are fabricated on the same die.  This ReRAM 

technology has been demonstrated and fabricated in products from Crossbar, Inc who 

our research group is in collaboration with for part of this research work, as well as 

others in industry, such as Intel, Micron, and Rambus. Additionally, this approach 

enables extremely high parallel connections to the CPU and directly addresses the 

Memory Bandwidth Wall problem.  

Current studies and research work focus on a specific material composition, 

with characterizations pertaining only to that area.  A broad understanding of the 

technology, implications on how one parameter affects another, and the various 

tradeoffs involved is missing.  Such an understanding allows wider adoption of this 

technology by computer architects to leverage the advantages into their design.  
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Figure 1-2  System Connection in Proposed Approach (Side and Corner View) 

 

1.3 Contribution and Significance 

In this dissertation, for background, I pull together research work done from 

different groups, both in industry and academia to extract the broad trends that emerge 

for this technology and draw together the various implementations of resistive memory 

to reveal design insights and architectural impacts.  This is a literature survey of 

existing research on all variations of resistive memory technology, known by different 

names, such as ReRAM, PCM (Phase Change Memory), memristor. 
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For the experimental component, I begin with my results of design experiments 

performed using a collaboration with Crossbar Inc.  Crossbar ReRAM utilizes a novel 

fabrication technology that provides integration capabilities with logic.  Exploration 

studies on a specific ReRAM instance from Crossbar have been performed to 

understand the impacts on area, power, and bandwidth of integrating with a RISC-V 

processor.  I have successfully established a methodology for physical floor-planning 

of a Resistive Memory layer on top of existing logic and present the area impact of a 

memory-processor architecture.   

I also directly seek to address the high write latency and low write-endurance 

problem associated with ReRAM by characterizing the impact of write energy on the 

data-retention of the cell.  My research thrust to support this goal involved fabricating 

ReRAM bitcells as test-cells using UMD’s Nano-fab lab.  I collected characterization 

data on these cells and characterized the relationship between data retention and write 

energy.   

My final research thrust involved architectural simulations to quantify the 

impact of ReRAM write latency on various parallel simulations and evaluate the impact 

of additional memory hierarchies and non-regular NoC Topologies.  To support this 

effort, I utilize Structural Simulation Toolkit (SST) to model and simulate different 

architectural configurations.  My simulations indicated that despite the longer access 

time latencies of the ReRAM array, due to the much higher number of connections to 
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the CPU logic, the ReRAM architecture is able to exceed the performance when 

compared to DRAM.  A high enough number of memory access requests were needed 

where this advantage comes into play, with the crossover point for my simulation being 

64 cores.  My first order NoC topology comparison showed that typically torus and fat-

tree configurations performed the best when compared with a mesh topology, with torus 

being 39% better and fat-tree being 70% better at the lower link bandwidths where the 

topology counts.  Due to its ease of implementation, torus might be preferable over the 

other topologies as the link bandwidth increases, or as the number of cores increases. 

 

1.4 Organization of Dissertation 

The dissertation will begin with an overview of emerging memory technologies 

and a comparison of them.  Here, I present the resistive memory cell operation and 

relationship between related memories such memristor and PCM.  I present the key 

tradeoff pertinent to this technology in terms of area, program bandwidth, read 

performance, power consumption, long-term data-retention and reliability effects, and 

multi-level cell implementations.  In the first part of my report, I present the detailed 

implementation of my area study, including the CAD flow to perform the study, and 

the results from my study.   In the second part of my report, I present the premise of 

leveraging the non-volatile/volatile switching behavior of the cell, the device 

fabrication and characterization work, and present some of the preliminary results from 
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my SST simulation.  To sum, the thesis spans a broad range of topics and research 

techniques from physical design to device and circuit level, and to the architectural 

level.   

High-level summary of the chapters are as follows: 

 Chapter 2:  Literature Survey and overview of Non-volatile memory 

technologies.  Additional focus is given for the different implementation 

of ReRAM and alternate application space for this technology. 

 Chapter 3:  My motivation for using ReRAM as a replacement for 

DRAM as the main-memory, a more in-depth overview of the cell 

operation, and some of the device level challenges as a main-memory. 

 Chapter 4:  Floorplanning study of the die area impact of ReRAM 

integration with CPUs using Cadence and Synopsys design tools to 

perform the synthesis and digital implementation. 

 Chapter 5:  Device based characterization of a test ReRAM cell 

investigating cell behavior with lower program current and its effect on 

the data retention of the resistance state.  

 Chapter 6:  Performance studies (C and C++ based performance 

modeling using SST) comparing conventional DRAM based memory 

systems against ReRAM based main-memory system.  Additional 

studies on the impact of parallelism are also presented.  Finally, I 
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calculate the area required for some of the sub-blocks in the central 

ReRAM IP that I propose and provide a floorplan for the design. 

 Chapter 7:  Expanded architectural simulation work looking at different 

NoC topology and system configurations and the impact on performance.  

I also present effect of the number of DRAM memory controllers on the 

system performance in support of a Hybrid ReRAM-DRAM solution. 

 Chapter 8:  I talk about utilizing ReRAM in the volatile state to limit the 

data persistence and its possible application as a trusted on-chip main 

memory to improve overall system security. 

 Chapter 9:  Conclusion of the dissertation and research work 

 Chapter 10: Bibliography of the Technical literature and references. 

 Appendix A:  Command File used in the Auto-Place-Route Physical 

Design study. 

 Appendix B: Javascript code to perform architectural sizing calculations 

to estimate number of processors, and ReRAM blocks within a given 

chip size. 
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2 Emerging Memory Technologies 

 

2.1 SRAM, DRAM (HMC, HBM, eDRAM), STT-MRAM, ReRAM 

In this section, I provide a high-level comparison of current state-of-art and 

emerging memory technologies’ capabilities. I begin with a brief overview of each of 

the technologies.  Table 2-1 presents a summary of key parameters for the different 

memory technologies.  I go over each of the memory technologies in detail.   

SRAM:  Static Random-Access Memory (SRAM) consists of a six-transistor 

(6T) bitcell with a back-to-back inverter pair tied to pass-transistors that allow access 

to the cell, as shown in Figure 2-1.   The bitcells continuously maintain the data injected 

into the storage node.  Data is statically maintained as long as power is supplied to the 

circuit.  SRAM has one of the fastest access time at the expense of area overhead and 

typically serve as cache blocks on a chip. 
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SRAM STT-MRAM DRAM 

(HMC) 

DRAM 

(HBM) 

eDRAM ReRAM 

Read Latency 1-10 ns 1-10 ns ~30ns ~30ns 100ns 200-800 ns 

Write Latency  1-10 ns 10-50 ns ~30ns ~30ns 100ns 1-10 us 

High Write 

Voltage 

Requirement 

(charge pump) 

None Yes, 

dependent on 

retention 

requirement 

(3v to 6v) 

None None None 6v 

Write-

Endurance 

1e16 1e13 1e16 1e16 1e16 1e6 

Area 
200 F

2

 32 F
2

 8 F
2

 6-8 F
2

 35 F
2

 1-4F
2 

 

(dependent 

on # of 

stacks) 

Process CMOS CMOS + 

MTJ layer 

CMOS CMOS CMOS 

(+Cap) 

CMOS + 

ReRAM 

Energy 

Efficiency 

Moderate Moderate Moderate Low Low 20-30x 

lower than 

flash 

Non-Volatile? No Yes, possible No, refresh 

every ~10-

100 ms 

No, refresh 

every ~10-

100 ms 

No, requires 

refresh every 

< 100us 

Yes 

Table 2-1  Comparison of key parameters of Memory Technologies 
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Figure 2-1  Conventional 6T SRAM cell  

DRAM:  Dynamic Random Access Memory (DRAM) bitcell is comprised of a 

capacitor whose charge is altered to store a data value of 0 or 1, as shown in Figure 2-2.  

Because the charge on the capacitor dissipates over time, a periodic write is performed 

to refresh the data on all bit-cells.  An access transistor provides the mechanism to read 

and write the capacitor.  DRAM provides fast read and write access times, but since 

it’s typically located off-chip, it has limitations in achieving very high memory 

bandwidth and density at the same time.  Also, DRAM technology based on the current 

implementations are projected to run into scaling issues at advanced process nodes.   

 

Figure 2-2 DRAM Bit-cell 
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Typically, DRAM memory is implemented as a separate stand-alone discrete die.  

Embedded DRAM (eDRAM) versions of the bitcells allow for the DRAM memory to 

be integrated on the same die as CPU but requires more expensive processing and take 

up silicon area.  New DRAM architectures provide increased density by stacking 

several DRAM memory layers in a single chip.  The two most common ones are Hybrid 

Memory Cube (HMC) by Micron and High Bandwidth Memory (HBM).  HMC is 

developed by Micron to provide a discrete high-density DRAM memory chip 

consisting of 3D-integrated stacks of DRAM Memory dies.  HBM is an open-standard 

high-bandwidth DRAM memory stack that requires a silicon interposer to connect the 

DRAM to a CPU/GPU die.   

STT-MRAM: Spin-Transfer Torque (STT) Magnetic RAM (MRAM) bitcell is 

comprised of a magnetic tunnel junction (MTJ), where the direction of magnetic 

moments and the spin direction of the electrons determine the state of the bitcell, as 

shown in Figure 2-3.   

 
Figure 2-3  STT-MRAM Bitcell Figure source: (MRAM-info, 2016)  
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Because of its CMOS compatibility, this bitcell could be integrated into standard 

manufacturing process and could deliver high density with non-volatile data retention. 

 

2.2 ReRAM Implementation Variations 

There are several variations on the exact resistive creation mechanism based on 

the materials used [7,8,9].  The three major versions are:  

(1) CBRAM: Conductive Bridging RAM which relies on the creation of 

microscopic conductive filaments through metal-ion migration; 

(2) OxRAM: Creating Metal-oxide physical defects which results in 

conductive paths of varying resistances in a layer of oxide material by 

causing a valence change. 

(3) PCM: Phase Change Memory which changes the crystal structure of a 

chalcogenide glass from amorphous to crystalline, thus altering the 

resistance of the material.  

PCM is constructed using a heater material, such as tungsten (W), which has a 

high resistivity and emits heat to its surrounding.  The chalcogenide material is placed 

on top of the heater and a current is passed through structure to apply a high temperature 

(close to 600K) to melt the material.  By lowering the programming current slowly, we 

anneal the material to cool slowly and settle into a crystalline structure which has a 

lower resistivity.  Alternatively, by abruptly bringing down the program current, we 
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quench the material and the resulting structure is amorphous and highly resistive in 

nature.  Thus, the resistivity of the material is altered, and the data state is represented 

as the resistance value.  A select device is needed in conjunction with the PCM cell so 

that a single cell can be “selected” among an array of cells.   

Up until recently, most PCM implementations used either a MOS transistor or a 

buried PNP-BJT as the selector.  This prevented PCM array itself from being stacked 

vertically.  Additionally, PCM cells were observed to have a drift phenomenon, where 

the natural state of the material eventually drifted towards a crystalline structure (low-

resistance), which is especially problematic for multi-level cell behavior.  Device 

engineering work, along with a new selector that can reside in the metal layers are being 

investigated to circumvent this problem.  In comparison to PCM, ReRAM have not 

been reported to be prone to data disturb from signal lines adjacent or underneath to the 

memory bitcell.  The work described in this thesis covers OxRAM and CBRAM 

implementations, both of which work on creating a conducting filament and altering 

the overall resistance of the material.   

To provide an overview of existing ReRAM implementations, I performed a 

survey of reported specifications of different Resistive Memory implementations based 

on published data.  Table 2-2 summarizes the performance metrics.  Several of the 

implementations are partnerships between design companies working closely with a 

semiconductor manufacturing fab to realize high-volume implementations of ReRAM 

cells.  



17 

Organization Capacity 
Process 

(nm) 
Structure 

Area 

(mm2) 

Density 

(Gb/mm2) 

Cell Size 

(F2) 

Read 

Latency 

(uS) 

Write 

Latency 

(uS) 

Intel/Micron 

3D Xpoint 
16Gb 20 

PCM+OTS between 

Metal 4 & Metal 5 
206.5 0.62 4.4 8 30 

SanDisk/Toshiba 

ReRAM 
32Gb 24 

OxRAM Metal-Oxide 

based with Diode 

selector 

130.7 1.958684 7 40 230 

Micron/Sony 

ReRAM 
16Gb 27 

CBRAM based CuTe 

Alloy+Buried MOS 

selector 

168 0.761905 6 2 10 

Crossbar 

ReRAM stacked 
4Mb 40 1TnR test chip  5.6 0.5 10 

Crossbar 

ReRAM 1T1R 
16Mb 40 1T1R, 9 metal test chip   0.02 10 

Adesto 

EEPROM 
512kb 40 CBRAM test chip  118 1.2 60 

IBM/Macronix 

PCRAM 
- 90 

PCM based with MOS 

selector 
test chip - 20 0.0375 0.13125 

Table 2-2 Key performance metrics of various ReRAM implementations 

Figure 2-4 below plots the bitcell size comparison of the different 

implementation against the process node.  SRAM and DRAM metrics are also provided 

for comparison.  The cell size is reported in feature-squared (F^2), which denotes the 

multiplication of the smallest feature size achievable in that particular process node.  

The value of F is a critical technology parameter defined as the minimum polygon that 

can be fabricated in that process node and is typically limited by the lithography of the 

process.  It is often used as the minimum achieved gate length of the transistors.  The 

figure highlights the bitcells based on ReRAM technology.   
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Figure 2-4 Cell-Size Comparison for different Memory Technologies 

From the plot, we can observe improvement in cell size as we scale to advanced 

process node, largely through innovations vertical stacking.  One exception to this is 

the Adesto EEPROM product which uses a PCM bitcell with a MOS selector and is not 

stackable.  This product targets low-power IoT applications and the high-area is 

sufficient for the low-volume product.  For the other implementation of ReRAM cells, 

I see the feature size to be lower than DRAM bitcell.  Note that the Crossbar ReRAM 

bitcell is based on a two-layer stack but is expected to be vertically scalable to up to 8 

stacks, which would further reduce the bitcell size.  STT-MRAM occupies higher area 
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compared to most ReRAM implementations, but it’s read and write latencies, which 

are on the order of SRAM latencies, are much lower than ReRAM.  This memory 

technology could be a competitive alternative for on-chip cache application to replace 

much the higher area cost of SRAM cells.   

Read latency comparison among ReRAM implementation is presented in Figure 

2-5.  ReRAM bitcells have higher read latencies when compared with the other 

technologies.  The exception here is the Crossbar 1T1R ReRAM, which reported a read 

latency of 20ns and was targeting a high-speed embedded memory application.  This 

product was implemented in 40nm 9-metal process and had a total capacity of 16Mb. 

This implementation used a transistor as the selector device, and therefore would not 

be stackable.  From the plot, we can observe a slight increase in read latency with 

advanced process nodes, however, as can be seen in summary Table 2-2, this is more 

due to the capacity of the memory rather than advances in technology.  As the 

technology matures, we can observe that ReRAM transitions from EEPROM type of 

memories that require lower capacity to Intel’s 3D Xpoint memory with higher memory 

needs.  The higher capacity is supported by larger arrays, which often requires higher 

latency times.  I discuss this phenomenon in more detail in the device tradeoff section 

3.3.  
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Figure 2-5  Read-Latency Comparison for different Memory Technologies 

Write latency comparison among ReRAM implementation is presented in 

Figure 2-6.  ReRAM bitcells, being non-volatile memory, have higher write energy 

requirements, which also translates into higher write latencies. The IBM/Macronix 

PCM reported a lower write latency of 131ns on a test-chip product.  Although not 

reported in this chapter, the overall write energy also tends to be higher and leads to 

lower write endurance when compared to volatile memory technologies.  In chapter 5, 

I discuss the device-level challenges in adopting ReRAM as a main-memory 

replacement for current computer architectures.  ReRAM is a Non-Volatile memory 
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with higher write energy and latency requirements than DRAM cells.   ReRAM targeted 

for main memory applications needs to be engineered to support shorter latencies and 

higher write endurances.   

  

Figure 2-6  Write-Latency Comparison for different Memory Technologies 

 

2.3 Applications for ReRAM technology 

The ease of integration and low-bandwidth characteristics of ReRAM readily 

lends itself to be used in applications that require high parallelism with fine access 

granularity.  Parallel multi-processor architectures meet this criterion and could be 
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implemented using the mesh architecture topology that I mentioned in the previous 

section.  Such parallel multi-processors are most suited for computation intensive 

programs that can be expressed as SIMD (Single Instruction Multiple Data), MODS 

(Monolithic Operations, Distributed Data), or DODS (Distributed Operations 

Distributed Storage).  These architectures consist of an array of tiles, with each 

consisting of a modest processing core, supporting ReRAM memory, and NOC switch 

to support inter-tile communication.  Each unit should be capable of functioning as 

autonomous processing unit, with individual processors having modest computation 

power.  Collectively the mesh architecture could provide higher power efficiency on 

computation intensive programs (SIMD, MODS, DODS). 

 

2.3.1 ReRAM with Support Logic Circuits 

Resistive Memories is an emerging technology that has huge promises in terms 

of scalability, integration with logic, and helping address the memory wall problem.  

However, it has limitations in stream bandwidth and write endurance making an 

augmenting memory component a suitable transition, rather than a replacement for 

currently existing SRAM or DRAM cache needs. One of the biggest advantages with 

ReRAM comes from the fact that ReRAM has the potential to support computation-in-

memory because you can fit in much more complex logic underneath the memory layer 

and it can still be at near sense-amp pitch.  In this section, I look at applications that 
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take advantage of the proximity to the memory that the higher BEOL allows in enabling 

the creation of more powerful ReRAM that allows us to build custom sense-amp 

pitched logic to support certain data-intensive applications.  Some potential circuits to 

integrate could be buffer circuits to increase bandwidth and embedded hardware 

accelerators to create processor-in-memory like features.  These accelerators would be 

supporting floating point operations.   

I present two augmenting logic to tailor ReRAM for an application that 

researchers are looking at.  To overcome the bandwidth limitation for streaming 

intensive applications, I can place register banks that shift in data from ReRAM and 

provide a single wide data output.  For example, suppose a ReRAM memory array has 

read bandwidth of 8 bits per read, which implies 8 Sense-Amplifier columns.  If my 

target bandwidth is one 128bits per read, and if the read time is dominated by partly by 

wordline selection time, then selecting one row and reading a 128-bit “page” at a time 

to accumulate into “shift register” would optimize some of the read-time overhead.  

This register bank buffer could be placed directly underneath the ReRAM memory 

resulting in no additional area requirements.  

Figure 2-7(a) illustrates this using a simple augmenting logic using an output 

buffer to increase the perceived data bandwidth.  This approach is similar to DRAM 

stream read access, where a single read outputs 128-bit granularity by switching the 
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column multiplexer and selecting subsequent columns in a single row.  Another simple 

augmenting logic to be considered includes floating point computation logic that 

supports several signal processing and matrix computation applications.  As shown in 

Figure 2-7(b), this would involve pipelined floating-point computation logic (Multiply-

Multiply-Add) folded directly underneath the ReRAM memory.  A read request from 

one or more arrays would feed a pipelined floating logic block to perform the 

computations as successive reads are performed in parallel.  This approach is similar 

to the FPGA pipelined approach used to embed accelerators into the FPGA fabric. 

  

Figure 2-7  Augmenting Logic to enable ReRAM adaption into key applications 
(a) output buffer to increase data bandwidth (b) pipelined floating point logic to 

enable computation 

Finally, non-volatile logics are a group of circuits that make use of the non-

volatility in ReRAM to preserve the state of logic when a chip goes to deep power-

down modes.  Because of the ease of integration that ReRAM allows, logic states of 
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key circuits could easily be preserved in ReRAM memory residing above.  Due to the 

intermittent power availability of IoT (Internet on Things) devices, non-volatile logics 

are being explored as an application for ReRAM technology.  

 

2.3.2 ReRAM for Super Conducting applications 

ReRAM could have an application for Super Conducting circuits due to their 

non-volatility.  Super conducting circuits make use of a RSFQ (Rapid single flux 

quantum) type of logic, as opposed to traditional CMOS logic.  This type of circuit 

relies heavily on capturing spikes that propagate through the system to achieve the 

different logic functions.  Figure 2-8 shows an example RFSQ circuit where signal from 

BLK1 is transmitted to BLK2 as a spike.  The input signal, i, appears before the clk 

signal spike in order to latch in the input signal.  A Joseph Junction device, depicted as 

X in the figure, is used to maintain the signal until it is consumed by the BLK2.  

However, these RFSQ gates consume the input token/charge, and a lot of care is taken 

to path-balance and synchronize the arrival of all inputs.  In order to combat this, 

conventional techniques [24], implement special Non-Destructive-Read-Out (NDO) 

circuits that implement persistence of the input signal.   
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Figure 2-8 – RFSQ Circuit 

Although MRAM type of memory technologies are being studied as a possible 

application for this, ReRAM could be a better alternative due to its integration with 

traditional fabrication technologies.  However, it’s higher write energy and write 

latency make it a device challenge in adopting in this application.  One interesting study 

to explore is the possibility of making use of ReRAM, to implement the persistence 

instead.  By using a ReRAM with a very low data retention time, it could translate to a 

lower write-energy requirement, as long as the written spike need not be maintained for 

very long time (not non-volatile behavior).  In chapter 5, I explore using ReRAM in 

this mixed volatility state to tradeoff data retention with write energy and write 

endurance.  One challenge in this solution might be that the temperature range that 

these circuits would operate in might limit the material composition of ReRAM to be 

used.  Further exploration is needed to evaluate the feasibility of this solution.    
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3 ReRAM Background 

 

3.1 ReRAM as DRAM alternative  

There is currently one DRAM limitation that system architects have to work 

around.  This is the tradeoff between bandwidth and capacity, illustrated in Figure 3-1.  

The x-axis in the graph is the peak bandwidth rated for the device, measured in GB/sec.  

The y-axis is the typical total memory capacity available for that particular 

implementation.   

Conventional DDR4 implementations are capable of high storage capacity, 

close to 400GB.  Their bandwidths on stream triad benchmarks are reported as below 

100GB/sec.   The stacked DRAM implementation, on the other hand, has a high 

bandwidth close to 500GB/sec measured with the stream triad benchmark.  However, 

their capacity maybe quite low, on the order of 16GB in total.  While these bandwidths 

are for sequential dense access patterns, the effective bandwidth drops dramatically for 

sparse access patterns to below 100GB/s.   
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Figure 3-1 DRAM Bandwidth-Capacity Tradeoff 

While off-chip DRAM can provide significant capacity, the bandwidth is low.  

The option of increasing aggregate bandwidth using additional chips has a high-power 

penalty (~2-4W per DIMM).  Implementations such as Stacked DRAM provide high-

bandwidth, but with low-capacity.  DRAM bandwidth also is targeted for dense-type 

of memory access patterns and degrades severely in sparse type of access patterns.   

ReRAM, on the other hand, can provide a much higher bandwidth at higher 

density. ReRAM has a low access granularity of 8B and can sustain the bandwidth for 

both dense and sparse memory access patterns.   The graph shows the projected 
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ReRAM bandwidth of 320GB/sec at a capacity of 200GB, based on current capabilities. 

Additionally, I project that by stacking the ReRAM devices vertically in a 3D-IC could 

increase the capacity dramatically with a small impact of the overall bandwidth.   

In addition to the bandwidth-capacity tradeoff, DRAM is also reported as facing 

scaling issues and being vulnerable to failure at advanced technology nodes.  ReRAM 

on the other hand has been fabricated at 28nm technology and shows no issues of being 

scalable beyond 7nm.  This allows the ReRAM memory to scale with advancements in 

the processor and logic technology and could further improve the capacity and 

bandwidth of the memory.   

 

3.2 Overview of Resistive Memory and Cell operation 

ReRAM stands for resistive Random Access Memory, where the resistance of a 

material is varied by applying different voltage/current across the material, and the 

resistance is used to indicate a data value of 0 or 1.  In this section, I present a brief 

overview of ReRAM characteristics.  Resistive memories have two main components: 

the selector, and the resistive storage element.  The ReRAM bitcell’s basic storage 

mechanism of operation involves the use of dielectric materials which normally don’t 

conduct current.  A dielectric breakdown is induced by subjecting the material to a high 

enough current or voltage, which typically causes permanent damage to the device in 



30 

other dielectric devices, such as diodes and capacitors.  The ReRAM materials are 

engineered in such a way so that this dielectric breakdown does not cause permanent 

damage and is reversible.   

Figure 3-2(a) shows the cross section of the 1S1R (1 selector per 1 resistive 

element). During read, the voltages are expected to operate in the nominal range for the 

technology, while write voltages are expected to be pumped to a higher voltage level.  

This Crossbar ReRAM implementation does not utilize a separate access transistor for 

selection, but the selector device is integrated with the resistive element to form the 

switching medium (SM) layer for the bitcell as shown in Figure 3-2.   

 

Figure 3-2 ReRAM Bitcell Details (a) ReRAM bitcell cross-section (b) Crossbar 
1S1R array bias scheme, with selected cell circled  

The SM is sandwiched between the bottom electrode (BE) and the top electrode 

(TE). A voltage above a threshold (> VTH) is required to select the cell to perform a read 

or write operation. For the program operation, a much higher voltage (>VPRG) is applied 

to enable the formation or resetting of the conductive filaments.  Figure 3-2(b) shows 
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the bias scheme of the crossbar memory array for selection. All wordlines and bitlines 

are held at V/2, while the selected cell’s wordline and bitline are biased to have a 

difference of V across it. The selector device is engineered so that the ratio between the 

ON-resistance, defined as when the bitcell has a high voltage bias (V) across it, and the 

OFF-resistance (voltage bias of V/2 in this example), is very high.  This high selectivity 

ensures minimal sneak path current on unselected cells on the same bitline, which have 

a potential of V/2 across their cells. 

 

3.3 ReRAM Read and Write Performance Tradeoffs 

The read latency of a ReRAM array is dependent on the overall array size, as 

shown in the graph in Figure 3-3.  The x-axis in the graph is the sub-array size of the 

memory array, which is the product of the number of rows and columns with an array.  

The graph has two y-axis – overall die area required to meet a certain memory storage 

capacity measured in sq mm and read latency delay measured in micro-seconds.   

For the purpose of area efficiency, it is desirable to have as high an array size as 

possible.  This is because having several smaller arrays would increase the overhead to 

the surrounding peripheral circuits, such as the row and column decoders.  Although 

the overall sizing of the individual drivers could be smaller for the smaller array, the 

overall area needed would be higher since there would more of the decoder logic.  
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Additionally, by separating the arrays into small sub-arrays, certain duplication of 

control and sensing circuits becomes necessary, adding to the overall overhead area.   

 

Figure 3-3 ReRAM Array Size vs Read Latencies 

The graph shows that read-latency delay (marked by the latency numbers), 

increases as the size of the sub-array increases.  A very small array of a single bit (1), 

can have an expected delay of 0.1uS, or 100ns, while a very large sub-array of 2000 

bitcells can have an expected delay of 2.2uS.  From the die-area point of view, the small 

sub-array of a single bit would incur a high die-area of 100mm2, while the large sub-

array of 2K would have a die-area of 3mm2.  Thus, there exists a strong tradeoff 

between array performance and the area.  This high dependency is due to the latency 

timings largely being dominated by the parasitic elements (Resistance, Capacitance) of 
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the wordline and the bitline.  A shorter array reduces the length of these lines, and 

therefore directly helps to reduce the latency of the memory. 

To consume shorter latency, the array size needs to be kept small, which results 

in lower area efficiency.  In order to match read latencies close to DRAM main-memory, 

this tradeoff between array-size and area efficiency could require a smaller-bank based 

architecture to increase the read bandwidth, at the expense of die-area.  On the write-

latency side, these are much longer when compared to DRAM write-latencies due to 

the non-volatile state change of the bitcell.  For write-latencies, a separate write-back 

cache could be used as a solution to buffer write operations for certain applications. 

 

3.4 ReRAM Write Endurance Challenge 

Conventional ReRAM bitcell write endurances are on the range of 105 to 108 

cycles, while typical DRAM write endurance is greater than 1015 cycles.  Figure 3-4 

compares the write endurance ranges of DRAM against ReRAM.    Write endurance 

reflects the durability of the bitcell for write operation and is measured in the number 

of write cycles.  ReRAM bitcell, as it is, is over 7 orders of magnitude lower than 

DRAM.The large difference in write endurance limits between ReRAM and DRAM is 

a critical device challenge for ReRAM.  If the write endurance limits are limited to 105 
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cycles (100,000 cycles), then typical applications that make use of main-memory would 

not be supportable using ReRAM as a direct replacement for DRAM. 

 

Figure 3-4  Write Endurance Ranges for DRAM vs ReRAM 

DRAM write energy on average is around 19pJ/bit, while ReRAM write energy 

is quoted as 65pJ/bit.  I expect that write endurance has a tradeoff with data Retention 

that could be leveraged for main-memory applications. Additionally, this tradeoff could 

have benefits in lowering the write energy requirements, which is the second device 

challenge I mentioned.   
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4 Area Exploration studies   

 

One of the most common versions of ReRAM memory involves a “crossbar” 

structure of two orthogonal strips of wordlines and bitlines, the intersection of which 

produces both the resistive storage element and the selector device.  Figure 4-1 shows 

the Crossbar’s version of the ReRAM bitcell being comprised of the selector device 

and the memory cell, both of which are sandwiched between the orthogonal bitlines 

and wordline signal lines.  This pattern can be continued to provide vertical stack-

ability of the memory, thereby increasing the effective density. 

 

Figure 4-1  Cross-Section ReRAM bitcell 
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  These memory layers are fabricated on BEOL metal layers and can be stacked 

to provide increased memory capacity and density.  Additionally, these can be 

integrated onto traditional CMOS processes, allowing for logic or ASIC circuits to be 

placed in certain regions under the memory.  In comparison to separate vertical high-

density memories, this technology helps manufacturers circumvent some of the 

challenges with existing 3D ICs, including higher development costs, and reliability 

with the TSV fabrication.  An IC with integrated Logic and Memory layers (see Figure 

4-2) increases the function per unit volume/area while reducing power consumption 

significantly.  The crossbar version of ReRAM memories is stackable and allows for 

logic to be placed under the memory layer. 

 

Figure 4-2  ReRAM Physical Integration.  

As shown in Figure 4-2, while the actual memory cells are in a BEOL metal 

layers, the peripheral circuits – such as, the word line decoder, column multiplexer, and 
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sense amplifier, would need to take up space in the substrate and lower metal layers 

and forming blockage regions for logic circuits.  However, this still leaves a majority 

of unused space under ReRAM Memory Stack (more than 70% for a two-layer stack).  

I propose using the unused space under ReRAM metal stack for CPU or other Logic 

elements. 

My aim for the physical design feasibility study was to explore a monolithic 

processor core that can be physically integrated with a ReRAM memory on the same 

chip.  In this section, I attempt to integrate a standard-cell based synthesized RISC 

processor circuit with a ReRAM crossbar memory circuit and analyze the area and 

routing congestion that results from such an integration.  I first present some of the 

ReRAM integration constraints and the CAD methodology used to study the area 

impact.  I consider three different ReRAM integration and summarize the measured 

results.  Two different integration ReRAM-Processor configurations are presented in 

this section with the area impact results obtained.  Finally, I consider the physical 

integration of a SRAM memory placed underneath the ReRAM array layout. 

 

4.1 Crossbar ReRAM Integration Constraints 

My initial study is based on the Crossbar implementation of ReRAM memory 

which is CMOS compatible and back end of line (BEOL) stackable.  CMOS 
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compatibility ensures that the exotic materials used for the ReRAM stack can be 

deposited on top of standard CMOS fabrication techniques.  One method of physically 

realizing this type of integrated circuit involves a two-step process, where the CMOS 

circuits are fabricated at a standard process foundry and then taken to a ReRAM 

fabrication facility for the specialized ReRAM layers to be deposited on top, in a split-

fabrication like approach.  Figure 4-3 presents the physical implementation of the 

ReRAM bitcell into a standard CMOS process. 

Crossbar ReRAM uses a Select device embedded with the Resistive cell (1S1R) 

and the cells lie at the cross point of orthogonal metal layers, as shown in Figure 4-3 

(a).  The Figure 4-3 (b) shows the split-fabrication like approach described earlier, 

where the specific ReRAM layers can be embedded on-top of, or even in the middle of 

standard fabrication processes. 

 

 

Figure 4-3  Crossbar ReRAM Bitcell (a) Orthogonal Bitcell Layout (b) ReRAM 
integration with CMOS Process Figure source (Crossbar Inc., 2018) 
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Table 4-1 summarizes the key performance metrics of Crossbar’s ReRAM array.  

I will briefly go over each of these characteristics and compare with DRAM 

performance where applicable.  The bitcell area is competitive with a DRAM bitcell 

and has the potential to achieve higher density with increased vertical scaling.  Also, as 

noted in the table, the bandwidth per array is 4-8 bits.  Therefore, to provide sufficient 

bandwidth to a single core, I envision several arrays that are distributed across the full-

chip and are accessed in ganged mode, in a Distributed Shared Memory-like 

architecture.   

Key Parameter Performance 

Area 4-16 F
2
 

Bandwidth per array 4-8 bits 

Read Latency 200-700 ns 

Write Latency 1 us 

Cell Leakage 0.1 nA/cell 

Program Energy 10-100 pJ/cell 

Endurance > 10
5
 – 10

8
 cycles 

Retention > 7-10 years 

Scaling Potential < 10 nm 

Ron/Roff ratio 100 

Selectivity (I @V
R
, V

R/2
) > 10

6
 - 10

10
 

Table 4-1 Crossbar 1S1R ReRAM Parameters 
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Some of the critical parameters that pose a device challenge for ReRAM 

replacing DRAM as a main-memory are the latency and write endurance limits.  Both 

read and write latency times are much higher than typical DRAM times, with write 

latency being especially much higher.  The Ron/Roff ratio in the table is a characteristic 

of the selector device engineered by Crossbar, Inc.  The crossbar ReRAM bitcell has a 

high Ron/Roff ratio over 100 to reduce sneak path currents from unselected cells and a 

low cell leakage current. 

The program energy per bit is also significantly higher than DRAM, and 

consequently, the write endurance for ReRAM is expected to be around 10^5 – 10^8 

cycles, which is much lower than that of DRAM, which is quoted to be above 10^15 

write cycles.  This is a critical device challenge to be overcome in order to replace 

DRAM for typical applications.  The flash memory bitcell, however, has a much lower 

write endurance of 10,000 to 100,000 cycles.  This low write-endurance is is managed 

by wear-leveling techniques to minimize the number of write operations to any 

particular cell, along with flash memory’s application consisting largely of read 

operations.  ReRAM has high scaling potential, however, and is expected to be scalable 

below 10nm. 

Crossbar ReRAM technology integrates with standard logic processes, is 

stackable vertically for increased density, and has a 1-4F2 cell size, depending on the 
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number of stacks. Although not all ReRAM variations in development allow for this 

assumption, the general direction of ReRAM is moving towards increased density by 

utilizing vertical scaling and integration with logic-process compatibility.  This type of 

ReRAM is organized so that the bitcells are stacked on higher metal layers which are 

shown in Figure 4-2 as M11, M12, as an example.  The bitcell layout of the ReRAM 

could be simplified as a cross-section of adjacent metal lines, whose intersection 

determines the location of the resistive storage element.  Figure 4-4shows the bitcell 

layout in 45nm technology used for my area study.  The ReRAM bitcell dimension I 

am using for the array is 1.4(2*)2 which is 106nm x 106nm at 45nm technology.   

 

Figure 4-4  45nm ReRAM bitcell 

The peripheral support circuitry for the ReRAM to perform the address decode, 

row and column selection, and sense amplifier read and verify circuits would be 

implemented in the substrate using standard CMOS layers, such as the diffusion, 

polysilicon, and some of the lower metal layers.  Embedding these peripheral circuits 
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into a processor circuit would have an area cost and is one of the focus of my area study.  

Processor circuits are implemented using an Auto-Place-and-Route (APR) tool.  This 

tool takes a high-level design description netlist, such as VHDL or Verilog synthesized 

netlist, and places the standard cells in order to meet timing and minimum area goals.  

For my area study, I assess the impact of embedding the ReRAM peripheral circuits 

into a processor logic.  In traditional digital implementation flow, I model these 

peripheral circuits with a blockage layer to indicate to the APR tool that standard cells 

may not be placed in this region.   

Figure 4-5 shows the memory array organization that can be formed to group 

together multiple arrays and provide sufficient data bandwidth.  A single ReRAM array, 

shown on the left in the figure, consists of bitcells arranged in several rows and columns.  

A single horizontal row, referred to as wordline, is selected during a read or write access 

by wordline (WL) decoders.  Multiple columns, also called bitlines, are sensed through 

a column multiplexer (MUX) which is often placed below the array.  A sense amplifier 

(SA) compares the current sensed on the selected bitlines against a reference current to 

decide on the data read out.  This is done for both read and write operations, as write-

operations often involve a verify step to ensure that the write pulse was able to 

successfully place the cell to the desired state.  As can be seen in the diagram, these 

peripheral circuits form a L-shape on the side and bottom of the array. 
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The physical layout of four single arrays is grouped into a mat, shown in Figure 

4-5 on the right.  The four arrays are rotated so that their peripheral circuits are placed 

next to each other.  This organization allows for sharing of control signals between the 

arrays during an access.  The peripheral circuits make use front-end-of-line (FEOL) 

layers, such as the ones needed to create the transistors (diffusion, polysilicon, contact), 

as well as the lower metal layers to connect the CMOS logic together.  The ReRAM 

array itself only uses BEOL layers, and the area underneath is available for the CPU 

logic, as I mentioned before.   

 

Figure 4-5 Memory Organization 

The ReRAM peripheral circuits are the blocked regions during the APR digital 

implementation and form a “cross” shape of blocked region, and are indicated in Figure 

4-5.  Any CPU logic blocks need to either fit under one of the ReRAM arrays or need 
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to have a method for connecting between two ReRAM array locations.  While the 

blocked region specifies that no standard cells may be placed in that location, there can 

be limited restriction on the interconnect routing over these blocked regions.  The 

specific metal layers that are blocked have significant impact on the routability of the 

overall integrated design.  Completely blocking all metal routing over the blockage 

region necessitates any routing connections to go around the blocked regions results in 

significant additional routing area overhead with an integrated design. 

 

Figure 4-6  Via tap points from ReRAM metal layer to periphery circuits 

Figure 4-6 describes the routing approach I assumed for my area study.  The 

figure shows the close up of the physical interconnection between wordlines and the 

wordline decoder in the peripheral circuit region.  The horizontal bars on the figure are 

wordlines coming from the ReRAM array to connect to an individual wordline driver, 
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which is often the connected to a drain node on one or more transistors.  Therefore, this 

connection needs to be able to route the high-metal line of the wordline (for example, 

from metal-layer 11) to the diffusion node of a transistor.  This means that this 

connection has to go through multiple metal-via taps to descent to metal-1, and then 

connect to a diffusion contact.  Having the CPU logic interconnection lines through this 

region poses a potential conflict with this transition.  Therefore, I have identified a way 

in which an uninterrupted feed-through path could be allocated for the CPU logic 

interconnections.  This feed-through path allows for global signals to route between 

standard-cell logic groups of the CPU logic circuit.  The top-down view shows 

staggered via tap points that allows for a routing channel for signals to feedthrough 

across blocked region.  This approach is scalable as the number of ReRAM stack 

increases.  With higher stacking, there would be more via tap connections that would 

be needed.  The blocked region could expand to accommodate a larger staggered 

connection from the higher memory metal layers to the base transistors below.  

 

4.2 CAD Methodology 

In this section, I go over the tool flow methodology I followed to perform my 

area assessment.  Standard EDA tools are used for performing the area analysis of a co-

located ReRAM with a processor, as shown in  
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Figure 4-7.  The tool-flow starts with a design netlist to be synthesized.  In the 

figure, this is indicated as RISC-V processor netlist in Verilog (.v) format, since my 

study involved a RISC-V processor.  This behavioral Verilog netist is synthesized by 

Synopsys Design Compiler into physically realizable individual standard-cells selected 

from a design library.  The process design kit (PDK) I used for my study is based on 

45nm process node and makes use of design library from Nangate.  The synthesized 

netlist (_syn.v) output from the synthesis step is input to Cadence Encounter is used for 

the APR step of the flow to produce the final GDSII layout.  This is used in conjunction 

with specific limitations on the blockage to embed the ReRAM peripheral logic within 

the processor layout. 

I used the design collateral files from North Carolina State University’s (NCSU) 

45nm process design kit (PDK).  I also needed standard cell design libraries at this 

technology node.  I initially looked at using one provided by Oklahoma State 

University (OSU).  I chose the open-source Berkeley RISC-V VSCALE processor as 

the core for studying the processor-memory area impacts.  The synthesizable Verilog 

netlist of the core is called VSCALE and uses a 32-bit instruction set with a single-issue 

in-order 3-stage architecture.  The resulting layout was 59,672 sq um and operated at a 

maximum frequency of 150MHz.   
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Figure 4-7  Digital Implementation Tool Flow of an integrated ReRAM RISC-V 

Processor tile. 

The OSU library for the 45nm process only provided 32 standard-cells, which 

may not provide sufficient diversity for optimum choice of standard-cells in terms of 

area and performance.  This could cause the digital implementation to be overly 

pessimistic in terms of area and power, and not be representative of real PDKs available 

when manufacturing.  As a result, I explored utilizing an alternative open-source PDK 

from Nangate based on the same 45nm PDK but containing a larger number (134) of 

standard cells.  I repeated the Synthesis and APR step on the VSCALE processor to 

obtain an overall physical layout area of 30,373 sq um at 250MHz clock frequency, 

which was over 50% area reduction observed with this design kit.  I attribute this area 

reduction to be due to sufficient diversity in the standard-cells available, which enabled 
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the digital implementation to select an optimum standard-cell instance to minimize area 

and delay.   I used this Nangate PDK to perform relative area comparison studies.   

To mimic the integration constraints listed in the previous section, two types of 

blockage layers are indicated in the Cadence Encounter setting.  The first is for the 

placement blockage to prevent standard cells from being placed, and the second is 

routing blockage for the specific metal layers to limit routing.  Based on our discussion 

with Crossbar, prior ReRAM area measurements indicated that a 25% memory to 

periphery area ratio is a reasonable approximation for the two-layer memory stack.  I 

used this guideline for allocation of the blockage area.  For this second type of 

constraint, I mimic the restricted metal routing described in the previous section by 

blocking metal layers 1-8 and allowing for the APR tool to route through the blocked 

region using metal 9 and 10.  The ReRAM memory layers are assumed to be in metal 

layers 11 and 12 above the standard CMOS layers.  Rather than mimicking routing 

feedthrough channels, this allows for global interconnection signals that need to 

connect across the blocked region limited routing options.  A summary of the blockage 

settings and metal allocation for my design is also provided in Figure 4-7. 

4.3 Single ReRAM Cluster Integration   

My first objective was to integrate the VSCALE processor with a ReRAM 

memory to create a processor-memory tile that could be laid out in an array, based on 
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application needs.  To begin with, I measure the stand-alone area of the VSCALE 

processor core alone.  The synthesized netlist targeted an operating frequency of 

150MHz with a total of 59,672 standard cells at the 45nm process technology (nominal 

process, 1v, 27c).  I used Cadence Encounter to perform the APR and generate the 

layout for the core alone.  My approach measures minimum feasible area by iteratively 

reducing the floorplan dimension and checking for congestion, Design Rule Check 

(DRC), and connectivity violations.  If the floorplan area provided to perform the APR 

step is too small, then the tool will not be able to place all the standard-cells, make 

necessary connections, and meet the timing constraints imposed for the design.  DRC 

is a check that ensures that the physical layers are drawn to meet the lithography rules 

of the process.  Figure 4-8 shows the generated layout of the standalone core with 

power-rings around the core and a power-strap in the center.   

The VSCALE core with the 45nm PDK, the core area consumed 30,373 sq. um.  

The dimensions of the floorplan are 172um x 172um.  The generated layout includes 

the necessary standard-cells to implement the function described, as well as the 

interconnections in metal to make the connections.  This PDK allows for 10 metal 

layers and the standard-cells are covered almost entirely by the metal signal lines.  The 

APR tool typically uses even-odd metal routing, meaning that even metal layers are 

used for one direction, for example vertical, and odd metal-layers are used for 
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horizontal location.  This allows for efficient packing of a high number of metal 

interconnects.  The floorplan also includes the power-rings in metal 9 and metal-10, 

and a metal-strap in the center of the core to allow for sufficient power supply bias.  

 

Figure 4-8 Layout of VSCALE Processor Core 

Next, I talk about how embedding a ReRAM memory within the standalone core 

could be accomplished.  As I indicated in Figure 4-5, a single array will require an L-

shaped peripheral region surrounding it and is expected to have a relatively low 

bandwidth of 4-8 bits per array.  In order to deliver reasonable bandwidth, I expect 

these arrays to be grouped together, in a mat, to form banks of arrays to meet the data 
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bandwidth requirement in parallel.  Physically, I chose these to be placed back-to-back 

in order to form one contiguous blockage region for higher area utilization.   

I created a physical layout of the integrated ReRAM peripheral circuit with the 

VSCALE core using the above physical constraints as inputs to the Cadence Encounter 

tool.    For this experiment, I used 4 ReRAM arrays, each of size 75um x 75um, which 

corresponds to a memory capacity of about 0.5MB for a 2-layer ReRAM stack.  Note 

that crossbar has demonstrated feasibility of scaling to 8-layers for the ReRAM stack.  

Since the peripheral region takes 25% of the ReRAM area, this amounted to a total 

blocked region of 5600 sq. um for this configuration. The minimum feasible area was 

measured by iteratively creating a floorplan of smaller dimensions until the design is 

successfully placed and routed without any DRC or connectivity violations.    

Figure 4-9 shows the generated layout of the ReRAM peripheral circuits 

embedded into a single VSCALE core.  This layout only shows the standard-cell and 

blockage region information.  The center cross (in red) denotes the blockage region, 

we’ve described to the APR to keep out the standard cell placements.  The rows of 

standard cells (in blue) surround the blockage region complete.  As mentioned before, 

the blockage region is specified for four of the L-shaped peripheral circuits arranged in 

a Cross configuration for my physical design study.  This configuration has the 
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advantage of allowing for I/O connectivity between the ReRAM memory and the 

processor, as well as allowing for connection between the overall tile which would need 

to communicate with other blocks.    

 

Figure 4-9  Blockage Region for ReRAM Peripheral Circuits  

Figure 4-10 shows the final integrated ReRAM-Processor layout with all of the 

metal layers up to metal-8, excluding metal-9 and metal-10.  Each of the red-square 

represents a single ReRAM array.  The standard-cells and metal lines surround the L-

shaped peripheral region, which is on the corner of each of the ReRAM arrays.  The 

ReRAM arrays themselves will use higher metal layers, above metal-10 in this process 

node.  This generated layout required the minimum floorplan area to meet the design 

and performance constraints without violating the DRC and connectivity rules.  The 
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dimensions of the layout are 200um x 200um, with the individual ReRAM arrays being 

of size 75um x 75um. 

 

Figure 4-10 Layout of an integrated ReRAM RISC-V Processor tile. 

  Table 4-2 summarizes the measured area and the impact penalty of integrating 

a single ReRAM cluster with a RISC-V processor.  The total area of this integrated 

design was 40,026 sq. um.  Each ReRAM array’s area was 75um x 75um, with the total 

ReRAM dimension being 150um x 150um.  This allows for a total data storage for all 

four ReRAM arrays of 244kB, assuming a 5.62 ReRAM cell per layer.  For a 2-level 
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stack, this translates to 488kB of total storage.  The total blocked region blocked for 

the ReRAM’s peripheral circuit was 5600 sq. um, which is 25% of the total ReRAM 

area of 22,500 sq um, in line with the expected overhead for a 2-layer ReRAM stack.   

 

Table 4-2 Integration Results 

After accounting for the peripheral blockage area and the actual standard-cell 

logic area of the processor, the total integrated layout incurs an additional overhead of 

~11.3% in the 45nm process.  The area penalty from the integration is measured as the 

difference between the total area of the integrated design and the sum of the VSCALE 

processor area and the ReRAM blocked region.  This area penalty is mainly attributed 

to additional area needed for the routing of signals due to the blocked area in the center, 

around which there would be a higher incidence of routing congestion.  There is also 

minor contribution due to additional filler cells incurred due to the larger overall area 
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of the block.  Filler cells are needed periodically to provide tap connections to the n-

well and p-substrate from the power supply.  This ensures that the body node of the 

transistors is well-biased.  A larger area, therefore, requires more of these tap 

connections, increasing the overall area needed as well.  This overhead is the area 

penalty due to additional area required for routing and standard-cell placement 

inefficiencies caused by noncontiguous regions available for the processor.   

 

4.4 Multiple ReRAM Cluster Integration   

Due to the small number of bits that each array outputs, about 4-8 bits/array, I 

expect many ReRAM arrays are tiled across the chip to form mats.  These mats are 

accessed in a ganged mode to provide sufficient bandwidth.  To study the area impact 

of such an approach, I studied the impact of multiple ReRAM arrays integrated into a 

single core, as illustrated in Figure 4-11.   
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Figure 4-11 Embedding Multiple ReRAM Mat Clusters within a Larger 
Processor 

The previous area study used a single ReRAM array to fit within the VSCALE 

core.  VSCALE is a 32-bit integer core and is not representative of realistic cores which 

tend to be larger and more complex.  To correspondingly increase the core size, I scaled 

the VSCALE processor’s data path from 32-bit to 256-bit.  Figure 4-12 below shows 

the scaled 256-bit VSCALE processor without any embedded ReRAM.  The minimum 

generated layout had a floorplan dimension of 533um by 533um and an area of 284,077 

sq. um at the 45nm technology node using the FreePDK based Nangate standard cell 
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library.  This larger core allows us to integrate multiple ReRAM mats into the VSCALE 

design.   

 

Figure 4-12 Scaled 256-bit VSCALE Processor Layout 

Using the larger 256-bit VSCALE processor, I studied the impact of embedding 

four of the mat clusters within them in a 2x2 tile pattern.  For the ReRAM array size, I 

aimed for an array of 1000 x 1000 matrix, and therefore used an array size of 

109umx109um, making the mat size to be 218um x 218um.  This size allowed us to 

tile the 2x2 mat within the 256-bit VSCALE processor for the purpose of my study.  I 

iteratively varied the inter-tile cluster spacing to obtain the optimum spacing for 

minimum overall area for a range of tile spacings from 50um to 400um.  The minimum 
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area for each spacing parameter was found by iteratively reducing the floorplan 

dimension to check for feasibility.   

Figure 4-13.  below illustrates the floor planning result at the extremes of the 

inter-tile spacing when embedding ReRAM clusters within a larger circuit.  If there is 

not sufficient spacing between the ReRAM peripheral circuit’s blocked regions, then 

network congestion occurs when the processor blocks are being placed between them 

which cannot be resolved by the APR. On the other hand, if the spacing is too far apart, 

the entire generated layout can fit between the tiles resulting in large unused spaces.  

This can be seen Figure 4-13(a), which has an inter-crossbar spacing of 300um, and an 

overall chip dimension of 750um x 750um.  Figure 4-13(b) shows the minimum area 

configuration for an inter-crossbar distance of 50um and a specified floorplan 

dimension of 750um x 650um (width x height).   Note that it might be possible to 

optimize this layout manually and utilizing the areas in the corner to overcome this, 

however manual layout is beyond the scope of my initial area study.   
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(a) Spacing too large    (b) Mat spacing too close 

Figure 4-13  Inter-Mat ReRAM Array Spacing causing Inefficient Layout 

  Figure 4-14 shows one of the generated layouts with four clusters of ReRAM 

arrays tiled and embedded within a 256-bit scaled VSCALE version.  This layout shows 

the minimum area possible for an inter-mat spacing of 200um.  There are four ReRAM 

mats, with each mat consisting of 4 arrays themselves.  The total number of ReRAM 

arrays in this layout is 16, each of which follows the dimensions in the previous section.  

The design was obtained by iteratively reducing the overall floorplan size until the APR 

generated the layout successfully for this specific inter-tile spacing.  The APR tool itself 

attempts 10 iterations by default to optimize the signal routing to meet the timing spec 
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in the minimum possible area.  Once the connectivity is verified, the DRC checks are 

performed to ensure that none of the physical design rules are violated.   

 

Figure 4-14 Multiple ReRAM clusters integrated with a 256-bit RISC-V 
Processor 

The iterative process of finding the minimum area was repeated for a range of 

inter-mat spacing from 50um to 400um and the results are presented in Table 4-3.  The 

minimum width represents the width of the minimum design, considering the width of 
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the combined ReRAM MAT widths, and the width of the spacing.  The ReRAM mat 

dimension is 218um x 218um, as I mentioned earlier.  For example, at an inter-mat 

spacing of 25um, the minimum width would be 2*218um+25um=461um.  The 

minimum area therefore would be square of 461, or 212,521 sq um.  This type of 

floorplan would have no spacing on the outer edge of the array and therefore is not a 

feasible design.  The chip area denotes the actual minimum floorplan area to realize the 

processor-ReRAM integrated design.   

Inter tile 
spacing (um) 

25 50 100 150 200 300 400 

Min width 
(um) 

461 486 536 586 636 736 836 

min area  
(sq um) 

212521 236196 287296 343396 404496 541696 698896 

chip area  
(sq um) 

562500 487500 390000 390000 422500 562500 722500 

stdcells only  
(sq um) 

223365 221981 221697 222471 221997 221465 221632 

stdcell area  
(sq um) 

516402 441178 343797 343797 376257 516256 677012 

stdcell 
efficiency 

39.71% 45.53% 56.85% 57.04% 52.54% 39.37% 30.68% 

array area 190096 190096 190096 190096 190096 190096 190096 
array 
efficiency  

33.79% 38.99% 48.74% 48.74% 44.99% 33.79% 26.31% 

% penalty 0.71 0.49 0.19 0.19 0.29 0.71 1.20 

Table 4-3 Summary of Inter-Mat Spacing on Area and Efficiency 

The stdcells-only row lists the raw standard-cells area reported from the 

synthesis tool, while the stdcell-area row lists the measured std-cell area from the APR 
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tool, to include the additional area needed for routing.  As can be seen on the results, 

this is often double of the raw standard-cell area.  The stdcell efficiency reports the area 

occupied by the std-cell over the overall floorplan area and is intended to be a metric 

of how much usable space was devoted for the processor logic.  At the optimum spacing 

of 100um or 150um, I see the standard cell efficiency being close to 60%.   

The array area row denotes the total ReRAM array area that are used within the 

floorplan.  Note that most of this array area makes use of higher-metal lines that don’t 

coincide with the lower layers.  As a result, there can be a high amount of overlap 

between the stdcell and the ReRAM array area.  This is reflected in the results that 

show that at the optimum inter-mat spacing of 100um, the array efficiency is close to 

50%.  The final parameter, % penalty, denotes the additional area incurred from the 

integrated ReRAM-Processor system.  For the four MAT, the total area of the peripheral 

region incurred 44,172 sq um.  This is in-line with the 25% guideline that I followed 

for the array-to-peripheral area ratio.  The table results indicate that the optimum 

configuration has a penalty of 19%.  

The plots presented below in Figure 4-15 show the results of the optimal spacing 

and minimum area as a function of the inter-crossbar spacing.  The x-axis lists the inter-

tile spacing of the ReRAM mat blocks varying from 25um to 400um.  Note that this 
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spacing is uniformly applied between all of the MAT blocks.  The y-axis in the first 

figure shows the area in sq mm.   

 

Figure 4-15 Impact of Inter-MAT ReRAM cross spacing on Area  

The min-area, as described earlier, lists the theoretical limit on the minimum 

feasible floorplan, considering the spacing between the MAT blocks and the sizes of 

the MAT blocks themselves.  The chip area line denotes the minimum successfully 

generated layout by the APR tool, given the timing constraints.  I see that at large inter-

tile spacing for the MAT blocks, the realized design is close to the theoretical limit.  

This is because the spacing between the MAT blocks is so large, that the entire design 
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is able to fit within the inside of the MAT arrays, similar to the design indicated in 

Figure 3 12(a).  

Figure 4-16 shows the impact of inter-mat spacing of the ReRAM blocks on the 

array and standard cell efficiency.  The x-axis varies the inter-mat spacing and the y-

axis reports the efficiency and penalty numbers as a percentage. 

 

Figure 4-16 Impact of Inter-MAT ReRAM cross spacing on Efficiency  

  The standard-cell efficiency peaks at 57% at the optimum spacing of 150um.  

The ReRAM peripheral logic area occupies a total of 44,172 sq um, which accounts for 

11.3% of the total design area of 390,000 sq um.  The power rings surrounding the 

floorplan also consume some area, approximately 13%.  The remaining area numbers 
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could be accounted for filler cells, and unused standard-cells at the corner of the 

floorplans.  Since the area study is done in increments of 50um, a finer step might 

indicate a lower feasible design than identified.   

On the ReRAM array side, the efficiency peaks at 49%.  The limitation on the 

ReRAM side preventing the array from completely covering the provided area is the 

peripheral circuits that align with each row and column.  Completely covering the array 

would mean that these peripheral circuits extend all the way to the end of the floorplan, 

severely limiting the signal interconnections across the blocked regions.  While the 

inter-tile spacing dictates the spacing between the mat blocks, the overall floorplan 

dimension dictates the spacing from the boundary of the design to the edge of the 

peripheral region.   

The third curve in fig shows the area penalty of integrating the two design blocks.  

The area penalty is calculated by subtracting total design area from the individual 

processor and ReRAM peripheral block area.  This penalty accounts for the cost of 

disrupting the processor floorplan area with a ReRAM peripheral block, largely due to 

additional routing for signals between standard cell groups, with possible routing 

around blockage regions.   

To summarize, the results show that an optimum inter-ReRAM spacing exists 

to maximize area efficiency at close to 50%.  At 45nm, with my design configuration, 
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the optimum inter- spacing is 100um to 150um.  Larger spacing (> 200um) leads to 

inefficiency from unused synthesized areas (empty space) while smaller spacing 

(<100um) leads to inefficiency from routing congestion between standard cell groups.  

The optimum spacing produced a peak array efficiency of 50%, with around 20% area 

overhead penalty for this configuration.  For alternative configurations, the specific 

optimal point could be affected by the relative size of the processor and the blocked 

region due to the ReRAM array and would be worth investigating this relationship in a 

future study. 

The 256-bit VSCALE extrapolation only scales the data path portion of the 

processor and will not model impacts of the control path of a more complex, realistic 

processor.   However, I am only interested in the impact of routing congestion from a 

larger processor.  For this purpose, extrapolating the data path is likely to have a higher 

impact on the generated layout rather than from a more complex control path.  This is 

because I believe while complex control circuits might require more interconnects, 

these connections would be spatially local.  On the other hand, data-path connections 

typically tend to span over longer distances to connect between subblocks.  Therefore, 

I believe the area impact results would be a conservative indication of more realistic 

processor. 
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The total consumed area for the optimum layout was 0.4 sq. mm, with a total 

ReRAM data storage of 4MB for a 2-level stack, for all four clusters combined.  The 

implementation shows a 2x2 array of ReRAM crosses integrated with a 256-bit integer 

RISC-V processor.  Using a ReRAM array of size 109um x 109um, the total ReRAM 

data storage realized would be 4MB at 45nm process node. 

Extrapolating these results to an 8-layer stack would create a 16MB ReRAM 

memory integrated into the ReRAM-CPU tile with an area of 0.4 mm2. For a 400 mm2 

die size, the above ReRAM array could be tiled 1000 times across the chip, to produce 

a total storage capacity of 16GB ReRAM. Because an 8-layer stack would require 

additional peripheral circuits to decode the wordline per stack and/or higher current 

driving transistors, the number of cores will be scaled down.  At the 16nm process, 

assuming a 10x reduction in area, a 400 mm2 chip should be capable of delivering 

160GB ReRAM storage with logic underneath assuming a 50% area efficiency. 

Appendix A: Cadence Encounter Command File contains the final Cadence 

Encounter command file used to specify the blockage settings and perform the APR to 

generate the layout. 
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4.5 SRAM-ReRAM Integrations 

One other configuration of interest is integrating an SRAM memory array 

underneath the ReRAM memory.   The motivation for this is an SRAM array that would 

function as a write-back cache to an ReRAM main-memory so that the impact of 

ReRAM write latency, which is on the order of 1us, could be minimized.  For my study, 

I have selected an open-source academic memory compiler, called OpenRAM [6], 

created by UC Santa Cruz and OSU.  This tool includes SRAM leaf cells for the 45nm 

process using the same FreePDK45 design kit used by my standard-cell logic.   

The SRAM bitcell used by the OpenRAM library at the 45nm node is shown in 

Figure 4-17 and compared with a 45nm ReRAM cell, which is close to 100 times 

smaller.  The left side of the figure shows the ReRAM bitcell layout modeled as a cross-

section of two metal layers, with a bitcell size of 5.6*Feature2.  At 45nm technology, 

this translates to 106nm x 106nm per bit.  The right side of the figure shows the bitcell 

leaf-cell from the OpenRAM library provided by UC Santa Cruz and Oklahoma State 

University at 45nm.  The bitcell dimensions are 0.707um x 1.344um and is composed 

of the conventional 6-transistor design.  Since the academic version of the SRAM 

bitcell can be 2.5x larger than commercial version, I can expect the difference between 

the ReRAM and SRAM bitcells to be closer to 35x larger.  Industry SRAM bitcells are 

optimized for the specific process they are to be fabricated in, and therefore have special 
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SRAM DRC rules that allow the pitch of the metal and base layers to be drawn closer 

than for regular logic, due to the regularity of the lithography pattern. 

 

Figure 4-17 – Bitcell Relative Sizes at 45nm 

Figure 4-18 shows the generated memory array bitcells (a) and the complete 

generated memory (b) in the 45nm technology.  Figure 4-18 (a) shows the regular 

structure of two SRAM bitcell rows.  The generated memory contains 128 rows and 

256 columns and has a storage capacity of 4kB.  The total area for the SRAM memory 

is 194.1um by 207.86um.  
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(a) 

(b)    

Figure 4-18 - OpenRAM 45nm (a) Generated Bitcell Array (b) SRAM 

Figure 4-19 shows four SRAM arrays placed together with four ReRAM array 

on top.  The SRAM arrays are rotated to allow for the I/O ports of the SRAM to be 

accessed externally and not conflict with the central control region of the ReRAM array.   
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Figure 4-19  ReRAM Integrated with SRAM memory 

The total SRAM capacity in this instance is 16kB (4kB each SRAM) with a total 

layout area of 211,725 sq. mm.  I have drawn the SRAM arrays rotated to allow for 

their I/O ports on outside of tiles.  The four ReRAM arrays each are drawn as a 115um 

x 115um array, with a total data storage of 1.1 MB for a 2-level ReRAM stack, with 

potential to scale to multiple layers based on fabrication capability.   

Compared to the ReRAM-CPU layout, SRAM’s array region would largely be 

limited to the lower metal layers (below metal-4).  Therefore, ReRAM I/O connections 

can be made on the higher regions without difficulty.  Also, because the four SRAM 
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arrays are independent blocks, there is no need for the signal feedthroughs on the 

peripheral blockage regions, which makes this a more straightforward implementation.    

 

4.6 Memory Architecture Calculator (MAC) 

My next plan with regards to the physical design study was to use the area 

overhead numbers obtained to create a rough estimator on the die size, while being 

integrated with different processor types.  Since I are considering a tile-based 

architecture, I looked at existing commercial and academic processors that have 

multiple-cores that could be adopted in such a way.   

I considered four processor types for the study:   

1. Raven-3 RISC-V processor with 56kB L1 cache per core  

2. Fujitsu Sparc64 XII processor with 128kB L1 cache per core  

3. Intel Skylake-X processor with 64kB L1 cache per core  

4. Intel Xeon Phi (Knights Landing) with 32kB L1 cache per core  

My target process node for my in-house calculator was 16nm.  I extrapolated 

the area per core based on die-size measurements to estimate the per-core area for each 

of the processors at 16nm.  They are listed in Table 4-4.  Each of the different provide 

different functionality targeting their specific application, and consequently the area per 
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core varies based on the complexity.    This is reflected in the peak performance results 

listed for each processor. 

Processor Area per 
core 

[mm2] 

Avg Power 
per core 

[W] 

Peak 
Performance 

[GFLOPS] 

Power 
Efficiency 

[GFLOPS/W] 

RISC-V 0.55 0.17 6 34 

Sparc64 5.02 24.5 448 1.14 

Intel Skylake 16.9 9.17 1152 6.98 

Intel Xeon Phi 3.13 3.61 3456 13.29 

Table 4-4 Area, Power, and Performance comparison of Processors 

I created a web based Monolithic Architecture Calculator (MAC) using 

JavaScript to provide rough estimates on what can "fit" in each chip dimension.  Figure 

4-20 has a screen-capture of the MAC interface.   

 

Figure 4-20 MAC JavaScript Architectural Area Estimator 
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This can be used to assess architectural tradeoffs with various design options on 

a Monolithic Memory-Processors System and have the specific instance count of the 

different processor and memory controller.  Users can specify cache size and number 

of memory controllers on a 2D mesh NoC topology. The left-side of the frame is the 

user-input, and the right-side summarizes the resulting characteristic of the chip based 

on the parameters shown, when the user clicks on “CALCULATE”.  User selects the 

type of main-memory (ReRAM or DRAM), the die-size, the processor type.  The user 

also can select the ratio of area allocated between core and cache.  The default value 

shown of 0.85 specifies 85% allocated for the processor area with 15% reserved for the 

SRAM cache area.  The user can also specify the number of memory controllers, which 

can be an iterative process based on the number of processors that can fit.  The example 

shown has a core processor to memory controller ratio of 1:1.    

 

 

Appendix B: MAC Javascript Source Code has the complete JavaScript source 

code for the MAC. 
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4.7 Alternative Floorplan arrangements (L, Crossbar, Fractal design) 

In this chapter, I analyze 3D floor planning options on how to partition the 

different blocks and I/O placement to minimize routing congestion and performance. 

The previous experiment showed that integrating with a cross like connection 

in the middle of a processor logic limits the overall array efficiency of the chip.  Here 

I am trading off the ability to connect to several discrete ReRAM memories locally to 

processor tiles to provide high bandwidth.  As an alternate, if memory capacity is of 

prime importance, there is a way to approach near 100% array efficiency by utilizing 

an L-shape for the overall memory. 

The floorplan shown in Figure 4-21 shows a 3-instance grouping of VSCALE 

processors (Single issue 3-stage in-order 32-bit integer RISC-V processor) underneath 

a 1MB 2-layer stack ReRAM memory in the 45nm process, as the previous section.  

The APR layout area APR area without ReRAM came out to be 304um x 304um = 

92,712 sq. um, while adding this L-shaped ReRAM floorplan increased the area to 

320um x 320um = 102,400 sq. um.  This shows a negligible area overhead penalty 

from incorporating ReRAM in this way: 102.4k/ (92.4k + 11k) = ~1, i.e., no increase 

in area.  I attribute this to the fact that since the available area for performing the APR 

is contiguous, no additional routing area needed. 
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Figure 4-21 ReRAM with 3-core VSCALE processor 

Depending on the array and processor size, each tile could be a self-contained 

core along with a memory, as shown in Figure 4-22.  A small region between the tiles 

could be used for inter-tile routing channels and for network-on-chip (NoC) signals.   

However, there is a limitation in the ReRAM array size being too large, as this increases 

the read and write latency of the memory.  
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Figure 4-22 Independent Core with ReRAM block 

Therefore, for designs that can tolerate a single interface point, it is possible to 

achieve a much higher array efficiency for the chip by placing the memory peripheral 

circuit alongside two edges of the chip.  This ensures that maximum contiguous area is 

available for the APR tool.  

With the motivation of having ReRAM integrate with a tiled processor, there 

are two floorplan options available based on the communication needs.  In the case of 

a star network topology, the fractal design shown in Figure 4-23(a) allows for every 

ReRAM + Processor tile to be connected through the central node to any other tile.  By 

not closing off the fourth tile, interconnection congestion would be prevented. This type 
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of topology would typically be used in a server-client type of system with a need of 

central network connection.  

 

Figure 4-23 Alternative ReRAM-Processor integration floorplans showing (a) 
Fractal approach for Star topologies and (b) Mesh approach for mini-core 

parallel architectures 

As an alternate, consider the massively parallel multi-processor approach where 

each individual tile consists of a modest processor coupled with local memory to 

provide higher power efficiency for certain tasks.  These typically adopt a mesh-

architecture topology where the interconnect communication is handled by a separate 

NoC (network-on-chip) control circuit.  Figure 4-23(b) shows a possible approach of 

how this type of chip could be implemented with the ReRAM tiles. 

 

4.8 Conclusion 

Three observations are of note with the results obtained so far.  First, I have 

shown that by making minor modifications to established standard tool flows, it is 
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feasible to create a hybrid chip utilizing ReRAM, logic, and embedded SRAM blocks.   

Second, ReRAM density with respect to SRAM is quite favorable, especially using the 

2-layer stack implementation.  In the case of the core, floorplan results indicate that I 

can integrate the peripheral logic with minimal area penalty, while gaining the ability 

to create an integrated processor-memory system.  Finally, I gave an overview of 

alternate floorplans arrangements that maybe suitable for specific applications that 

align with the memory access pattern.  
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5 ReRAM Device-Level Research Study 

 

Based on my previous study, we believe that emerging memory technologies 

such as ReRAM that can be integrated onto standard CMOS processes have a 

significant advantage in replacing conventional DRAM as main-memory systems.  

These memory systems provide highly parallel, low granularity memory systems that 

support graph algorithms that are critical for machine learning and data science 

applications.  In this section, I cover the research study that addresses the challenges at 

the device-level. 

 

5.1 Motivation 

ReRAM’s high write energy and write latency requirements, along with lower 

write endurance, are key device-level challenges to be overcome when compared with 

existing DRAM solutions.  The higher write energy requirement for ReRAM (when 

compared with DRAM) comes from the need to induce a physical change for storing 

Non-Volatile data.  The data-retention time typically targeted for Non-Volatile ReRAM 
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is typically around 10 years.  However, ReRAM for Main-Memory applications do not 

necessarily require non-volatility of data.  Current DRAM solutions store the memory 

for a few milliseconds before a refresh operation rewrites the data to preserve them 

indefinitely, as long as the power supply to the chip is supplied.  I propose that if I 

reduce the data-retention requirement from 10 years to a much shorter time scale (for 

example: 100 seconds), it can be possible to use a lower write energy during the 

program operation.  This lower data retention bitcell could be augmented with a 

periodic refresh so that the data would be rewritten.   

Several prior work on ReRAM for neuromorphic applications, have 

demonstrated the switching between volatile and non-volatile states of these materials 

to mimic Spike-Timing Dependent Plasticity (STDP) [17-21].  For example, previous 

work by Shi, etc. [21] using Hexagonal Boron Nitride (h-BN) stacks-based ReRAM 

has shown switching behavior between volatile and non-volatile states.  There was an 

observed “Self-Recovered region” which was an intermediate region between High and 

Low electrical stress which induced a time delay before “resetting” of carbon filaments 

once the stress was removed.  I am not aware of anyone who is intentionally using the 

plasticity of ReRAM as a temporary memory storage device in order to exploit it for 

Main-Memory or DRAM replacement uses.   
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Based on reported characterization data for neuromorphic applications, there 

exists an intermediate region between high and low electrical stress where the memory 

retains the data for a much shorter time, but also has a lower electrical stress 

requirement.  This translates to a lower electrical voltage or current applied to the cell, 

and/or for a shorter time.  My approach is to use these materials in an intermediate 

region between volatile and non-volatile state where the data is retained for a much 

shorter time than is typically expected for non-volatile memory.  In this intermediate 

region, based on the electrical stress applied, the conductive filaments remain for a 

shorter period, after which, the metal ions migrate back to the electrodes, relaxing the 

cell’s state.  Also, because this intermediate region requires less electrical stress than 

the non-volatile state, this translates to a lower write-latency, and/or lower program 

current/voltage to write to the cell.  Additionally, this would also alleviate the 

requirement for a higher-voltage supply and corresponding charge pump circuitry to be 

included on the chip.  This would make ReRAM-Processor integration more feasible 

for general applications, and not just read-heavy applications.   

 

5.2 Fabrication Approach 

  Figure 5-1 shows an example of a Resistive Memory stack with two layers of 

metal-oxide region for the resistive-switching.  This figure represents a cross-section 

of a ReRAM bitcell and exposes the material composition used to form the bitcell stack.  
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At the bottom of the stack, is a metal electrode formed with Platinum (Pt).  The resistive 

switching element is composed of two materials – an Aluminum Oxide (Al2O3) and 

Titanium Oxide (TiO2).  Closing out at the top of the ReRAM stack are two metal 

electrodes – a Titanium (Ti) layer, and a Platinum (Pt) top electrode layer.  This entire 

stack could be fabricated on top of substrate or on top of metal, depending on the 

process flow. 

 

Figure 5-1 ReRAM Metal Stack 

This ReRAM stack shown in the figure is one possible implementation of 

ReRAM that prior literature has shown to display the short-term plasticity.  Using such 

a device, one possible scenario is that the data could be loaded into ReRAM from 

storage and allow for the computations to take place on the data for a set duration.  After 

this set period, ReRAM data would be reloaded back from storage or refreshed from 
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ReRAM itself periodically, similar to what is done for DRAM memory.   Alternate 

operation modes could also be introduced that allow for varying levels of persistence 

of memory depending on the level of write energy applied. 

Oxide based ReRAM is attractive as the underlying metal insulator–metal 

structure is simple, compact and CMOS-compatible. Also, these materials have been 

observed to provide multi-level behavior and results in bipolar, asymmetric structure 

which follows the ionic migration model of the STDP behavior. Based on my literature 

survey, the following were identified as possible candidates for the ReRAM stack: 

1. HfOx-based RRAM:   TiN/HfO2/Ti/TiN,  TiN/HfO2/Mg/W 

2. Pt/Ta2O5-x/W 

3. Ta/TaOx/TiO2/Ti 

4. Ti/AlOx/ TiN 

5. Au/Ti/h-BN/Cu 

6. Pt/Al2O3/TiO2/Ti/Pt  

All of the above have been observed to provide multi-level behavior and results 

in bipolar, asymmetric structure which follows the ionic migration model of the STDP 

behavior.  Based on discussions with the UMD Nanofab lab, our universities’ in-house 

fabrication and device testing facility, the final ReRAM stack combination 

Pt/Al2O3/TiO2/Ti/Pt was feasible option and I chose to fabricate this stack, as shown 

in Figure 5-1.   
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The process outline for fabricating the ReRAM device for the 

Pt/Al2O3/TiO2/Ti/Pt metal stack is as follows: 

1. Start with 4” silicon wafers covered by 200nm of Thermal SiO2 

2. Perform Standard Clean and Rinse 

3. Form Bottom Electrode:  Physical Vapor Deposition (PVD) of Platinum=Pt 
(60nm)  

4. PVD of 5-nm Al2O3  

5. PVD of 30-nm TiO2 

6. PVD of 15nm Ti 

7. Complete with Top Electrode: PVD of 60nm Pt 

 

I used the following shadow-mask configuration as my initial fabrication, which 

allows us to create the masks manually, without requiring an external mask supplier.  

Figure 5-2 shows the initial ReRAM devices that I planned to fabricate.  The devices 

will be on the range of 6mm for proof of concept.  The figure on the left shows the top-

down view of a 4” wafer with six devices of varying sizes, each having two probe points 

for the top and bottom electrode.  Note that these devices are the resistive switching 

element alone and does not include the select device needed in an array to control 

unselected cells’ leakage current.  The figure on the right shows a 3D view of the 

ReRAM stack and the connection to the bottom electrode plate in Platinum.  The 

marked spots denote the location of the probe landings for my characterization 

measurements.  The exact dimensions of the devices are provided in the next section 
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which goes over the fabrication approach in detail.  Based on my understanding of the 

resistive filament creation, I believe that the filament width will be localized and limited 

based on the current and electrical stress applied.  Therefore, the shortest path through 

the oxide layers will limit the width of the filament.   

 

 

Figure 5-2 UMD ReRAM Device Fabrication 

The configuration in Figure 5-2 shows six discrete ReRAM devices that will be 

fabricated.  The top and bottom electrodes will be connected to test-probes to apply the 

stress and measure the resistance of the path.  My characterization plan is to study the 

relationship between the resistance state of the device, data-retention time, and the 

electrical stress applied.  The nature of the electrical stress is a combination of many 

parameters:    
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 Current Limitation (CL) – The program or write pulse can be controlled to not 

exceed above a set current-limitation point.  This prevents the cell and write-

path circuits from being exposed to excessively high amounts of current and 

being damaged. 

 Pulse Height (voltage) – The program operation involves applying a voltage at 

a certain amplitude. 

 Pulse Length (time) – The duration or the width of the write pulse applied. 

 Pulse Period (time between pulses) – Certain write operations involve applying 

multiple write pulses in succession to move the placement of the resistance state.  

This induces the filament to be formed gradually and helps in avoiding over-

setting the bitcell. 

 

5.3 Mask Generation 

For the test devices, I use two masks to create the pattern needed, as shown in 

Figure 5-3 below.  The figure shows the top-down view of the masks used for the 

fabrication.  The combined overlay of the two masks is shown in Figure 5-3 (a).  One 

rectangular mask is used for the bottom electrode (Pt), which is Mask-1 in  Figure 5-3 

(b).  Mask 2 in the figure is composed of a circular opening for the oxide layers and the 
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top electrodes (Al2O3/TiO2/Ti/Pt).  A small alignment mark is placed on the top-right 

corner to help with the positioning of the second mask. 

   

(a)  Overlay of Masks           (b) Two masks used for device fabrication 

Figure 5-3  Mask Configuration 

I ordered 4” (100mm) Si wafers with the <100> orientation from University 

Wafers to create my test ReRAM device structures on using Physical Vapor Deposition.  

I initially used a 3D-printer to print a polymer mask to check for alignment and confirm 

with UMD’s fab-lab staff, shown below on the left.   Ultimaker Cura software (v 3.6.0) 

was used to create the stereolithography file (.STL) CAD descriptions for the two 

masks.  The masks were printed on a Creality 3D CR-10s printer using PLA, with a 

mask thickness of 0.5mm.  Figure 5-4 shows the Cura generated mask file (a) and the 

prototype 3d-printed mask (b).   

For the final mask, I decided to create the devices with different sizes to study 

the impact, and also changed the alignment marks to a circle (from a cross) to make it 

easier to create the mask. Figure 5-4 shows the final mask configuration I used to create 
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the hard metal mask.  Due to the higher temperature to which the mask would be 

exposed during the PVD process and the low resolution of the features (order of mm), 

I decided to use an Aluminum Shadow Mask for the features.  I ordered 6061 

Aluminum sheets (0.063” thick) from McMaster Carr. 

 

(a) Cura 3D-Model of Mask Prototype 

  

(b) 3D printed PLA mask prototype  (c) Final Mask Configuration 

Figure 5-4 Mask Prototype Creation 
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University of Maryland has an iReap Machine Lab with a ProtoTRAK SMX 

milling station which I used to cut the features and create the mask. The dimensions 

input for the first and second mask are given below.  There are six devices of varying 

dimensions that were fabricated.  The milling tool has the option to cut geometric 

shapes with specified location and dimensions.   

For my mask generation, I used the circle and rectangle pattern to input the 

features to be drawn shown in Figure 5-5.   For both masks the lower-left (LL) and the 

upper-right (UR) alignment marks were drawn as circles, which is an easier geometry 

to draw. The Xo and Yo indicates the origin of the feature, which is the center for a 

circle and the lower-left and upper-right coordinates for a rectangle.  Mask 2 specifies 

the actual location and dimension of the ReRAM stack.  The bitcell diameters used are 

two devices of 5.94mm, three devices of 7.56mm, and one device of 14.04mm.  
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Figure 5-5 Final Mask Configurations for Mask 1 (left) and Mask 2 (right) 

Table 5-1 lists the dimensions and coordinates used to specify the location of 

the features that were input into the milling tool for the two masks.  With respect to the 

center point of the mask, the respective X and Y coordinates for the different features 

are explicitly specified.  The dimensions for the circle that would be encompass the 

ReRAM stack are also specified in the diameter parameter.  
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Xo Yo  Mask 1 Features 

-38 21  

LL alignment mark, 
Circle diameter = 7.56 

26 -34  

UR alignment mark, 
Circle diameter = 7.56 

-14 -28  LL coord Rectangle 1 

13 -42  UR  coord Rectangle 1 

-38 6  LL coord Rectangle 2 

-24 -21  UR  coord Rectangle 2 

-13 5  LL coord Rectangle 3 

1 -22  UR  coord Rectangle 3 

13 -10  LL coord Rectangle 4 

34 -21  UR  coord Rectangle 4 

13 6  LL coord Rectangle 5 

34 -6  UR  coord Rectangle 5 

-25 39  LL coord Rectangle 6 

23 13  UR  coord Rectangle 6 

 

Table 5-1 Mask Feature Specifications  

The pictures below in Figure 5-6 (a) show the ProtoTrak SMX milling station 

which allows the features’ coordinates and dimensions to be input.  Figure 5-6 (b) 

shows the features being cut into the aluminum sheet.  Figure 5-6 (c) shows the final 

two masks after the cut, with them overlaid on top of each other using the alignment 

marks in Figure 5-6 (d).  The edges of the masks were deburred to smooth them out.   

Xo Yo  Mask 2 Features 

-38 21  

LL alignment mark, 
Circle diameter = 7.56 

26 -34  

UR alignment mark, 
Circle diameter = 7.56 

-7 -36  Circle 1, diameter = 7.56 

19 -15  Circle 2, diameter = 5.94 

-32 -1  Circle 3, diameter = 7.56 

-6 -2  Circle 4, diameter = 7.56 

18 0  Circle 5, diameter = 5.94 

-12 26  Circle 6, diameter = 14.04 
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Figure 5-6 Mask Fabrication clockwise from top: (a) ProtoTRAK SMX Milling 
Station (b) Sheet Mask being cut (c) Finished mask set (d) Finished Mask Set 

overlaid 

These two masks fabricated create the rectangular bottom electrode and the 

circular metal-oxide ReRAM stack along with the top-electrode.  My process used 

Platinum and Titanium for the metal electrodes and Aluminum-Oxide and Titanium-

Oxide for the metal-oxide stack.  I used UMD's Physical-Vapor-Deposition chamber to 

sputter the materials to the areas, which is a feasible approach due to the larger 

dimensions of these devices. 
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5.4 Device Fabrication 

 I worked with UMD’s nanofab lab to fabricate the Pt/Al2O3/TiO2/Ti/Pt ReRAM 

devices on the 4” (100mm) wafer using the aluminum masks I had previously milled.  

As mentioned before, my motivation is to study the use of ReRAM devices in an 

intermediate region between volatile and non-volatile state where the data is retained 

for a much shorter time than is typically expected for non-volatile memory.  In this 

intermediate region, based on the electrical stress applied, the conductive filaments 

remain for a shorter period, after which, the metal ions migrate back to the fill the 

oxygen vacancies in the filament, relaxing the cell’s state.  Also, because this 

intermediate region requires less electrical stress than the non-volatile state, this 

translates to a lower write-latency, and/or lower program current/voltage to write to the 

cell.   

The process outline for my device fabrication is shown in Figure 5-7.  Figure 

5-7(a) shows the initial SiO2 deposited onto the silicon substrate.  I used 4” (100mm) 

Si wafers covered by 200nm of Thermal SiO2.  Fabrication of the devices was 

performed using Physical Vapor Deposition (PVD).  First, the bottom electrode was 

formed of 60nm Platinum using the first mask (rectangular base), as shown in Figure 

5-7(b).  Then, the metal-oxide layers and the top-electrodes were deposited using the 
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second mask (circular).  The thickness used were 5nm Al2O3, 30nm TiO2, 15nm Ti, 

and 60nm Pt for the top electrode, as shown in Figure 5-7(c).   

 

Figure 5-7  Fabrication flow for Pt/Al2O3/TiO2/Ti/Pt ReRAM structures (a) 
Thermal SiO2 (b) Mask 1: PVD of bottom electrode (c) Mask 2: PVD of ReRAM 

stack and top electrode 

The material deposition was performed using the Denton Ebeam/thermal 

evaporator.  Figure 5-8 shows the PVD chamber setup used for the fabrication.  On the 

lower half of the chamber, shown in Figure 5-8(a), the E-Beam is generated and 

directed to the crucible.  The material to be sputtered is placed in the crucible and 

magnets on the side of the chamber are used to direct the E-Beam towards the crucible.  

The chamber is brought to a low-pressure environment to accelerate the conditions for 

evaporation.  A shutter resides over the crucible preventing any early evaporated 

material from reaching the wafer, which is mounted on the upper half of the chamber.  

A mirror mounted on the sidewall of the chamber allows for the material in the crucible 

to be observed through a window, to ensure that the material has evaporated.  Figure 

5-8(b) shows the upper half of the PVD chamber.  The wafer along with a hard-mask 
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is mounted onto the wafer-clamp facing the crucible (upside down).  A sensor to the 

side of the wafer clamp is used to measure the amount of deposited material, which is 

used to calculate the thickness of the material deposited.   

 

Figure 5-8 – (a) PVD chamber used for fabrication (b) Fabricated test wafer of 
discrete devices with probe measurements 

For Platinum, the evaporation temperature is 1768 deg-C (3214 deg-F). My 

fabrication process began with loading the Denton E-Beam/Thermal evaporator with 

the materials in the crucibles (see Figure 5-9 below).    
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Figure 5-9 - Crucible materials into PVD Chamber 

 After cleaning the hard aluminum mask with Isopropyl Alcohol (IPA) to wipe 

down any debris, the mask was clamped onto a wafer and mounted to the chamber.  

Figure 5-10 shows the wafer clamped with the first mask and the platinum, which is 

the bottom electrode, being deposit onto the wafer.  The two-circular alignment 

markers can be seen in the corners of the wafer.  This is used as reference when 

clamping the second mask onto this wafer. 

  

Figure 5-10 – Platinum Deposition on First Mask 
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The above deposition process was repeated with the second mask to deposit the 

remaining materials onto the wafer.  These include the metal oxide materials 

(Aluminum Oxide and Titanium Oxide), and the top metal electrodes (Titanium and 

Platinum).  Figure 8-11 shows the final fabricated wafer with three device diameters of 

5.94mm, 7.56mm, and 14.04mm.  Since the filament width will be largely localized to 

the stress location, the shortest path through the oxide layers will limit the width of the 

filament.  Thus, the exterior dimensions of the bottom electrode or the top electrode 

should be largely irrelevant.    

 

Figure 5-11 PVD Chamber and MicroProbe Station 

Figure 5-12 shows the probe landed on the wafer, the etch mark (b), and the 

boundary of the top-electrode and metal stack, at a magnification of 2.5x.   The figure 
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shows some of the surface deformities from the deposition, which is a limitation with 

the equipment and process used. 

 

(a)                  (b)                      (c)   

Figure 5-12 - Die Photograph of Fabricated Devices (a) Probe Landed (b) Probe 
etch mark (c) Top-electrode/Metal Stack boundary 

In order to analyze the composition of the ReRAM stack, I took a cross-section 

of the ReRAM bitcell.   The Scanning Electron Microscopy (SEM) cross-section photo 

and the EDS spectra of the stack are shown in Figure 5-13, confirming the presence of 

the various materials deposited.   

 

Figure 5-13 SEM Cross-section photo with EDS spectra of the ReRAM stack  
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SE is the Scanning electron image of the stack, where the stack can be seen as 

the lighter region.  Si displays the presence of the Silicon substrate and is largely located 

beneath the stack.  Pt displays the platinum element deposited in the stack layer.  The 

Aluminum did not show up local to the stack alone and could be an artifact of the tool.  

Oxygen was detected in the stack and should be present in the Aluminum-Oxide and 

Titanium Oxide layer.  Titanium is also shown to be present slightly higher than the 

rest of the layers, as part of the top electrode.  Though the resolution of the individual 

material position and thickness is quite low, I can use this EDS spectra to confirm the 

presence and rough location of the various materials. 

 

5.5 ReRAM Resistive Switching Behavior  

The first part of my characterization consists of confirm the resistive switching 

behavior.  In this experiment, my intent was to confirm that the resistant state itself 

could be altered between the low and high resistant states.  Characterization was 

performed on the fabricated devices at room temperature.  The Agilent 4155C 

parametric analyzer was used to drive the probe points and apply the program pulse.  

Figure 5-14 shows the oscilloscope measurement of the applied voltage pulse.  The 

voltage ramps from 0v to a peak of 5v, with a step duration of 92ms, which was the 

shortest pulse duration possible with the parametric analyzer. 
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Figure 5-14 – Oscilloscope Measurement on the Applied Program Pulse 

Figure 5-15 shows the SET transition from a high-resistive-state (HRS) to a low-

resistive-state (LRS) and the RESET transition from HRS to LRS using bipolar 

program mode operation.  The program operation was performed by applying a voltage 

from 0 to 6v with a current compliance of 100uA for SET operation and 1mA for 

RESET operation.   The x-axis shows the voltage applied and the y-axis shows the 

current measured across the cell.    

At the positive voltages, as the voltage ramps from 0v up to 4v, the current 

measured is at 1uA, reflecting the state of the cell.  For this cell, this seems to reflect 

the open-circuit current of not a fully formed filament.  At around 4v, I see the cell 

transition to abruptly to a higher current state.  This could reflect the conductive 

filament being formed across the electrode material.  Beyond 4v, the cell retains its 

lower-resistance state.  A subsequent SET pulse, ramping again from 0 to 6v, confirms 

that the cell-state is retained and remains SET.   
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On the negative voltage side, as I ramp down the voltage from 0v to -6v, I see 

that the cell is able to maintain the low resistance state (and the filament) for most of 

the region.  At -5.8v, the cell abruptly switches to a low-current/high-resistance state 

again.  I can visualize that the negative bias repaired the oxygen vacancies created 

during the SET pulse, thus “breaking” the conductive filament between the two 

electrodes.  A subsequent RESET pulse, ramping from 0v to -6v, confirms that the 

bitcell remains in a higher resistance state. 

 

Figure 5-15 - ReRAM Switching between LRS and HRS in bipolar program 
mode 

Published literature has shown two modes of write operations for ReRAM 

bitcells – bipolar and unipolar modes.  Bipolar mode involves applying a positive 

voltage for SET-going operations, while using a negative voltage for RESET-going 
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operations.  Unipolar mode, on the other hand, uses positive voltage for both SET-going 

and RESET-going operations.  The difference between the two operations is determined 

by the maximum voltage applied (higher for SET-going) and the current-compliance 

limit applied (higher for RESET-going).  The results shown previously used the bipolar 

mode of operation.  Unipolar mode is based on thermal acceleration of redox transitions 

and is simpler to implement but can lower cycling endurance. Bipolar mode is based 

on ionic migration assisted by electric field, has higher endurance due to the defects 

being conserved and is therefore generally a more popular method of program [28].  

TiO2 has been observed to switch in both bipolar and unipolar methods of 

resistive switching. I confirmed resistive switching operation in unipolar mode as well, 

as shown in Figure 5-16. The x-axis shows the voltage applied, and the y-axis shows 

the measured current.   

For SET, the program voltage was ramped to 6v, with the current compliance 

set to 100uA, while for RESET, the program voltage was ramped to 3v, with a current 

compliance of 1mA.  The figure confirms both successful SET-going and RESET-going 

operations.  For SET-going cell starting at a high-resistance state (with low current 

measured), at 3.8v, there is an abrupt change in current measured reflecting a state 

transition to LRS state.  After the transition, the current measured is higher, reflecting 
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a low-resistance state implying the creation of a filament. For RESET-going cell, the 

current measured is linear with increased voltage, implying a constant resistance of 

18.5K-.  At 2.5v, the RESET-going cell’s measured current abruptly drops implying 

a state transition to an open-circuit, HRS state. 

 

Figure 5-16 - ReRAM Resistive switching in Unipolar program mode 

 

5.6 Threshold Behavior at Low Current Compliance Limits  

My next set of measurements were intended to confirm the threshold behavior 

of ReRAMs.  At low-current compliance limits, a program pulse does not affect the 

state of the bitcell permanently.  In this mode, the bitcell acts as a passive device, 
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allowing current to pass when the bias is present, but not affecting the overall state of 

the bitcell.  Figure 5-17 shows the threshold behavior of the device on an LRS cell.    

 

Figure 5-17 - ReRAM Threshold behavior at low current compliance (Ic) limits 

I performed the measurement by ramping the voltage from 0 to 6v, and again 

from 0 to -6v for different current compliance levels.  Different current compliance 

limits (Ic) were applied, starting from a low current compliance of 1e-9 and increasing 

to 1e-4, in orders of magnitude.  The cell had an initial state of a low-resistance-state 

(conducting), and therefore as soon as the voltage rise, the current measured is clamped 

to the limit set by the compliance.  At each successively higher current compliance 
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level, the bitcell’s state was not altered from its set/LRS state to a reset state/HRS, even 

when the negative voltage bias was applied. 

 

5.7 Time Dependent Volatility Behavior 

I next characterized the data retention of the cell. Data retention is defined as 

the duration after program for which the programmed state is maintained in the bitcell. 

Previous work from literature survey [27] indicates that the initial conductance of the 

bitcell is the key dependent variable for predicting amount of state change.  The 

plasticity model proposed in [18] for example lists the following relationship between 

the change in conductance and the initial state. 

∆𝐺 = 𝜆௧𝜆ீ  

Here, G represents the initial conductance and t represents the change in time.  This 

compact model implies that the change in conductivity with time is proportional with 

initial state of the bitcell.   Conductance of the bitcell is measured as the inverse of the 

resistance, 1/Rinit, where Rinit is the initial resistance. 

My characterization method is as follows.  I applied a program pulse in bipolar 

mode consisting of either positive or negative voltage bias, depending on whether cell 

was SET-going or RESET-going.  My current compliance varied from 1e-9 to 1e-3 A.  
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For my experiment, I measured the cell resistance immediately after program (Rinit) 

and after a wait-time of 5 minutes and 10 minutes to assess the change in resistance.   

I start from an LRS bitcell or a RESET bitcell, in which there is no conductive 

filament that has formed between the top and bottom electrode.  Applying the program 

pulse of different current compliance either successfully or unsuccessfully completes 

the formation of the filament.  As stronger, meaning one with higher current compliance, 

program pulse is applied, the probability of the filament formation is higher.  

Additionally, the thickness of the filament formed is also larger.  Conversely, weaker, 

or lower current compliance, may produce filaments that are thinner or not at all formed.  

There is some movement of the filament after the program pulse which contributes to 

the filament relaxing causing the breaking or thinning of the filament.  I expect that 

cells placed in intermediate states of resistance have a higher probability of this 

happening, causing movement towards a more RESET state.   

Figure 5-18 presents the summary of the data collected.  The x-axis is the initial 

resistance of the cell, measured immediately after the program pulse is applied, in log 

scale.  The y-axis is the change in resistance after 5 and 10 minutes had elapsed, also 

presented in log scale.  These results confirm the expected direction of resistance for 

the bitcells whose initial resistance, Rinit was below 10-M.   For these cells, I see that 

for the most part, the change in resistance increased after 5 or 10 minutes, implying that 
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the bitcell became more reset, or moved towards a higher resistant state after the wait 

time.  For two bitcells in this region (below 10-M), there was no change, and for one 

bitcell in this region (below 10-M), the bitcell reduced in resistance slightly.  These 

were anomalous behavior, whose cause needs to be investigated further.  However, for 

all other bitcells, there was an increase in resistance, which is in line with the expected 

filament relaxation behavior.   

 

 

Figure 5-18 - Change in Resistance after 5 and 10 minutes delay as a function of 

the initial resistance. Log(Delta-Resistance) is calculated for the y-axis 
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For cells with Rinit above 10-M, I observed a decrease in resistance after the 

10-min wait time, for these hard-Reset cells.  These were very high resistance state 

bitcells, whose resistance after the wait time shifted to a lower resistance state.  This 

was true for both the 5- and 10-minute wait time.  It is unclear the exact mechanism for 

this behavior. Other studies on single-crystal TiO2 ReRAM have indicated 

electrochemical resistive switching behavior after a post-annealing step [55], which 

could be a possible explanation.  Since the commonality amongst these cells is that 

they all are very high RESET state, I can theorize that this might be caused by a transfer 

of defects from the top electrode to the bottom electrode, causing the bottom electrode 

to be the defect reservoir.  This behavior was described in [28] as complementary 

switching (CS) during the absence of a current limitation with a positive voltage bias.  

After the wait time, the oxygen defects could have migrated from the bottom electrode 

back towards the top electrode causing the cell to move towards a lower-reset-state.  

I categorized the measurement taken by the cell size and plotted the result in 

Figure 5-19.  The bitcell diameters for Cell 2, 3, and 6 were 5.94mm, 7.56mm, and 

14.04mm, respectively.   The x-axis is the initial resistance of the bitcell in log-scale, 

and the y-axis is the change in resistance (Rdelay – Rinit), where Rdelay is the 

measured resistance after the delay wait time, again plotted in log scale.  The data 

present here is for the combined 5- and 10-minute wait times.  The plot confirms that 
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the behavior observed is present on multiple devices of varying sizes and is not a 

function of the cell size.  I do notice that the initial resistance of the cell seems to have 

a slight relationship to the cell diameter, with larger cells having a lower initial 

resistance.  Although I did not focus the characterization on the impact of cell diameter, 

this would be a study for future work. 

 

Figure 5-19 - Resistance change over time grouped by Cell sizes with trend 

observed across multiple devices. Diameters of Cell 2=5.94mm, cell 3=7.56mm, 

cell 6=14.04mm. Log(Delta- Resistance) is calculated for the y-axis. 

Using the data on the bitcells below 10-M, I fit the data to a linear equation of 

the log-log data points.  Equation modeling based on the observed data for cell 

resistances below 10-M yields the following relationship.  
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𝑙𝑜𝑔(∆𝑅) =  1.64 ∗ log(𝑅௜௡௜௧) − 3.37 

∆𝑅 =
𝑅௜௡௜௧

ଵ.଺ସ

10ଷ.ଷ଻
 

Here, Rinit is the initial resistance measured immediately after the program operation 

and R is the change in resistance after a wait-time.  

Figure 5-20 plots the fit of measured results against the predicted equation 

model for bitcells with their initial resistance below 10-Ms. The R-square of the fit is 

0.57.   

 

Figure 5-20 - Predicted vs Observed change in resistance for cellstates with Rinit 

below 10M. Log(Delta-Resistance) is calculated for the y-axis. 
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For my final set of experiments, I measure the effect of current compliance 

applied to the data retention time as a function of time with measurements at 2 min, 4 

min, and 8 min. The cell was initially placed in an LRS state and increasing amounts 

of current compliance was applied. The program current compliance level affects the 

placement of the cell, with low current compliance levels not successfully moving the 

cell from an HRS to an LRS.  Figure 5-21 demonstrates the observed cell relaxation 

for the time range of around 10 minutes, collected at the following four specific points:  

Immediately after program, 2 min, 4 min and 8 min.  The x-axis tracks the time elapsed 

after the program pulse, measured in seconds, while the y-axis tracks the actual 

resistance measured.  A read voltage of 50mV with a current compliance set to 1uA 

was used for the measurement.  I see the change in resistance of four bitcells over the 

measured time period.  The dashed lines in the plot denote possible range for 

intermediately placed cell that have a high change in resistance over the time period.  

Bitcells placed below the bottom dashed line would be well-SET cells (LRS), while 

those placed above the top dashed line would be well-RESET cells (HRS). 
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Figure 5-21 - Resistance change for different Program Current Compliance 
values 

For this cell, I define a “well-SET” cell as below 100k, and a well RESET cell 

of above 100M.  The results show that a well-SET cell, formed by applying a high 

amount of current compliance (Res_1e-3), is able to retain its SET value of 48k 

through the measured time.  Similarly, a well RESET cell (Res_1e-9), with a resistance 

value of 5.7e9, remains RESET which a final measured value of 4.25e10.  The two 

intermediately placed cells (Res_1e-4 and Res_1e-5), show the resistance values 

increase with a much higher delta change in resistance.  The cell placed with a 1e-5A 

current compliance (Res_1e-5), changed from 3.11e6 to 8.29e8.  These 

observations confirm the relaxation behavior of an intermediate cell with a filament 
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relaxing to break its conductive bond, resulting in a higher resistance state.  Note that 

this relaxed higher resistance state is still lower an order of magnitude lower than the 

well RESET state of 4.25e10 with the Res_1e-9 current compliance.    The results 

indicate that well-set cell with a high current compliance of 1mA retained the state for 

the full 8-min duration, while intermediate program Ic levels of 1e-4 and 1e-5 shifted 

the cell state to two orders of magnitude higher resistance.  

To study the effect of current compliance on the change in resistance, I plot the 

observed data in a different way.  Figure 5-22 shows the change in resistance as 

function of the current compliance for three measurement points – immediately after 

program (Rinit), 2 minutes and 8 minutes after program (R2min and R8min, 

respectively).  The x-axis tracks the program current compliance used (in amperes), 

and the y-axis tracks the resistance measured on the bitcell.  The program pulse was 

applied at a specific current compliance level, and then the resulting resistance level 

was measured at the three delay points.  Note that I started with an HRS (RESET) cell 

prior to the measurement.  I observe that at 1e-9 and 1e-6, the cell remains in the HRS 

state.  At program current compliance of 1e-5 and 1e-4, there is a marked shift in the 

bitcell resistance, starting at a lower resistance level and gradually moving to a higher 

resistance level.  At Ic of 1e-5, the bitcell resistance started at 3.11M and after 2 

minutes, shifted to 60.7M, and after 8 minutes, measured to be 829M.  Similarly, 



115 

for Ic of 1e-4, the bitcell resistance started at 0.7M and after 2 minutes, shifted to 

14.3M, and after 8 minutes, measured to be 103M.  Finally, the bitcell that was 

programmed with an Ic of 1mA, remained as a SET cell, below 50k.  These results 

confirm that intermediate current compliance limits show the greatest change in 

resistance. 

 

Figure 5-22 - Resistance change as a function of Program Current Compliance. 

One interesting observation to note is that even for the specific points where the 

resistance does not shift, the Rinit datapoints all measure to be slightly lower resistance.  

One possible cause of this could be due to the measurement following a program pulse 

with a high voltage bias (6v) possibly having an effect on the state of the cell.  This 
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could possibly be due to thermal effect from the high voltage applied during the 

program pulse and is a topic for future exploration. 

In this section, I presented data that shows that the cell’s data-retention time 

could be modified by reducing the current compliance applied during the program pulse.   

This intermediate current compliance acts as a digital volatile mode for the bitcell.  A 

system making use of the cell in the digital volatile mode must calibrate the read 

threshold currents for this lower range, to properly interpret the intermediate state as 

well.   

 

5.8 Impact on Write Energy and Endurance  

In this section, I estimate the benefit in write-endurance that can be gained from 

the lower write-current applied.  From write-energy point of view, I see that the 

intermediate mixed-volatility state requires 1-2 orders of magnitude less write-current. 

Instead of 1mA, applying 10uA might suffice to program the cell in the intermediate 

state.  The write energy is the product of the current, voltage, and the duration of the 

stress applied to the cell.  From a write-stress point of view, the cell is in this 

intermediate mode is now seeing 100x lower write energy per write operation.  The 

following equation from [33] relates the relationship between the energy applied per 

cycle to the maximum amount of energy tolerated by the cell. 
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𝐸௠௔௫ = 𝑁௖௠௔௫ ∗ 𝐸ଵି௖௬௖௟௘ 

Here, Emax is the maximum energy that the ReRAM bitcell’s dielectric material 

can sustain, E1cycle is the energy seen by the cell in one cycle, and Ncmax is the maximum 

number of write cycles that can be performed.  Ncmax is the measure of write-endurance 

for the cell.  As the equation points out, there is an inverse relationship between the 

energy applied per cycle to the overall number of write cycles tolerated by the cell.   

Since I apply 100x lower write energy per cycle, I can expect that the Ncmax 

would increase by 100x.  My original stated write-endurance for ReRAM was 10^5 to 

10^8 cycles.  This can therefore be expected to be increased to 10^7 to 10^10 cycles.  

Although this is still not near the write endurance tolerated by the DRAM cell, this 

amount of improvement allows for the cell to approach the write-endurance limits 

needed for main-memory applications.  Furthermore, by combining wear-leveling 

techniques used in flash memory chips, the effective write-endurance could be further 

increased.    

In terms of the total write energy, there is an increased amount of write cycles 

needed to perform the refresh in the cases where the data needs to be maintained for 

long periods of time.  For the calculation given above, there is a 100x reduction in the 

write energy applied per pulse.  However, after 100 refresh cycles, where the data is 

written back to the cell during the refresh cycle, we lose the benefit of the write energy 

and write endurance to the cell.  In this case, for those data where the data needs to be 
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persistent, we may selectively apply a high write energy to begin with to store the data 

in a non-volatile state.  In addition to the write-endurance impact, there is an impact to 

the overall system performance as well.  Since write energy is a function of the current 

amplitude and the duration of the program pulse, the lower write energy could also 

translate to a faster write cycle.  For certain applications, having the lower write cycle 

might be critical for overall system performance where the shorter write latencies could 

be more easily hidden and prevent stalls due to write operations. 

 

5.9 Post-Characterization SEM  

I did a final SEM photo of the characterized wafer to assess the thickness of the 

material deposited.  I used Tescan GAIA FIB/SEM machine from UMD’s AIM lab to 

perform this measurement.  I first performed a FIB (Focused Ion Beam) cut on the 

wafer to ensure a sharp cross-section edge to make the measurement.  Figure 5-23 

shows the wafer material inside the SEM chamber.  The wafer is sliced and mounted 

onto a vice inside the chamber.  The figure shows the wafer positioned directly under 

the microscope. 
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Figure 5-23 - Sliced Sample inside GAIA SEM Chamber 

 Figure 5-24 shows the inverted cross-section photo of the wafer.  Table 5-2 

summarizes the measured thickness of the materials against the target thickness.   

 

Figure 5-24 – SEM Thickness Measurement  
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Layer # Material Target Thickness 

(nm) 

Thickness Measured 

(nm) 

1 Platinum (Pt) 60 73 

2 Aluminum Oxide (Al2O3) 5 
59 

3 Titanium Oxide (TiO2) 30 

4 Titanium (Ti) 15 14 

5 Platinum (Pt) 60 47 

Table 5-2 – SEM Analysis of Deposited Thickness 

The measurement showed that the material deposited is on the order of the target 

thickness of the different materials I targeted.  The aluminum and titanium oxide 

material could not be differentiated in the SEM photo mode, but I estimate the sum 

thickness to be larger than the target thickness of 35nm.  Since this device was not a 

virgin material, the process of applying the electrical stress likely caused the material 

to diffuse into adjacent layers.  This can be seen at the bottom of the wafer, being 

diffused into the silicon.  Overall, the thickness of the material measured appears to be 

slightly larger than my intended thickness overall.  In the future, using smaller mask 

dimensions and alternate deposition process might more accurately control the 

deposition of the materials. 
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5.10 Conclusion and Future Work 

A ReRAM device composed of a TiO2/AlO2 metal-oxide stack was fabricated, 

and characterization results were analyzed.  Resistive switching and threshold 

behaviors were observed.  Additionally, time-dependent relaxation of the cell resistance 

was observed, causing those cells placed in intermediate cell states, by using a lowered 

program current compliance, to see the greatest shift. This is in-line with my target use 

of using lower write-energy to place the cell in a mixed-volatile state having a lower 

data retention time.   

As mentioned in the beginning of the chapter, the motivation for this research 

work is to verify that we are able to observe that ReRAM could be operated ina n 

intermediate state where the formed filament of oxygen vacancies in the metal oxide is 

able to repair itself after a period of time.  The experiment results are a proof-of-concept 

of the possibility of ReRAM as a digital volatile memory.  With regards to scaling, I 

expect the observed behavior to be retained, since scaling occurs in the dimension of 

the ReRAM metal planes and typically not as much in the thickness between layers.  

Since the filament is localized to the points of the stress, the movement of the oxygen 

vacancies should follow at a similar rate even at advanced nodes.  Volume data on this 

phenomenon would provide more data points which would lead to better averaging of 

the program current compliance and the expected rate of the relaxation. 

Several points of observation merit a closer look.  I have mentioned these in the 

experimental discussion, with regards to anomalous points of data observed for very 
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high resistance bitcells and the change in resistance after a delay.  These can be further 

mapped to a function of the current compliance applied and the sequence of preceding 

program pulses.  Due to the large dimensions of my bitcell, it is possible that multiple 

filaments have formed in parallel, that may be the cause of the cell behavior at the very 

high resistance states (above 10 M).  For this reason, future work can try to make the 

dimensions smaller, towards the target dimensions seen in the intended application.   

Oxygen partial pressure has been known to have a strong impact on the 

movement and retention of oxygen vacancies in metal oxides [55, 56].  The effect of 

oxygen partial pressure in introducing contaminants to the material layers during the 

fabrication process needs to be studied more closely.  The PVD fabrication for my 

experiment was performed in a low-pressure chamber, however there could be oxygen 

contaminants between the layers.  Specifically, between the mask steps, where the top 

electrode of Titanium might have oxidized to form TiO2.  The SEM analysis did not 

have sufficient resolution to identify the regions clearly.  Future work can analyze the 

material fabricated with higher resolution.  In the operational mode we expect to use, 

the temperature ranges between -40C to 100C, and therefore we do expect a high 

variation from the oxygen partial pressure on the relaxation of the oxygen vacancies.  

In space applications, the lower oxygen partial pressure might slow the movement and 

relaxation of the oxygen vacancies, thus increasing the data retention of the filaments 

created in the intermediate state.   
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Lastly, the biggest change is to gather volume data for the characterization 

results so that the noise could be further isolated, and the cell retention relationship 

could be more robustly developed for design of the memory system application.  This 

requires fabricating a full array, with more than 1000 bitcells so that statistical analysis 

could be performed to more completely characterize the bitcell behavior. 
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6 Architecture-Level Simulations  

 

In the next thrust of my research work, I looked into architecture-level simulations 

that would provide the impact of various design configurations in my ReRAM 

architecture.  I compare this to a conventional DRAM based architecture and vary key 

parameters to analyze the impact of them.  I provide a brief introduction into the 

simulation methodology I used and then provide the results of my baseline architecture 

comparison.  I next study the impact of a central ReRAM based design with varying 

number of cores on the performance and the energy consumption of the architecture. 

6.1 SST Simulator 

SST is a simulation tool developed by Sandia National Laboratories, which 

provides a flexible framework as a “Parallel Discrete-Event Simulator” and allows for 

a multitude of custom simulators.  The tool has demonstrated scaling to over 512 

processors, and comes with many built-in simulation models for processors, memory, 

and network, including DRAMSIM.  The tool follows a modular OpenMPI interface 

based on linking together various components (see Figure 6-1 from the SST website).   
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The figure shows the operation of the simulation framework driven by an SST core 

engine that keeps track of the instantiated elements, components, and the links in the 

simulation.  Each component represents a physical structure in the architecture, such 

as a CPU, the network router, the memory, or the cache, for example.  Each component 

is connected to another component through a link with a latency property, which is used 

to track the timing of the simulation.  This framework allows for modular use of 

different elements that are developed outside of Sandia.  For example, to model the 

DRAM memory, I used DRAMSIM3 as the backend memory model.  

 

Reference:  http://sst-simulator.org 

Figure 6-1  SST Component-based Framework 

The SST framework is component based, cycle-accurate simulator for fast 

comparison of different architectures.  I have used SST to model the ReRAM-CPU 

architecture using the following external components (element libraries): 

● MemHierarchy  - Cache and Memory 

● DRAMSim     - DDR DRAM Memory 
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● Miranda         - Pattern-based CPU model 

● Merlin            - Network router model and NIC 

● Messier          - Model ReRAM with asymmetric read & write latencies 

 

6.2 Baseline Architecture Comparison 

I performed an initial simulation on the STREAM and GUPS benchmark on the 

architecture shown in Figure 6-2.  The DRAM architecture was roughly based on the 

Intel Knights Landing platform and a comparative architecture using ReRAM instead 

of DRAM was used.  The left side of the figure shows the baseline DRAM architecture.  

A mesh topology with 6 rows and 8 columns is used to support 36 CPU processor units, 

along with dedicated L1 and L2 cache blocks.  Additionally, there are six memory 

controllers that connect to 4GB DDR3 main memory blocks, to provide a total capacity 

of 24GB.   

On the right side of the figure, the ReRAM architecture that I used is presented.  

This version shows a tiled architecture, again with 36 CPU processor units with 

dedicated L1 and L2 cache blocks.  The main memory in this architecture, however, 

consists of 36 ReRAM blocks each of 0.9GB located adjacent to the CPU tiles, along 

with the memory controller.  This is in-line with the tiled ReRAM-CPU layout that I 

presented earlier.  This architecture also uses a mesh topology of 9 rows by 9 columns.  



127 

 

Figure 6-2 Architecture Comparison 

The key architecture parameters are provided in Table 6-1 for comparison.  I 

used our in-house DRAMSIM2 simulator to model a dual-channel DDR3 Micron 

device with a speed grade of 1333-J.  For the ReRAM memory, I used the Messier 

element in SST to model asymmetrical read and write latencies of 200ns, and 1us, 

respectively.  The peak memory bandwidth for DRAM is 10.4 GB/s per channel, for 

an aggregate bandwidth of 124.8GB/s.  A very high NoC link bandwidth of 96GB/s per 

link was simulated to allow the NoC latency not to be an issue for the comparison.  
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Table 6-1 Summary of SST Architecture Details 

The following lists the pseudo code for both benchmarks.   

STREAM Benchmark: a[i] = b[i] + k * c[i]; 

MemoryOpRequest* read_b = new MemoryOpRequest(start_b + (i * reqLength), reqLength, READ); 

MemoryOpRequest* read_c = new MemoryOpRequest(start_c + (i * reqLength), reqLength, READ); 

MemoryOpRequest* write_a = new MemoryOpRequest(start_a + (i * reqLength), reqLength, WRITE); 

write_a->addDependency(read_b->getRequestID()); 

write_a->addDependency(read_c->getRequestID()); 
 

GUPS Benchmark: a[b[i]]; 

MemoryOpRequest* readAddr = new MemoryOpRequest(addr, reqLength, READ); 

MemoryOpRequest* writeAddr = new MemoryOpRequest(addr, reqLength, WRITE); 

writeAddr->addDependency(readAddr->getRequestID());  

 

The STREAM benchmark consists of two read operations followed by a 

dependent write operation.  The GUPS benchmark has a read and a dependent write 
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operation, with the address being randomly generated.  The STREAM benchmark has 

dense memory access, meaning that the address locations in memory are accessed in 

sequential order and therefore I expected that DRAM’s higher-access granularity would 

be more favorable for this benchmark.  The GUPS benchmark has sparse memory 

access, for which I expect ReRAM’s low-access granularity to be more favorable.  

Figure 6-3 shows the SST simulation result of the comparison between DRAM 

and ReRAM based main memory architecture.  The y-axis in the plot reports the 

execution time of the simulation, where a lower number is better (faster).  The 

simulation was performed with a Miss Status Hold Register (MSHR) queue depth of 2, 

meaning that at any time, two outstanding requests could be stalled at the individual 

memory controller.  The plot shows the results for both Stream and GUPS benchmarks 

for DRAM, and two version of ReRAM – one with 200ns write latency and a second 

with 1us write latency, both versions have a read latency of 200ns.  The access latency 

for DRAM is set by DRAMSIM as a function of the pending requests and stalls.   
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Figure 6-3 SST Simulation Result 

The comparison show that DRAM outperforms ReRAM for Stream applications 

regardless of the write latency times.  My simulation result shows that when the write-

latency is reduced, for the STREAM benchmark, there is no noticeable improvement 

with the improved ReRAM write-time, and DRAM performs more favorably as 

expected.  Because of the ratio of read to write operations is 2 to 1, the effect of a “faster” 

write latency does not improve the overall execution time in this scenario.  For GUPS 

benchmark, however, ReRAM slightly outperforms DRAM in the shorter write latency 

configuration.  However, DRAM still outperforms ReRAM when the write latency is 

1us.  This is due to shorter request length of GUPS and the irregular access pattern not 

allowing for the write requests to be re-ordered and thus mitigated. 
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The memory latency breakdown of both simulations is presented in Figure 6-4.  

The latency is reported from both the memory controller point of view, and from the 

CPU overall point of view.  The memory controller latency is largely dominated by the 

memory latency itself, with some additional overhead depending on the number of 

stalls seen by the requests.  As seen in the figure, there is a huge discrepancy between 

the two.  For DRAM, the average memory controller latency for both benchmarks were 

32ns.  However, the average CPU latency for STREAM was 194ns, while for GUPS 

was considerably higher at 951ns.  This goes back to my original motivation of 

addressing the memory bandwidth wall problem resulting in these huge discrepancies.  

The problem is worse for GUPS due to its inherent finer granularity which prevents 

access overhead from being amortized over a larger amount of data.   

For the STREAM benchmark, the latency reported from ReRAM’s memory 

controller point of view was close and slightly higher than the average overall latency 

from CPU point of view.  The reason for the CPU latency being lower can be explained 

by a higher percentage of cache hit with the STREAM benchmark that allows for 67% 

of the accesses to be serviced by on-board caches.   Since cache access is much lower 

than the ReRAM main-memory access, the overall latency is slightly lower.  For the 

GUPS benchmark, however, the DRAM trend is also present with ReRAM – the overall 

CPU latency is much higher than the memory latency itself.   Here, this implies again 



132 

that there is a higher number of stalls that cause the performance of the system to be 

limited, not by the memory latency but by queuing of the requests. 

 

Figure 6-4 Memory Latency Breakdown, Queue Depth=2 

With regards to the impact of the write-latency, STREAM benchmark reported 

very little change between 200ns write time and 1us write time, as I saw in the previous 

simulation study.  With GUPS however, I see that average access latency, which is a 

combination of the read and write times, is reduced with the “faster” 200ns write 

latency time.   The ratio for write-to-read is also higher with GUPS with 1-to-1 vs 1-

to-2 with STREAM, causing the higher write latency to negatively impact the GUPS 

more.   
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The difference between the memory latency and the overall latency is an 

indication of the amount of stall occurring in the architecture.  Because the access 

pattern is random, the cache hit rate with the GUPS benchmark is close to 0%, 

combined with the queue depth of 2, this causes more of the memory requests to be 

stalled at the CPU with the GUPS benchmark.  The results imply that finer access 

granularity on ReRAM benefits GUPS benchmark with 200ns write latency.  For the 

1us write latency, the results show no ReRAM advantage for the GUPS benchmark.  In 

the STREAM case, DRAM performs better over ReRAM regardless of the write-

latency. 

 

6.3 Impact of Memory Parallelism for ReRAM 

Memory queue depth and the number of memory controllers are some of the 

key parameters that affect overall system performance.  To assess the impact of the 

queue depth on the performance, I increased the MSHR queue depth from 2 to 10 at 

the Memory Controller.  The results are presented in Figure 6-5.  The y-axis again is 

the execution time of the simulation with lower execution time meaning faster 

performance of the architecture.  Two additional sets of information are presented from 

the previous graph – the results with queue depth of 10 (5x queue depth from previous) 

for ReRAM.   
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Figure 6-5 Impact of Queue Depth 

In comparison with the queue depth of 2, I see a significant improvement in the 

execution time in the case of STREAM benchmarks for both the slow and fast write 

latency times.  There was little to no improvement of the performance as the queue 

depth was increased for the GUPS benchmark.  This implies that increasing the queue 

allowed for more memory requests to arrive at the memory controller, and potentially 

be combined due to any locality of the memory requests.   The increased queue depth 

helped efficient scheduling of multiple requests that may be related in the STREAM 

case.  The STREAM memory mapping was assigned to be interleaved with an 8B offset, 
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which allowed for the parallelism of the architecture to help efficient servicing of the 

memory requests.  There was minimal change with the GUPS benchmark due to limited 

temporal locality, with the cache miss rate being close to 100%. 

For my next study, I observed the impact of the number of memory controllers 

on the performance.  To do this, I increased the number of memory controllers to be 

twice as the original architecture, again using mesh topology.  Figure 6-6 shows the 

impact on the performance.  The two additional sets of data are for the ReRAM 

simulations with the number of memory controllers being 72, while the previous 

simulation used 36 memory controllers.  The impact of the increased can be seen most 

drastically in the GUPS simulation for both the slow and fast write ReRAM memories.   
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Figure 6-6 Impact of Queue Depth and Multiple Mem-Controllers 

For the STREAM benchmark, queue depth helped improve the performance by 

efficient scheduling of multiple requests that may be related.  Additionally, since the 

memory address mapping was interleaved across banks with an 8-Byte offset, the 

increased queue depth allowed for parallel processing of memory requests.  The cache 

miss rate for the STREAM benchmark was noted to be 37%.  For the GUPS benchmark, 

there was minimal change to the performance improvement due to the increased queue 

depth.  This can be attributed to little spatial locality, with a near 100% cache miss rate.   
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Increasing the number of memory controllers improved both STREAM and 

GUPS, with a larger improvement for GUPS benchmark.  This implies that the higher 

queue depth within a memory controller is beneficial for STREAM benchmarks to 

allow for more efficient grouping of memory requests to take advantage of spatial 

locality.  For sparse memory access benchmarks, such as in the case of the GUPS, 

independent parallel memory controllers are needed to allow for parallel servicing of 

memory requests.  

 

6.4 Motivation for Central ReRAM Design 

At the architectural level, SST simulations were used to help answer the 

question of what performance benefits can be gained at the expense of non-volatility or 

data-retention.  I utilized SST to model non-symmetric heterogeneous NoC 

architectures to support the monolithic ReRAM-CPU architecture.   Based on my 

previous simulation results, I believe that a hybrid memory system utilizing both 

DRAM and ReRAM would be beneficial to deliver the advantages relevant for each 

technology based on the benchmark and application need.  Additionally, this approach 

allows different processor type to be integrated into the same chip, including GPUs 

and/or accelerators.  Figure 6-7 shows the floorplan of such a system.   

From my area studies, I know that interspersing ReRAM peripheral logic within 

a core incurs a significant area penalty.  Furthermore, since each core does not have a 
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dedicated ReRAM tile, and because graph algorithms do have irregular sparse access 

patterns, the memory architecture needs to support requests from any processor on the 

chip.  The centrally located ReRAM block in Figure 6-7 is designed to act as a single 

embedded memory IP with a separate internal NoC based on the torus topology.  In 

addition to the NoC router circuits, the area underneath the ReRAM array could be used 

to store cache memory that can act as the last-level-cache for the memory.  Four DRAM 

memory controllers are placed in the corner to allow access to an external DRAM 

memory off-chip.  This hybrid memory system would allow for ReRAM to function as 

the Main-Memory and rely on DRAM as either a Last-Level-Cache (LLC) or as a 

selective cache for write-intensive applications only. 

 
Figure 6-7 Hybrid ReRAM-DRAM System Floorplan 



139 

The ReRAM memory controller would coordinate access to n number of banks, 

where n needs to be selected to tradeoff between fine-grain granularity and reducing 

area overhead.  The bank controller will also be capable of supporting Streaming Mode 

to perform a burst-mode from adjacent 8 banks to match DRAM granularity and 

improve streaming bandwidth.   Figure 6-8 shows the design for the ReRAM memory 

controller, which coordinates multiple banks.  With each bank, a bank controller will 

contain an incoming request queue, a data-buffer to store the read and write data (64-

bits), and the circuit to initiate the Read/Write kickoff signal to all 16 arrays.    

 

Figure 6-8 ReRAM Memory Controller Design 

I performed architectural simulation using SST to model the system floorplan 

shown in Figure 6-7, and to select the optimal ratio and grouping. My performance 

results, presented in the next section, indicate the impact of the write-timing on this 
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architecture.  Additionally, based on the size of the network needed to facilitate this 

approach, I also looked into alternative NoC topologies that might better meet the 

throughput required.  The next chapter goes over the NoC topology study results.  Once 

an optimal configuration is selected, I could generate the overall ReRAM embedded 

block design & external interface block.  This block can be used to generate a floorplan 

layout and provide area estimates to identify placement of individual components to 

achieve such a system. 

 

6.5 Area Floorplan Central ReRAM Design 

I performed a next level estimate for the bank and memory controller circuits 

that would reside beneath the ReRAM.  I used the 45nm layout, shown in Figure 6-9, 

to estimate I obtained previously for my repeating block.  The total layout area shown 

in the figure is 625um x 625um = 400,000 sq um for the 4MB 2-level stack.  The 

vscale_core circuit had a standard-cell efficiency in this space of 60% for a total 

consumed area of 240,000 sq um. 
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Figure 6-9 – Memory Footprint for Central ReRAM Design 

I propose placing the following circuits underneath the ReRAM block: Bank Controller, 

Memory Controller, NoC router, and SRAM cache.  To estimate the areas for the bank 

and memory controller, I synthesized a representative Verilog file to model the 

functions and used it to estimate the APR area.  I extrapolate this by using the area 

reported from the VSCALE_CORE layout study where the standard cell area was 

22,088 sq um, and the APR area was 30,373 sq um.   

The bank controller logic has three main functions, as shown in Figure 6-10:  an 

incoming request queue, a circuit to initiate the read and write kickoff signals to all 16 

arrays, and a data buffer to store the read and write data.  I model a 32B register file for 

the incoming request to support eight 32-bit command requests.  A 64B register file is 
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used to model the data-buffer to store pending read and write data.  The synthesized 

area for this circuit was 4,162 sq um, which translates to 5,723 sq um after the APR 

step.  As a square block, this circuit could be expected to take up 76um x 76um of area 

underneath the ReRAM array. 

 

Figure 6-10 – Bank Controller Area 

The memory controller logic coordinates 8 different banks and has the following 

functions: 

 Address decode to select one of 8 banks, with additional control logic to select 

multiple in stream-mode 

 Incoming request queue of 32B to support eight requests of 32-bit commands 

 Control logic to reorder pending requests 

 Data buffer of 256B to store read and write data. 

The synthesized netlist for this logic reported a total area of 16,147 sq um, which 

I extrapolate to be 22,204 sq um after the APR step.  Since this logic block will be 

shared among 8 banks, this circuit could be expected to use a square footprint of 18um 

x 18um for each bank.   
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The Bank, Memory, and NoC controller will be placed in a central area of the 

ReRAM mat, which has an area of 343x343um.  The spacing between the arrays within 

a bank is 125um.  Figure 6-11 shows the relative sizes and placement of the blocks, 

with the bank controller (B) being 75x75um, and the memory controller (M) being 

18x18um, which is shared among 8 banks.  The remaining area in the block can be used 

for the NoC router.  

 

Figure 6-11 – Placement of Control Logic, Buffers, and SRAM 

SRAM arrays will surround the central area with size of 125umx125um.  These 

SRAM arrays can be used as the last-level cache on the chip and can operate 

independently from the main-memory ReRAM control logic.  In one bank, I can fit 3 
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of these SRAM arrays.  Assuming 75% array efficiency and using the academic 

OpenRAM bitcell which has a size of 1.344um x .707um, the total SRAM storage per 

array is 4.1kB.  A commercial version of the SRAM bitcell could foreseeably be drawn 

2.5x smaller, and thus achieve 10kB of SRAM capacity per array.   

Finally, I consider the routing channel to connect the main-memory and the 

independently operating SRAM cache memories to the NoC router endpoints.  The 

NoC interconnects can be drawn in metal-7 and metal-8 which are available to be used 

in the regions between the ReRAM arrays and over the SRAM arrays.  This is 

illustrated in Figure 6-12 below.  The horizontal tracks are metal-7 and the vertical 

tracks are in metal-8 and these would provide a global interconnect channel to the 

ReRAM and SRAM arrays. 

 

Figure 6-12 – Interconnect Routing over Central ReRAM Floorplan 



145 

For the NoC routing channel, I propose a total target of 32B interconnect width 

and allocate 16B for Main-Mem and 16B for the SRAM Cache in order to keep the two 

memory systems separate and to allow for different priorities and address schemes to 

be implemented between them.  The available spacing for this in the floorplan above is 

125um wide.  This requires a metal pitch of .5um in the metal-7 and metal-8 for this 

routing which should be achievable in this technology. 

 

6.6 Write Performance Impact of ReRAM 

For the next phase of my simulation efforts, I focused on the Central ReRAM 

architecture surrounded by several CPU modules.  As mentioned earlier, such a central 

architecture has several possible advantages over a tiled-CPU network in cases where 

the memory access pattern is not localized to the tiles immediately above it.  In my 

prior benchmark simulation results, I found this to be true.  Additionally, separating the 

CPU modules allows for a contiguous area for the design implementation and avoids 

having to incur the area penalty I had observed. 

I first performed a high-level comparison using the SST simulation framework 

to compare the DRAM and ReRAM based architectures shown in Figure 6-13.  The 

DRAM figure shows a central tiled CPU architecture with 6 memory controller (MC) 

access points, 3 on each side, to connect to external DDR4 devices.  The ReRAM 
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architecture shows centrally located ReRAM arrays, grouped by banks, which are 

accessed by surrounding CPU processors (labeled as C).    

 

Figure 6-13 - DRAM ReRAM Architecture Comparison 

For my simulation, I assumed the following system specifications.  If one bank 

needs to provide 64-bits request width, and assuming that ReRAM is capable of a per-

array bandwidth of 4 bits, then for a single bank, I would need to access 16 arrays in 

ganged mode.  In order to provide a sustainable BW of 16B/ns, assuming 200ns 

ReRAM latency, I would need to group 400 banks per core.  Therefore, a single core 

needs to coordinate with 400 banks for reasonable bandwidth performance.  Tying in 

my previous area calculations, a single bank of 4MB (assuming a 2-layer ReRAM 

stack) at the 16nm is estimated to take up 0.4mm2 in area.  A full-chip die area of 

686mm2 can fit 8575 banks, assuming 50% array efficiency.  This can support 

8575/400 = 21 cores for a VLIW type of architecture with 8B granularity.  This 
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translates to a full-chip memory capacity of 8575 banks * 4 MB/bank = 32 GB.  With 

an 8-level stack, this capacity scales to 128GB.  As the vertical stack increases the 

capacity scales, but would require higher ReRAM peripheral area usage, leaving less 

amount of unused space underneath the memory. For my simulation of the ReRAM’s 

mesh topology, I used a ratio of 8 banks per memory controller to provide a total 

number of 1000 memory controllers on chip.  The system ratio of Core to Memory-

Controllers to Banks to Array is 21:1000:400:16.   

The DRAM architecture was based on the Intel Knights Landing platform [23] 

and a comparative architecture using ReRAM instead of DRAM was used.  The 

characteristics are listed in Table 6-2.  The CPU model used 8 issues per core per cycle 

and the mesh NoC topology is used.  I used the hardware-verified DRAMSIM3 

simulator to model a dual-rank DDR4-2666 DRAM device operating at 2.66GHz and 

also a High-Bandwidth-Memory-2 (HBM2) version of DRAM main memory.  For 

ReRAM, I assumed a centrally located memory IP with 1000 access memory 

controllers with the support circuits and bank-select logic located underneath the 

memory, while the CPUs surround the array. 
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Table 6-2 - Architectural Parameters 

In order to understand the impact of the longer write latency of ReRAM, I 

compared DRAM with two versions of ReRAM: SlowWrite and FastWrite. For the 

ReRAM SlowWrite version, I used a write-latency of 1us, while for the FastWrite 

version, I used 200ns. The read latency was set to 200ns for both versions of the 

ReRAM.  Figure 6-14 summarizes the result of the architectural simulation for the 

STREAM benchmark. The y-axis in the top plot shows the overall execution time in 

ms, with DRAM over 2x faster than the ReRAM-slowWrite option. The ReRAM 

FastWrite with 200ns latency is slightly faster, but still performs worse than the DRAM 

configuration. 
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The memory latency comparison, however, shows a much higher delay 

difference between the two architectures.  The DRAM memory latency on average is 

32ns, which is over 8x faster than ReRAM_SlowWrite.  However, the CPU perceived 

latency is only 2x faster, despite this large difference.  The MSHR occupancy 

comparison shows the reason for the discrepancy, with DRAM having a much higher 

occupancy resulting in a greater number of bottlenecks at the memory controller and 

stalls from the CPU point of view. 
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Figure 6-14 - SST STREAM Benchmark Comparison for 21 cores 
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Figure 6-15 shows the results for the GUPS benchmark, which has a finer access 

granularity of 8B.  Again, the results show that overall DRAM much longer RunTime, 

by 1.5x when compared to the ReRAM_SlowWrite case.  At the memory level, DRAM 

latency is faster, but from CPU point of view, overall perceived latency is slower due 

to a bottleneck at memory controller, which is shown in the MSHR_occupancy 

comparison.   

For the STREAM benchmark, DRAM is faster overall by 2x, and by 1.5x for 

the GUPS benchmark.  Though there are more pending requests due to the limited 

number of memory controllers with the DRAM architecture, the higher latency with 

ReRAM results in an overall longer latency time.  This observed trend was consistent 

for both STREAM and GUPS benchmarks at the 21-core level.   

Next, I increased the number of cores to 68 cores, which is the number used in 

the Intel KNL chip.  I simulated the comparison with both 21 cores and 68 cores, and 

the results are shown in Figure 9-4. The results indicate that when the number of cores 

is low (21), DRAM-based architecture outperforms ReRAM, even for GUPS type of 

algorithms. Although there was a small performance improvement with the 

ReRAM_FastWrite version, this still was not enough to overcome DRAM architecture 

performance. 



152 

 

  

 

Figure 6-15 - SST GUPS Benchmark Comparison for 21 cores 
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However, when the number of cores was increased from 21 to 68 cores, I see 

that in both STREAM and GUPS based benchmarks, ReRAM is able to outperform 

DRAM-based architecture. This is due to the higher amount of memory access requests 

needed with the higher core count. This requirement is more easily met by a more 

parallel memory system such as the one architected with the ReRAM based main 

memory. I see this reflected in the bottom plot in the figure of the memory latency 

breakdown for the stream benchmark.  Comparing the impact of increasing core count 

on the CPU perceived latency, I see a sharp increase for DRAM, while minimal impact 

to the ReRAM scenarios.  This increase in latency can be attributed to a higher amount 

of bottleneck resulting in more stalls.  Therefore, as the core count is increased, there 

needs to be enough parallel request to fully exploit the high amount of parallelism 

afforded by ReRAM and overcome the higher latency with ReRAM.   
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Figure 6-16 – Impact of Increasing Core Count  
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Table 6-3 compares the memory bandwidth processed in each of the simulated 

conditions. At lower core count, DRAM based architecture provides STREAM 

bandwidth of 76GB/s is nearly 40% higher than the one provided through ReRAM 

based architecture. At higher core count, ReRAM provides a higher bandwidth of 

138GB/s, while the DRAM-based architecture’s STREAM bandwidth is 30% lower at 

95GB/s. 

Bandwidth 

(GB/s) 

Cores DRAM ReRAM_SlowWrite ReRAM_FastWrite 

GUPS 21 1.36 0.89 1.07 
 

68 1.53 1.94 2.51 

STREAM 21 76 37.45 47.07 
 

68 95.6 136.63 138.6 

Table 6-3 Bandwidth Comparison 

 

6.7 Impact of Core Count 

Based on the previous section, I see that the advantages of the Monolithic 

ReRAM architecture’s parallelism can only be exploited when there are sufficient 

number of accesses, realized at higher core counts.  To study the impact of the core 

count, I performed a set of simulations varying the core count and compared the 

performance on a ReRAM architecture with a write-latency of 1us.  In addition to the 
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DDR4 version for the DRAM architecture, I also used an HBM2 version for the DRAM 

model.  Figure 6-17 shows the SST simulation result of the comparison as a function 

of the core count, from 20=1 up to 29=512.  The x-axis is the core-count and the y-axis 

is the execution time.   

If I look at the STREAM benchmark result for DRAM-DDR4, as the core count 

increases, the execution time reduces at a constant slope, implying an improvement in 

performance gained through the higher processing power.  However, this trend 

saturates at around 8 cores, beyond which the simulation time improves at a slower rate.  

A similar trend exists for the DRAM-HBM implementation as well, with the execution 

time being lower, but having a similar inflection point which is on the order of the 

number of memory controllers for the DRAM implementation.  For the ReRAM 

implementation, the execution time much higher due to the higher memory latency but 

falls at a similar rate as the DRAM implementations.  The difference, however, is that 

ReRAM’s inflection point is much higher, above 250-core count. 
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Figure 6-17 - Performance Comparison between DRAM and ReRAM system 
using STREAM and GUPS benchmarks (note: Log-Scale X & Y axis) 
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Both DRAM-DDR4 and DRAM-HBM outperform ReRAM in the low core 

count for both benchmarks.  HBM is able to perform slightly better than DRAM due to 

its higher bandwidth and proximity with the CPU.  However, starting at 64 cores, 

ReRAM begins to outperform both DRAM devices with a low execution time.  Figure 

6-18 summarizes the bandwidth comparison between ReRAM, DRAM-DDR4, and 

DRAM-HBM2 architectures.   In the STREAM bandwidth plot, the star represents the 

reported 90+ GB/s number from Intel Knights Landing, which corroborates with my 

simulation results.  
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Figure 6-18 - Bandwidth Comparison between DRAM and ReRAM system using 
STREAM and GUPS benchmarks (note: Log-Scale X & Y axis) 
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At the inflection point of 64 cores, ReRAM outperforms DRAM-DDR4 by 30% 

for the STREAM benchmark case and meets the performance of HBM2-based 

architecture.  The results indicate that at very low core counts (less than 64), DRAM 

outperforms ReRAM due to its much lower inherent access latency for both 

benchmarks. However, as core count increases, DRAM cannot keep up with the data 

bandwidth needs, while ReRAM's parallelism compensates for its higher memory 

latency.  This can be further illustrated when I analyze the read latency contribution 

from the different system components. At the memory level, DRAM latency is 8x faster 

than ReRAM. Yet, at the CPU level, the overall perceived latency for DRAM is only 

2x faster at a core count of 16. This manifests in the DRAM architecture as bottleneck 

of the memory requests at the miss status holding register (MSHR), the hardware 

structure for tracking outstanding misses. For ReRAM, due to the high amount of 

parallelism, the memory requests are processed without having to hold them. At the 

higher core counts, there is a sufficient amount of access requests to take advantage of 

the memory parallelism offered by the ReRAM architecture. 

The results confirm that with sufficient processing power, the highly parallel 

ReRAM with long latencies performs better than high-speed DRAM with limited 

memory controllers. The cross-over point when ReRAM outperforms is 85GB/s for 

DRAM-DDR4 and 135GB/s for DRAM-HBM2 device with the STREAM benchmark. 
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One interesting note is with the slight worsening of performance with HBM DRAM at 

very high core count of 512. Because of HBM's higher bandwidth interface, the low-

access granularity of GUPS suffers with HBM due to stalls from prior access requests.  

 

6.8 Energy Comparison 

I also calculated the total energy dissipated for the DRAM-DDR4 system for 

comparison against ReRAM.  For the CPU and network power dissipation, I 

extrapolated from Intel's Knights Landing power specification.  For DRAM, my 

simulations for the 16GB dual rank DDR4 2400MHz DIMM model reported average 

energy per bit dissipation of 19.5pJ/bit.  For ReRAM, I used energy numbers of 

64pJ/bit for write (reported in Crossbar’s whitepaper) and 0.5pJ/bit for read operations 

assuming a read current of 5uA, a 2V voltage bias, and a cell-sensing time of 50ns.  

Figure 6-19 shows the energy-delay plot for DRAM and ReRAM architectures for both 

benchmarks.  The x-axis in the plot is the total delay to complete the simulation, while 

the y-axis is the energy consumed in mJ, as a product of the power (voltage * current) 

and duration of the power consumption.  These points were obtained from the different 

core counts I used in the previous section.  The energy-delay cross product is a metric 

used to assess the impact that a reduction in delay would provide in terms of energy. 
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For the STREAM energy-delay plot, for both DRAM and ReRAM, as the core 

count is increased, resulting in lower delay, I see little impact on the energy consumed.  

This is because, at these points, increasing the core count reduces the overall duration 

of power consumption, which is taken up by the higher number of core power.  

However, I see an inflection point, after which there is very little reduction in delay by 

increasing core count, but there is a much higher energy penalty.  This is the knee of 

the curve observed, where throwing more processing power does little to provide 

improvement in performance.  This inflection point is at higher core count, similar to 

the performance plot I saw in the previous section.  A similar trend is seen for GUPS 

benchmark, with its inflection point being much higher for ReRAM, due to the 

advantage that ReRAM offers in terms of finer access granularity. 
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Figure 6-19- Energy-Delay Plot of DRAM-DDR4 and ReRAM system using 
STREAM and GUPS benchmarks (note: Log-Scale X axis) 
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The optimal operating point on the energy-delay tradeoff is circled on the figure, 

indicating that ReRAM performs at or better than DRAM at both benchmarks. I 

observe that, overall, ReRAM delivers lowest delay for both benchmarks, as seen in 

the performance comparison.  This is achieved at the higher-core counts, where 

ReRAM as a main memory is able to provide an energy efficient, especially for GUPS 

where high access granularity of DRAM incurs additional penalty.  This energy 

efficiency comes primarily as a result of faster execution time, which reduces the 

duration of CPU and NoC power dissipation. 
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7 NoC Topology Impact 

 

7.1 Motivation 

 ReRAM based main memory architectures offer advantages in terms of 

scalability, density, and fine-access granularity. These architectures are capable of 

delivering high connectivity and low access granularity. To truly exploit the parallelism 

offered by ReRAM architectures, a robust Network-On-Chip (NoC) topology and 

optimum scaling of core count is critical to ensure low packet latency while being able 

to offer the high throughput in communication. 

 In this chapter, I compare different NoC topologies for a ReRAM based main-

memory system and study the effect on speedup as the number of cores scales on-chip. 

Based on architectural simulation results from SST on streaming and GUPS 

benchmarks, I observe that fat-tree and torus topologies provide performance gains of 

78% and 39%, respectively. I also observed that optimal core and memory controller 

configuration have a bigger impact at moderate to high number of cores than the 

topology. Performance comparison of a ReRAM-based main-memory architecture 



166 

against a conventional DRAM-based architecture indicate a gain of 30% with 64 cores. 

Power, cost, and performance tradeoff analysis are also presented. 

 Figure 7-1 (a) shows a conventional CPU chip connected to on-chip DRAM 

High Bandwidth Memory (HBM) devices through a silicon interposer. Figure 7-1 (b), 

illustrates an integrated CPU processor with ReRAM main-memory on the same chip, 

enabling a high-number of connections between the two systems. In contrast, the 

conventional on-chip DRAM solutions are limited in the number of connections, 

through memory controller access points, to the on-chip HBM or DDR4 DRAM 

devices. 

 

Figure 7-1 - Comparison of (a) Conventional off-chip main-memory system with 
(b) Integrated CPU die with ReRAM layers on-chip 

 As mentioned before, to support reasonable sustained bandwidth requirements 

in a system, a high number of these ReRAM arrays need to be accessed in parallel. 

ReRAM being on-chip allows these connections to occur directly through metal-vias, 

rather than through an on-chip I/O port, an external interposer for HBM, or large TSVs 

in the case of 3D-ICs.   
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 The resulting system requires a robust Network-on-Chip (NoC) between the 

many core and 1000s of memory controller points on the chip. Conventional NoC is 

based on ring and mesh like topologies and are typically built for 100s of access points. 

With our highly parallel memory-CPU memory architecture, these topologies may not 

be able to support the higher network throughput needed, especially for future process 

nodes. In this paper, I compare performance and power metrics between a DRAM and 

ReRAM system, look at the effect of different network-on-chip topologies on the 

system performance, and investigate optimal memory controller configuration for a 

hybrid ReRAM-DRAM memory system. 

 The rest of the chapter is organized as follows. Section 2 provides a short 

background of the NoC topologies I investigated, and the simulation methodology I 

followed. Section 3 presents the results and discussion of the effect of the NoC topology, 

and the optimal DRAM Memory controller configuration.  Section 4 presents the 

conclusion. 

 

7.2 Background 

Based on previous work [11], a homogenous 2D-Mesh topology for the 

Network-On-Chip (NoC) is unlikely to keep up with the relatively high communication 

need of the ReRAM-architecture I envision.  In order to support low latency across the 
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chip, I performed a survey of NoC topologies that can support high network capacity 

for a large number of nodes on-chip.  In this section, I perform a brief summary of NoC 

topologies of interest, and the performance metrics used to measure them.  The 

topologies that have been physically fabricated by other research projects or in the 

industry are shown in Figure 7-2, implemented as NoC or as datacenter network 

topologies.    

 

Figure 7-2 Comparison of various NoC topologies 

Some of the metrics that are used to compare the network performance are node-

degree, diameter, and bisection width.  The node-degree of a topology denotes the 

number of ports connected to each node and reflects the input-output complexity of the 

network.  A high node-degree reduces the average path-delay but increases the 

complexity of the implementation.   The diameter is the worst-case path delay in the 
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network and reflects the maximum shortest path between any two nodes.  The bisection 

width is the minimum number of links that needs to be bisect, or cut, in order to divide 

the topology into two separate networks.  This parameter is used to indicate the 

parallelism of the network.  Ring and bus networks have a fixed bisection width. 

1. Bus: This topology consists of a common routing channel to which multiple 

devices connect to communicate with each other.  It allows for a simple 

implementation, and is the paradigm used in older system-on-chip type 

implementations.  However, the single common bus prevents simultaneous 

communications between devices and requires bus arbitration policies to 

allocate the resource between the devices.  Therefore, this type of topology is 

not scalable as the number of devices increase.    

2. Crossbar:  The crossbar topology allows for multiple parallel connection 

between different input and output permutations.  The result is a topology that 

is low latency with higher throughput than the bus topology.  The IBM Power5 

architecture uses a crossbar topology.  However, as the number of nodes 

increase the matrix expands to an additional row and a column, resulting in a 

high overhead.  Therefore, this topology cannot support a scalable architecture.    

3. Ring: The ring topology consists of a closed bus with the communication 

direction restricted to one direction.  Each node has two neighbors (degree=2) 
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and the “first” and “last” nodes are connected to each other.  The information 

packet travels along the ring from the source until the destination is reached.  

The communication scheme is simpler and requires lower area to implement.  

The bisection width is 2, and the diameter is n/2, where n is the number of nodes.  

Architectures that have used the ring topology include the IBM Cell and earlier 

Intel architectures, such as Knights Ferry. 

4. Mesh: The mesh topology consists of m rows by n columns to support m*n 

nodes.  At each intersection, a router directs the direction of the packet to take 

the shortest path to the destination.  Higher path diversity makes multiple 

simultaneous packet transmission possible.  The architecture is easy to layout.  

The bisection width is min(m, n), the diameter is (M+N-2), and the node degree 

is 5 for the central nodes, 4 for edge nodes and 3 for corner nodes.  The Tilera 

100-core CMP and the Intel Knights Landing uses this topology in their 

architecture.  

5. Torus: This topology is similar to Mesh with the end points in the network being 

connected to each other.  This has the added advantage of allowing for better 

fairness due to limiting maximum number of hops, while slightly increased 

complexity and area cost.  This leads to better path diversity than mesh and 

improves the diameter of the network.  The bisection width is 2*min(m, n), the 
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diameter is (m/2)+(n/2), and the node degree is 5 for all nodes.  Currently, 3-

dimension torus networks are used in some supercomputer networks, such as 

the CRAY XT3 and IBM BlueGene.   

6. Hoffman-Singleton: The Hoffman-Singleton is a high-radix symmetric graph.  

It limits the number of connections between any two nodes to two hops but is 

more complex to implement on a 2D die.  This topology is currently used in 

large scale datacenters, such as the high-radix CRAY XE6. 

Table 7-1 summarizes the relative advantages and disadvantages of the different NoC 

topologies. 

TOPOLOGY ADVANTAGE DISADVANTAGE 

BUS Simple implementation Simultaneous communication 
between devices not possible 

CROSSBAR Multiple parallel connection 
possible 

Not scalable as number of 
nodes increase 

RING Simpler communication scheme; 
lower area to implement 

Slower implementation as data 
packet travels through all nodes 

MESH Higher path diversity; Ease of 
layout 

Higher cost to implement than 
previous models 

TORUS Reduces worst-case path from 
Mesh implementation; 

Slightly more complexity in 
wiring than Mesh 

HOFFMAN-
SINGLETON 

Two hops between any two 
nodes 

Complex communication 
scheme; higher cost for 

implementation  

Table 7-1 Comparison of NoC Topologies 

A NoC topology’s performance is highly dependent and specific to the 

application and hardware architecture.  I looked into modeling tools that allow us to 
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assess performance impact of various topologies such as mesh, torus, and non-

symmetric heterogenous NoC architectures which might be needed to support the 

Monolithic ReRAM CPU architecture.  To support this, I have used the SST (Structural 

Simulation Toolkit) to model the different heterogeneous NoC architectures. 

 

7.2.1 ReRAM-based Main-Memory Architecture 

For ReRAM memories, the read and write latencies are considerably higher than 

DRAM memory latencies.  For ReRAM memories, a trade-off exists between the 

number of bits accessed from a single word-line and the access latency. In order to limit 

the latency, per-array bandwidth are typically low as shown in Figure 7-3.  The figure 

shows a ReRAM array with wordline (WL) decoders selecting a single row in the array.  

A column multiplexer (MUX) circuit at the bottom of the array is used to select a few 

of the bitcells in the selected wordline to read from.  The bitline current from the 

selected columns is then used by a sense amplifier to differentiate between a logic high 

and logic low read value.  This operation is done for a few cells in an array.  In order 

to provide sufficient bandwidth, several of these mini array banks would need to be 

accessed in a parallel ganged mode.  As shown in the figure, multiple arrays are 

accessed in parallel together to provide n times the per array bandwidth. 
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Figure 7-3 - ReRAM Array Access 

 At the system level, the sustained bandwidth is calculated as a function of the 

per-array bandwidth, the arrays per bank, the number of banks, and the access latency.  

The following equation can be used to calculate the number of banks needed on a single 

chip in order to meet a desired sustained bandwidth target.  

Bandwidth, BW =  
(BitsPerArray ∗ ArrayPerBank ∗ Banks)

(AccessLatency)
 

 For example, in order to provide a sustained bandwidth (BW) of 16B/ns, 

assuming an access latency of 200ns, four bits per array, and 16 arrays per bank, 400 

banks would be needed. 

BW =  
4 ∗ 16 ∗ 400

200ns
= 16

B

ns
 

 My sustained BW calculation indicates that each core needs to access 400 banks 

in parallel to deliver 16B/ns, to provide sufficient bandwidth for real-world applications. 

Note that I chose a per-bank access granularity of 8B, which is desirable for fine-access 

granularity applications, and therefore have 16 arrays per bank. ReRAM architectures 
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require high amount of parallel memory accesses. The high access time is amortized 

by accessing multiple arrays at once. Multiple processors would need to access these 

arrays in order to fully exploit the fine access granularity provided by ReRAM. This 

necessitates the need for a highly efficient network-on-chip connection topology to 

service the requests between the multi-processor system and the memory system. 

 A tiled floorplan, consisting of memory-processor tiles, incurs a relatively high 

area overhead of 20% caused by the embedding the ReRAM peripheral circuits with 

the CPU logic [25]. The inefficiency is caused by the CPU logic circuits not having 

contiguous space for the digital implementation. Additionally, the memory access 

patterns based on our simulation results also pointed to the fact that they are not 

dedicated to the memory immediately above it. Therefore, the overall architecture 

needs to support memory access patterns to any of the memory within the chip.  Rather 

than a tiled floorplan, I selected a centrally located ReRAM type of floorplan, as shown 

in Figure 7-4.  
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Figure 7-4 - Hybrid ReRAM-DRAM System  

This type of central-memory floorplan will allow for the ReRAM to be treated 

as an embedded unit with their own internal NoC network. Additionally, the CPU cores 

can be independent of the memory, and be implemented with a contiguous area 

floorplan. DRAM memory controllers could also be provided for cache, to be 

selectively used for write-intensive or sequential access type of algorithms. 

 

7.2.2 NoC Topologies of Interest 

 As mentioned before, a homogeneous 2D-Mesh topology for the Network-On-

Chip (NoC) is unlikely to keep up with the relatively high communication need of the 

ReRAM-architecture I envision. In order to support low latency across the chip, I 

selected a set of NoC topologies that can support high network capacity for a large 

number of nodes on-chip. 
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 Based on previous area studies, I calculated that it is feasible to have more than 

1000 individual memory banks, each needing to be accessed independently. This would 

entail over 1000 network endpoints, which maybe fairly large for a simple mesh or 

torus type of NoC topology. Therefore, I selected topologies, even ones not typical for 

NoCs, following trends in supercomputers, where 1000s of network endpoints is 

commonplace. I consider the following four topologies of interest to evaluate my 

performance comparison: mesh, torus, fattree, and dragonfly. Figure 7-5 illustrates the 

high-level connections of the different components for each topology.  In the figure, 

the rectangles denote the component to be connected, the small circle denotes the router 

endpoints, and the lines denote the links and connections between the endpoints.  These 

four topologies can be modeled in the architectural simulator that I had chosen, SST.  

The next subsection summarizes the simulation details.  
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Figure 7-5 - Overview Diagram of NoC Topologies Simulated 

1. 2D Mesh: Mesh is the simplest and most widely used NoC topologies 

due to its ease of physical layout. For my study, I limited the comparison to a 

two-dimensional mesh which consists of an array layout. Every network switch 

is connected to four neighboring switches and one component, which could 

either be a processor or a memory controller.  

2. 2D Torus: This topology is similar to mesh with the added connection 

between the endpoints. This has the advantage of allowing for better fairness 
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due to limiting maximum number of hops, while slightly increased complexity 

and area cost.  

3. Fat-Tree: Also known as flattened butterfly, the topology follows a 

hierarchical layout. The higher-level root nodes have more connections than the 

leaf nodes [38]. In my study, I use a 3-tier fat-tree Noc topology for my 

experiments.  

4. Dragonfly: The dragonfly network is a high-order radix topology that is 

also hierarchical in nature. Switches are clustered together in groups with high 

inter-group connections. Intra-group connections between other groups are 

formed to provide high connectivity. The number of connections between any 

two nodes is limited three hops (Local-Global-Local) but requires more 

complex physical implementation [39]. 

7.2.3 Simulation Methodology 

 My simulation environment consists of the SST (Structural Simulation Toolkit) 

to model and evaluate the different memory architectures and NoC topologies. As 

before, I made use of the following external element libraries to model the different 

system components. 

 Miranda - Pattern-based CPU model to model the individual processor 

on STREAM and GUPS benchmarks  
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 Merlin - Network-On-Chip router model to model the different 

topologies and specify the connection links between the different components. 

  MemHierarchy - L1 and L2 cache model  

 DRAMSim3 - DRAM Memory model for DDR4 and HBM2 devices 

  Messier - ReRAM Memory model with asymmetrical read and write 

latencies 

 

7.3 Experiment Results & Analysis 

In this section, I present the NoC topology comparison simulation results 

comparing the four topologies:  Mesh, Torus, Fattree, and Dragonfly.  Additionally, I 

also studied the impact of higher number of memory controllers to support a hybrid 

ReRAM-DRAM architecture.  Figure 7-6 shows the central ReRAM torus topology, 

with the access points to the CPU lying on the boundary in darker green color.  

 

Figure 7-6 - Torus Configuration for Central ReRAM Architecture  



180 

7.3.1 NoC Topology Evaluation 

 The SST architectural simulation result presented in the previous chapter used 

a Mesh topology for the comparison between DRAM and ReRAM. That work showed 

the configurations that are optimal to take advantage of ReRAM, which are sparse 

access patterns and higher core counts. Next, I studied the impact of various NoC 

topologies presented in Section 2 on the highly parallel ReRAM architecture described 

in the previous chapter. I simulated the different topologies using a link bandwidth of 

1, 2, 4, 8, and 16GB/sec for all topologies. The network parameters for the various 

topologies are provided in Table 7-2. The input and output buffer sizes were set to 2KB, 

with 2 virtual channels and a flit size of 16B. The mesh and torus are two-dimensional 

arrays of 34 rows and 35 columns to meet the maximum number of nodes for the 

simulation range.  The fat-tree network is a 3-level tree, with 2048 hosts. 

 

Table 7-2 – Network Sizing Parameters 
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 At the lowest and middle level, there are 256 routers per level, with 8 upper and 

8 lower links each. At the top-level of the fat-tree, there are 64 routers with 32 links.  

The fattree topology was simulated using a deterministic routing algorithm that only 

relies on the source and destination address, rather than the current state of the network. 

The dragonfly network has a high radix of upto 30 links per router at the lowest level. 

Minimal routing algorithm was used on the dragon fly topology, which selects the route 

based on the shortest path to the destination. The table also summarizes the total links 

present in the network for the simulation ranges of my experiment. 

 Figure 7-7 shows the summary of the NoC comparison simulation results in 

terms of the raw execution time for a system with 16, 32, and 64 cores for STREAM 

and GUPS benchmarks.  The link bandwidth was kept at 8 GB/s for all simulations.  

The x-axis is the number of cores and the y-axis is the total execution time.  For the 

STREAM benchmark, I see that at the lowest core count simulated of 16, mesh has a 

much higher execution time than all of the other three topologies, with the fat-tree 

providing the best performance.  This trend is much more prevalent for the GUPS 

benchmark, where the MESH is close to 2x slower performance than the fattree 

topology.  Since GUPS requires higher number of separate connections to provide 

memory access to the CPU, it would have a higher load on the network.   



182 

 As the core count increases, I see the specific topology having less impact on 

the performance.  This could be due to the contention points being more spread apart, 

due to more originators of the memory requests.  While the memory access points are 

very high (1000), the number of cores is only 16, this causes the network paths near the 

CPUs to be more congested.  As I increase the number of cores, the contention is 

alleviated by spreading apart the location of the memory request origins.  
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Figure 7-7 - NoC Topology Performance: Impact of Cores 
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 The results show the impact of cores by keeping the link bandwidth constant at 

8GB/sec for all topologies. For both benchmarks, I observe a consistent trend in the 

performance as follows. Mesh topology delivered the highest execution time, followed 

by torus, then dragonfly, and finally fattree topology. As the number of cores increase, 

the performance improves, although saturates and the network topology has less impact 

on the overall performance. This is especially notable for the the GUPS benchmark at 

the 16-core configuration. Here, mesh had much higher execution time due to network 

contention owing its sparse finer access granularity. 

 I next computed the speedup of scaling the performance using the lowest core 

count, 16, as the baseline.  The speedup is used to assess how much faster parallelizing 

the system improves the system performance, and is calculated by 

ExecutionTimeେ୭୰ୣ୧

ExecutionTimeଵ଺
 

 

Table 7-3 shows the effectiveness of scaling up for the different cores from a baseline 

of 16 cores. 
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Table 7-3 - Speedup for different NoC Topologies (baseline: 16 cores) 

 Figure 7-8 shows the impact of the link bandwidth on the performance, while 

keeping the number of cores constant at 32.    
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Figure 7-8 - NoC Topology Performance: Impact of Link Bandwidth 
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 While mesh generally performs worst, at very low link bandwidths I see that 

dragonfly has a degraded performance, worse than both mesh and torus topologies. I 

looked at two network statistics to explain this anomaly at the 1GB/s link bandwidth 

scenario. The send-packet-count metric for torus had a higher (5x) number of packets 

sent overall. This indicates a higher number of hops needed for torus than the higher-

order dragonfly, as expected. The output-port-stalls metric, however, showed that the 

dragonfly topology had a 6-orders of magnitude higher stall count than with dragonfly. 

This is likely due to Dragonfly using a greedy locally optimized routing algorithm that 

can cause local link saturation resulting in a bottleneck.  

 Similar results of poor performance of dragonfly over torus and fat-tree at low 

message sizes was reported in other works [42, 43]. Torus performed well overall for 

the benchmarks I simulated, at both reasonable link bandwidths of 4GB/s and above.  

Although, fat-tree topology had the lowest execution time, the marginal performance 

improvement seen over torus may not justify the added complexity at these ranges. 

Using Mesh topology as a baseline, at a link bandwidth of 2GB/s, fattree performed 

78% better, while dragonfly and torus performed 35% and 39% better, respectively, for 

the GUPS benchmark. 
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 The tradeoff between the complexity of the topology and the performance 

attained in terms of execution time is graphed in Figure 7-9 for the STREAM 

benchmark.  

 

Figure 7-9 - NoC Topology Tradeoff: Execution Time vs Aggregate Bandwidth 
for STREAM benchmark (Note: Log Scale X & Y axis) 

 The total concurrent aggregate bandwidth is computed by multiplying the per-

link bandwidth by the number of links summarized in Table 7-2. This is a rough proxy 

for the cost of the topology, in terms of both area, design complexity, and power 

dissipated by the NoC.  Here, Torus topology offers the best trade-off in terms of 

complexity and delay, while Fattree topology can deliver the lowest execution time, at 
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the cost of higher number of links. Mesh topology also delivered reasonable execution 

times with low cost.  Dragonfly has a poor tradeoff at the lower bandwidth ranges based 

on the specific configuration that I had chosen. Future work will focus on selecting the 

optimal configuration of hosts/router and routers per group to reduce link saturation 

and produce a more balanced dragonfly network. Varying the workload and introducing 

additional benchmarks suites would yield a more rigorous comparison of the different 

architectures. 

7.3.2 DRAM Memory Controller Optimization 

 In my final set of experiments, I performed sensitivity analysis on the number 

of memory controllers (MC) in a conventional DRAM system. The motivation for this 

final study was to optimize on the number of memory controllers in hybrid DRAM-

ReRAM System referred in Figure 7-4. For this study, I used a simple mesh topology 

and varied the number of memory controllers to 2, 4, 6, and 8 for the full range of cores 

(upto 512 cores).  

 Figure 7-10 shows the execution time comparison for STREAM and GUPS 

benchmark. Again, scaling the cores improves the performance to a point, after which 

the performance saturates. At lower core counts, a higher number of memory controller 

cannot be fully utilized. The biggest improvement can be seen from two memory 

controllers to four for a specific core count. 
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Figure 7-10 - DRAM Performance: Impact of Cores and Memory Controller 
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 Figure 7-11 shows the speedup comparison, using the slowest overall 

configuration of 1 core and 2 memory controllers as the baseline. The plot shows that 

for both benchmarks, increasing the memory controllers has a marginal benefit. A 

configuration of 64 cores and 4 memory controllers seems to be an optimal trade-off 

between performance and cost. For the hybrid DRAM-ReRAM main-memory solution, 

having four DRAM Memory controller access points offered the highest performance 

gain. 
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Figure 7-11 - DRAM Speedup: Impact of Cores and Memory Controller (note: 
Log-Scale X axis) 
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7.4 Conclusion 

 ReRAM as a main-memory delivers several advantages over conventional 

DRAM in terms of scaling, capacity, and performance for sparse-access patterns in 

support of parallel computations. Power-efficiency is also achieved due to the on-chip 

data access communication path. At higher core counts, ReRAM is able to surpass 

DRAM performance and results in lower energy cost. Torus Noc topology performed 

well in my simulation and might be preferred over fat-tree and dragonfly due to its 

simpler implementation and lower cost. 
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8 ReRAM as Trusted On-Chip Main Memory 

 

8.1 Motivation 

DRAM as a main-memory is one of the vulnerable points in a hardware system 

due to it being located off-chip. This opens the system up to snooping on the system 

bus, side-channel attacks on the memory data through mechanisms like row-hammering 

attack by malicious devices. Embedded DRAM variations, like eDRAM are limited in 

capacity and cannot accommodate space needed for real-word application workloads. 

Additionally, as DRAM faces scaling issues as a high-density memory, emerging 

memory technologies are being explored as alternatives. One promising alternative for 

this application is ReRAM, which is scalable, vertically stackable, and because of the 

possibility of integration with standard logic process, can deliver higher density as a 

main-memory solution. The key differentiator with this approach involves a ReRAM 

memory array that integrates directly with a logic processor underneath, eliminating 

the need to go off-chip. 
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ReRAM as an on-chip trusted main-memory which is impervious to side-

channel attacks, leaves the memory more protected and prevents snooping of the bus. 

Additionally, by controlling the write energy applied during a program, I can selectively 

reduce the data-retention time and prevent the cold-boot access, a concern with non-

volatile systems. Area studies and measurement results on a fabricated test structure 

demonstrating the cell relaxation is presented. Architectural performance comparison 

against a DRAM system shows a 30% improvement. 

Secure processor architecture requires addressing both processor and off-chip 

memory access vulnerabilities. In conventional system architectures, critical data in 

RAM is typically located off-chip in DRAM and could be comprised due to two major 

security vulnerabilities. The first is bus-snooping, 1 in Figure 8-1, on the connection 

between the processor chip and a Main-Memory system that is located off-chip. The 

second concern is DRAMs vulnerability to Row-Hammer Attacks, 2 in Figure 8-1, 

whereby accessing a bitcell repeatedly in succession, an adversary is able to introduce 

data disturbance on a bit in an adjacent column.  
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Figure 8-1 - Vulnerabilities in Main Memory 

In addition to these security vulnerabilities, DRAM as a high-density memory 

is reported as facing scaling issues and being vulnerable to failure at advanced 

technology nodes [16]. Being located off-chip, DRAM has to interface to the processor 

system through a limited set of memory controller access points. This is especially true 

for multi-processor systems, as shown in Figure 6-7, where the interface to the main-

memory system is through a limited set of memory controllers, often on the order of 4-

8 access points per chip. This limited set of connections leads to performance 

bottlenecks which result to high latencies at the system level, despite low memory 

latencies. On-chip DRAM options, such as embedded DRAM (eDRAM), are not viable 

options due to their larger bitcell size and limited capacity. The key advantage of 

ReRAM, from a system-vulnerability and performance point of view, is that they are 
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On-Chip, allowing for the processor to be directly connected to the memory. ReRAM 

functioning as an on-chip main-memory, enhances both the performance and security 

of the system. 

ReRAM, being a non-volatile memory, does have its challenges [11]. Being a 

non-volatile memory, it is especially vulnerable to cold-boot type of attacks, where data 

could be recovered from the hard-disk. At the device level, ReRAM’s read and write 

latencies are much longer than DRAM. The write endurance limits are also much lower 

than what DRAM is able to deliver, which poses an issue for typical applications to be 

supported.  My solution to this is that by controlling the write-energy applied which 

has an advantage for both performance and security of these ReRAM-based Main-

Memory architectures. 

 

8.2 Background 

I will go briefly into the bitcell operation mechanism.  A conductive filament is 

grown in the middle layer by applying electrical stress, which allows for the resistance 

of the device to be modified. Figure 8-2 shows a cross-section of a resistive memory 

and the resistance modifying behavior.  In ReRAM, when the conductive filament is 

created, the cell is in low-resistance-state (LRS). On the other hand, when the filament 

is broken by, for example, applying a high-voltage of the opposite polarity, the filament 
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is broken causing the bitcell to be open-circuit, in a high-resistance-state (HRS). The 

filament is created or broken in the middle dielectric layer(s) by applying a high enough 

current or voltage causing a dielectric breakdown. These materials are engineered so 

that the breakdown is not permanent and is reversible, upto a certain number of cycles. 

The write endurance specifies the number of these write cycles before the bitcell fails 

and can no longer transition. 

 

Figure 8-2 - ReRAM Resistance Creation 

 

8.2.1 Integrated Processor-ReRAM Architecture 

An integrated Processor-ReRAM architecture layout has the flexibility to be 

configured in many ways. The data access pattern between the processors and the 

memory systems for the application space would be a key determinant. Figure 8-3 
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shows two possible approaches. The tiled configuration consists of individual ReRAM 

arrays embedded into a larger processor. These processor-ReRAM tiles are ideal for 

highly local data accesses where each processor computes on workload in the main-

memory located over its tile. The central ReRAM configuration shows a high number 

of individual ReRAM arrays located centrally, surrounded by multiple processors. This 

configuration is desired for access patterns that are sparse and random, requiring any-

to-any connection between the processor and an individual array. In this study, my area 

analysis focused on the tiled approach. 

 

 Figure 8-3 - Integrated ReRAM-Configuration 
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8.2.2 ReRAM Security Implications 

From a system architecture point of view, using ReRAM as a main memory that 

is integrated directly onto a processor enables several security advantages. Figure 8-4 

illustrates an on-chip ReRAM based main memory solution, with the connections 

between the multiple processor subsystem and the ReRAM arrays handled by a 

Network-On-Chip interconnection. By being on-chip, ReRAM is impervious to side-

channel analysis. All of the communication channels between the processor and 

memory is through on-chip metal vias and thus not available for bus-snooping. 

Additionally, ReRAM is also not susceptible to the data-disturbance seen in DRAM 

through the Row-Hammer attack. Memory systems are susceptible to cold-boot type 

of physical attacks to recover data. In this form of attack, an adversary that has physical 

access to the hardware performs a memory dump of the RAM in order to obtain 

encryption keys or other sensitive data. Even without power, DRAM main memory 

remains stable for a short duration, before the charge on the bitcell is dissipated.  This 

is characterized as the time between refresh cycles, which is often set as 65ms as a 

conservative specification. In a cold-boot attack, this data recovery time is extended by 

the adversary lowering the temperature of the memory module. This slows the 

discharge on the DRAM bitcells capacitor, thereby retaining the data on the bitcell well 

past the refresh time needed.  
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Figure 8-4 - ReRAM-based Main-Memory Solution 

Since this attack exploits an intrinsic hardware vulnerability, it poses a serious 

threat even for trusted platforms [30]. Cold-boot attacks are even more problematic for 

nonvolatile memories. ReRAM as a non-volatile memory retains data without power, 

with a typical data-retention time of 10 years. This makes ReRAM-based main 

memories to be especially susceptible to these types of physical attacks to recover data 

from a system. 

 

8.3 Proposed Approach 

My solution for ReRAM’s cold-boot attack problem comes from the insight that 

ReRAM for main-memory applications do not necessarily require non-volatility of data. 

Currently, DRAM as a main memory is volatile and extends its data remanence with 

periodically through a refresh operation from storage. If I are able to selectively control 
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the data-retention time of the ReRAM by applying a lower write-energy, I would be 

able to reduce the impact of cold-boot type of attacks by preventing the data from being 

available for long times.  Figure 8-5 illustrates ReRAM behavior operating in three 

different modes based on the electrical stress applied.  The electrical stress is indicated 

in the figure’s y-axis by controlling the current compliance limit applied during the 

program operation.  What this would mean is a system where the main memory retains 

the data for a short time, on the order of a few milliseconds. I can mitigate the data-loss 

by apply a periodic refresh, which is a manageable solution similar to how DRAM deals 

with data discharge on its bitcell. Furthermore, studies on the impact of temperature on 

data retention indicate high stability for ReRAM bitcells [32]. This implies that 

ReRAM’s data retention time may be unaffected by external lowering of the 

temperature, bolstering it against cold-boot type of attacks. 
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Figure 8-5 - ReRAM Three Modes of Operation 

ReRAM’s data-retention time is a function of the energy applied to the cell as a 

function of the voltage and current applied during a Program or a write operation. If a 

lower write energy is applied, that would result in either a lower program voltage and/or 

lower write latency, both of which have positive performance implications. 

Additionally, a RESET cell (LRS) in the digital volatile mode must also be placed in 

this lower state in order to make it non differentiable to an unpowered read attack. 

Additionally, lower write energy would also result in improved write endurance 

for the cell, which is one of the device challenges with ReRAM technologies [11]. 

Finally, lower data retention time also helps prevent cold-boot ReRAM data from being 

accessible by a malicious adversary. 
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8.4 Analysis and Discussion 

In the Chapter 5, I demonstrated that the digital volatile ReRAM behavior of the 

data is automatically lost after a short duration. I did this by fabricating discrete 

ReRAM devices in order to observe the programmed cell relaxing from a set to a reset 

value. I used Physical Vapor Deposition (PVD) to create my ReRAM stack using 

Platinum and Titanium for the top and bottom electrodes, and Aluminum Oxide and 

Titanium Oxide for the dielectric layer. The selection of this particular ReRAM stack 

was based on prior work that had demonstrated short term-time-dependent plasticity 

(STDP) to mimic neuron behavior [22, 35]. 

The results presented in the previous chapter, demonstrates the observed cell 

relaxation after a duration of 10 minutes.  From a system security point of view, this 

relaxation behavior can be exploited to ensure that certain critical information could be 

programmed in an intermediate region so that the data is lost after a set duration. The 

effect of temperature on the data-retention, specifically whether cold temperature will 

extend the data retention time is something to be explored.  

As mentioned in section 2 of this chapter, previous studies showed little impact 

of temperature on the data stability of ReRAM devices [32]. The primary mechanism 

of resistance creation in TiO2 based resistive memories is through the creation of 

oxygen vacancies through redox reactions, rather than dominantly from thermally 

based mechanisms like with Phase Change Memories (PCM). However, since redox 
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reactions could be accelerated by heat, there might be a slow-down in the relaxation 

time in the case of a lower-temperature. This particular effect was not studied as part 

of this work and would be a good extension of this research for the future. 

ReRAM as a main-memory delivers several advantages over conventional 

DRAM in terms of scaling, capacity, and performance for sparse-access patterns in 

support of parallel computations. Power-efficiency is also achieved due to the on-chip 

data access communication path. In addition to these performance benefits, on-chip 

ReRAM main memory can be a trusted hardware resource. There is no off-chip system 

bus snooping and no vulnerability to row-hammer hardware attacks.   

In this paper, I presented the opportunity for ReRAM to be leveraged as mixed 

volatility main memory based on the electrical stress applied. The low data-retention 

time avoids Cold-Boot physical attack on the system by clearing the data over short 

time. There would also be a tradeoff of lower write energy leading to improved write 

endurance which is an effect to be studied in future work.  Additionally, the 

experimental study could be repeated at lower and higher temperature in order to 

evaluate the effect of temperature on the data retention and the behavior in the cold-

boot scenario.   
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9 Conclusion 

 

A monolithic processor that integrates ReRAM memory and processor requires 

optimum configuration of the Core, NoC Topology, and memory controller at the 

architecture level to fully exploit the advantages. The core/CPU needs to be able to 

issue multiple non-blocking memory requests per cycle. This can be achieved through 

superscalar or multi-threading processors with SIMD flexible scatter-gather memory 

requests [11].  The Network-On-Chip needs to support high-throughput, which can be 

realized by incorporating higher-dimensional alternative NoC topologies. The ratio of 

Memory Controllers to cores need to be optimized to balance the area incurred against 

the need for parallelism.  A summary of the key contribution is presented in the table 

below.  

In this work, I have demonstrated a method for evaluating integrated ReRAM-

Processor type of architectures using standard EDA tools. I also presented an overview 

of Crossbar ReRAM technology that has been demonstrated in fabricated silicon chips 

that allow this novel on-chip main memory architecture. My layout results indicate that 
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I can integrate a cluster of ReRAM mat arrays with a processor logic underneath and 

incur an area penalty of 18% and an overall area efficiency of 50%.  Based on the 

memory access patterns, however, I noted that a central ReRAM approach would allow 

for independent development of the ReRAM and Processor logic.  The area under the 

ReRAM array could be used to support SRAM cache array and the NoC interconnect 

logic. 

Knowledge Area Contribution 

Physical Design Digital Implementation of Integrated ReRAM-CPU solution 

 Area analysis showed a 20% penalty with 50% area 
efficiency 

 Floorplan of controller circuits underneath Central ReRAM 
block 

Device Level Fabrication of Resistive Test Structure by milling aluminum 
mask and performing PVD of test structure 

 Demonstrated digital volatile cell behavior and confirmed 
bipolar program switching operation 

 100x lower write energy per write possible in digital volatile 
state with similar lower write endurance  

Architecture Level ReRAM performs favorably with higher parallel requests 

 Queue depth impacted dense memory access pattern 

 Reducing ReRAM Write latency from 200ns to 1us 
improved the bandwidth by 25% for GUPS benchmark   

 Fat-tree and torus NoC topologies provide performance 
gains of 78% and 39%, at bandwidth constrained scenario 

 Torus NoC topology performed well across varying core 
count and link bandwidths 

Table 9-1 - Summary of Key Contributions   

The device-level research work I performed demonstrated that ReRAM could be 

used in a mixed-volatile state where a SET programmed cell could be placed to lose its’ 
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value over time.  This has several advantages such as lower write energy, which 

translates to lower write current and/or lower write latency, and improved write 

endurance due to the lower write energy applied.  Additionally, controlling the volatility 

of the data in this manner, opens the memory technology to be used in many ways to 

selectively retain data for security or data persistence. 

Finally, architectural simulations comparing ReRAM and DRAM based 

architectures showed that ReRAM-based main memory architectures outperform at 

higher core counts, where their high amount of memory parallelism can be sufficiently 

utilized.  My simulations showed the cross-over point where ReRAM outperforms 

DRAM-DDR4 to be at 64 cores for the STREAM benchmark.  My NoC topology 

comparison indicated both Fat-Tree and Torus topologies to have good performance for 

my configuration, with torus being an optimal choice due to its simplicity of 

implementation.   

ReRAM as a main-memory delivers several advantages over conventional DRAM 

in terms of scaling, capacity, and performance for sparse-access patterns in support of 

parallel computations. Power-efficiency is also achieved due to the on-chip data access 

communication path. In addition to these performance benefits, on-chip ReRAM main 

memory can be a trusted hardware resource. There is no off-chip system bus snooping 

and no vulnerability to row-hammer hardware attacks. In this paper, I presented the 
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opportunity for ReRAM to be leveraged as mixed volatility main memory based on the 

electrical stress applied. The low data-retention time avoids Cold-Boot physical attack 

on the system by clearing the data over short time. There would also be a tradeoff of 

lower write energy leading to improved write endurance which is an effect to be studied 

in future work.  



210 

 

 

 

10 Future Work 

 

In this chapter, I summarize future work of the different research aspects that 

were investigated in terms of physical-design, device-level, and architecture-level. 

Physical Design:  With the increased complexity of integrating two distinct full-

chip like designs, floor-planning placement of the blocks, their orientation, and location 

of the I/O ports will be critical in minimizing routing congestion.  The next future work 

can explore floor-planning and digital implementation of the central ReRAM approach 

with multiple surrounding processor cores, NoC router circuitry, and any additional 

hardware accelerators for optimal performance of graphical processing applications.   

This will allow to quantitively evaluate placement options for the multi-core central 

ReRAM fabric to maximize I/O bandwidth to individual tiles  and the intra-tile 

communication network needed. Thermal dissipation of the underlying logic circuits 

through the ReRAM BEOL layers is a possible concern that needs to be looked at. 

The current area study was limited to a simple RISC-V processor in an academic 

45nm technology.  The next course of study can include more complex and divergent 

processors to stress the connectivity to the memory bank network.  Additionally, 

extending to a more advanced process nodes with a process design kit (PDK) from a 
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foundry such as TSMC, GlobalFoundries, SEMS, would make the diversity of 

standard-cell logic more accurate in the area estimations. 

Device-Level: Several points of observation merit a closer look.  Volume data 

on the observed volatile state is critical to provide more data points which would lead 

to better averaging of the program current compliance and the expected rate of the 

relaxation.  As mentioned in Ch. 5, volume data for the characterization results would 

be useful to isolate noise and model the cell retention relationship more robustly.  This 

requires fabricating a full array, with more than 1000 bitcells so that statistical analysis 

could be performed to more completely characterize the bitcell behavior.    

Further analysis on the behavior for very high resistance bitcells and the increase 

in resistance after a delay needs to be analyzed.  These can be further mapped to a 

model of the current compliance applied and the sequence of preceding program pulses.  

As for the dimensions of the cell, future work can try to make the dimensions smaller, 

towards the target dimensions seen in the intended application in order to minimize the 

creation of parallel filaments.  Future work on the effect of oxygen partial pressure can 

be analyzed to identify any impurities created during the fabrication process.  In regard 

to the trusted memory application, the effect of temperature on the data retention is 

critical in assessing the cold-boot attack approach discussed in chapter 8.   

Architecture-Level:  The impact of core count showed a inflection point for 

both ReRAM and DRAM based architecture where the system performance saturates 



212 

at a point near the number of memory controllers.  While this point was above the 

number of memory controllers for DRAM, it was well below that for ReRAM.  Future 

work can explore the reason for this difference.  One possible reason could be the 

differing memory models used.  ReRAM used a simple Messier memory model from 

SST to model the latencies as a constant value.  While for the DRAM, DRAMSIM was 

used to more accurately model the effect of reordering and stalls from pending requests.    

On the NoC topology studied, further work is needed on optimizing the design 

configurations of the different topologies.  For the dragonfly configuration, this would 

be the ratio of the number of groups, hosts, and routers.  For mesh and torus topologies, 

a more optimal approach would be to scale the router array for each core count.  Finally, 

an architectural simulation of the hybrid ReRAM-DRAM approach would be valuable 

to investigate a solution where the best points of each technology is exploited.    
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Appendix A: Cadence Encounter Command File 

 

The following is the final Cadence Encounter command file script used to implement 

the four-cluster blockage regions and perform the APR to generate the final layout. 

########################################## 
# Cadence Encounter Command File 
# Design: Integrated ReRAM with Scaled VSCALE Processor 
# Meenatchi Jagasivamani 2018 
 
set_global _enable_mmmc_by_default_flow      $CTE::mmmc_default 
suppressMessage ENCEXT-2799 
getVersion 
win 
set ::TimeLib::tsgMarkCellLatchConstructFlag 1 

set conf_in_tran_delay {120.0ps} 
# allow for random io placement 
 
set defHierChar {/} 
set distributed_client_message_echo {1} 
set init_assign_buffer {0} 
 
set init_gnd_net {VSS} 
set init_pwr_net {VDD} 
 
# Read in Libraries 
set init_lef_file 
{/homes/mjagasiv/research/Nangate/NangateOpenCellLibrary_PDKv1_3_v2010_

12/Back_End/lef/NangateOpenCellLibrary.lef} 
 
# Read in design netlist 
set init_top_cell {vscale_core256} 

set init_verilog {vscale_core256.vh} 
 

set lsgOCPGainMult 1.000000 
set opt_buf_footprint {buf} 
set opt_delay_footprint {buf} 
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set opt_inv_footprint {inv} 

set pegDefaultResScaleFactor 1.000000 
set pegDetailResScaleFactor 1.000000 
set timing_library_float_precision_tol 0.000010 
set timing_library_load_pin_cap_indices {} 
set tso_post_client_restore_command {update_timing ; 
write_eco_opt_db ;} 
 

set init_mmmc_file vscale_core256.view 
 
####### Begin Initializing Design 
init_design 
getIoFlowFlag 
setIoFlowFlag 0 
 
# Specify Floorplan 
floorPlan -site FreePDK45_38x28_10R_NP_162NW_34O -s 1000 1000  20 20 20 
20 
 
# Specify blockage for standard-cell placement and Metal Layers 
# Four separate clusters 

createPlaceBlockage -box        289.5   628     507.5   655 
createPlaceBlockage -box        385     532.5   412     750.5 
createRouteBlk -box     291.5   630     505.5   653      -layer 1 2 3 
4 5 6 7 8 9 10 

createRouteBlk -box     387     534.5   410     748.5    -layer 1 2 3 
4 5 6 7 8 9 10 
 

createPlaceBlockage -box        532.5   628     750.5   655 
createPlaceBlockage -box        628     532.5   655     750.5 
createRouteBlk -box     534.5   630     748.5   653      -layer 1 2 3 
4 5 6 7 8 9 10 

createRouteBlk -box     630     534.5   653     748.5    -layer 1 2 3 
4 5 6 7 8 9 10 
 

createPlaceBlockage -box        289.5   385     507.5   412 
createPlaceBlockage -box        385     289.5   412     507.5 
createRouteBlk -box     291.5   387     505.5   410      -layer 1 2 3 
4 5 6 7 8 9 10 

createRouteBlk -box     387     291.5   410     505.5    -layer 1 2 3 
4 5 6 7 8 9 10 
 

createPlaceBlockage -box        532.5   385     750.5   412 
createPlaceBlockage -box        628     289.5   655     507.5 
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createRouteBlk -box     534.5   387     748.5   410      -layer 1 2 3 
4 5 6 7 8 9 10 

createRouteBlk -box     630     291.5   653     505.5    -layer 1 2 3 
4 5 6 7 8 9 10 
 
# Global VDD and VSS nets 
clearGlobalNets 
globalNetConnect VDD -type pgpin -pin VDD -inst * -all -override 
globalNetConnect VDD -type tiehi -inst * -all -override 
globalNetConnect VSS -type pgpin -pin VSS -inst * -all -override 
globalNetConnect VSS -type tielo -inst * -all -override 
 
set sprCreateIeRingNets {} 
set sprCreateIeRingLayers {} 

set sprCreateIeRingWidth 1.0 
set sprCreateIeRingSpacing 1.0 
set sprCreateIeRingOffset 1.0 
set sprCreateIeRingThreshold 1.0 
set sprCreateIeRingJogDistance 1.0 
 
# Create power & ground rings  
addRing -skip_via_on_wire_shape Noshape -skip_via_on_pin Standardcell -
center 1 -stacked_via_top_layer metal10 -type core_rin 

gs -jog_distance 0.8 -threshold 0.8 -nets {VSS VDD} -follow core -
stacked_via_bottom_layer metal1 -layer {bottom metal9 top m 

etal9 right metal10 left metal10} -width 5 -spacing 5 -offset 0.8 
 
set sprCreateIeStripeNets {} 
set sprCreateIeStripeLayers {} 

set sprCreateIeStripeWidth 10.0 
set sprCreateIeStripeSpacing 2.0 
set sprCreateIeStripeThreshold 1.0 
 
# Create power grid 
addStripe -skip_via_on_wire_shape Noshape -block_ring_top_layer_limit 

metal10 -max_same_layer_jog_length 1.6 -padcore_ring_bo 
ttom_layer_limit metal9 -number_of_sets 3 -skip_via_on_pin Standardcell 
-stacked_via_top_layer metal10 -padcore_ring_top_laye 

r_limit metal10 -spacing 2 -merge_stripes_value 0.095 -layer metal10 -
block_ring_bottom_layer_limit metal10 -width 2 -nets {V 
DD VSS} -stacked_via_bottom_layer metal9 
 
# Connect Power and Ground nets 
createPGPin -net VDD VDD 
createPGPin -net VSS VSS 
sroute -connect { blockPin padPin padRing corePin floatingStripe } -
layerChangeRange { metal1 metal10 } -blockPinTarget { nea 
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restTarget } -padPinPortConnect { allPort oneGeom } -padPinTarget 
{ nearestTarget } -corePinTarget { firstAfterRowEnd } -floa 
tingStripeTarget { blockring padring ring stripe ringpin blockpin 
followpin } -allowJogging 1 -crossoverViaLayerRange { metal 
1 metal10 } -nets { VDD VSS } -allowLayerChange 1 -blockPin useLef -
targetViaLayerRange { metal1 metal10 } 
 
# Place standard cells  
setPlaceMode -fp false 
placeDesign 
checkPlace 
checkPinAssignment 
 
# Route signals 
trialRoute -maxRouteLayer 8 -highEffort 
 
# Apply timing constraints 
####### timing route -- preCTS 
create_constraint_mode -name SDCvscale_core256 -sdc_files 

{vscale_core256.sdc} 
create_analysis_view -name typ -constraint_mode {SDCvscale_core256} -
delay_corner {default} 
set_analysis_view -setup {typ} -hold {typ} 
timeDesign -preCTS -idealClock -pathReports -drvReports -slackReports -
numPaths 50 -prefix v_core256_preCTS -outDir timingRep 
orts 
setEndCapMode -reset 
setEndCapMode -boundary_tap false 
 
######### clock tree synthesis 
createClockTreeSpec -bufferList {CLKBUF_X1 CLKBUF_X2 CLKBUF_X3 BUF_X1 

BUF_X16 BUF_X2 BUF_X32 BUF_X4 BUF_X8 } -output clock.sp 
ec -routeClkNet 

specifyClockTree -clkfile clock.spec 
setCTSMode -engine ck 

clockDesign -specFile clock.spec -outDir clock_report -
fixedInstBeforeCTS 
 
######## RC extraction 
setDrawView place 
timeDesign -reportOnly -pathReports -drvReports -slackReports -numPaths 
50 -prefix v_core256 -outDir timingReports 
setNanoRouteMode -quiet -timingEngine {} 
setNanoRouteMode -quiet -routeWithTimingDriven 1 
setNanoRouteMode -quiet -routeWithSiDriven 1 
setNanoRouteMode -quiet -routeWithSiPostRouteFix 0 
setNanoRouteMode -quiet -drouteStartIteration default 
setNanoRouteMode -quiet -routeTopRoutingLayer default 
setNanoRouteMode -quiet -routeBottomRoutingLayer default 
setNanoRouteMode -quiet -drouteEndIteration default 
setNanoRouteMode -quiet -routeWithTimingDriven true 
setNanoRouteMode -quiet -routeWithSiDriven true 
#setNanoRouteMode routeWithECO true 
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snapFPlan -guide -block -stdCell -pinBlk -ptnCore -placeBlk -macroPin -
pin 
globalDetailRoute 
 
# Add filler cells and perform parasitic extraction 
getFillerMode -quiet 
addFiller -cell FILLCELL_X2 FILLCELL_X4 FILLCELL_X8 FILLCELL_X16 
FILLCELL_X32 -prefix FILL_ 
extractRC 
timeDesign -postRoute -pathReports -drvReports -slackReports -numPaths 
50 -prefix v_core256_postRoute -outDir timingReports 
 
########## power measurement 
set_power_analysis_mode -reset 
set_power_analysis_mode -method static -corner max -create_binary_db 
true -write_static_currents true -honor_negative_energy 
true -ignore_control_signals true 
set_power_output_dir -reset 

set_power_output_dir ./ 
set_default_switching_activity -reset 

set_default_switching_activity -input_activity 0.2 -period 10.0 
read_activity_file -reset 
set_power -reset 
set_powerup_analysis -reset 
set_dynamic_power_simulation -reset 

report_power -rail_analysis_format VS -outfile .//v_core256.rpt 
 
############## verify connectivity (LVS) 
verifyConnectivity -type all -noAntenna -error 1000 -warning 50 
 
##########  verify geometry (DRC) 
setVerifyGeometryMode -area { 0 0 0 0 } -minWidth true -minSpacing true 
-minArea true -sameNet true -short true -overlap true 
 -offRGrid false -offMGrid true -mergedMGridCheck true -minHole true -
implantCheck true -minimumCut true -minStep true -viaEn 
closure true -antenna false -insuffMetalOverlap true -pinInBlkg false -
diffCellViol true -sameCellViol false -padFillerCellsO 
verlap true -routingBlkgPinOverlap false -routingCellBlkgOverlap true -
regRoutingOnly false -stackedViasOnRegNet false -wireE 
xt true -useNonDefaultSpacing false -maxWidth true -maxNonPrefLength -1 
-error 1000 
 
verifyGeometry 
 
######## Rerun detailed route with ECO mode 
setNanoRouteMode -quiet -routeWithEco 1 
setNanoRouteMode -quiet -drouteStartIteration default 
setNanoRouteMode -quiet -routeTopRoutingLayer default 
setNanoRouteMode -quiet -routeBottomRoutingLayer default 
setNanoRouteMode -quiet -drouteEndIteration default 
setNanoRouteMode -quiet -routeWithTimingDriven true 
setNanoRouteMode -quiet -routeWithSiDriven true 
routeDesign -globalDetail 
verifyGeometry 
setLayerPreference violation -isVisible 1 
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violationBrowser -all -no_display_false 
verifyConnectivity -type all -noAntenna -error 1000 -warning 50 
 
######### Timing report 
timeDesign -reportOnly -pathReports -drvReports -slackReports -numPaths 
50 -prefix v_core256 -outDir timingReports 
 
###### Stream out and save design 

streamOut v_core256.gds -
mapFile ../FreePDK45/osu_soc/lib/files/gds2_encounter.map -libName 
libJuly5 -structureName v_core256 
 -stripes 1 -units 1000 -mode ALL 

saveNetlist v_core256_PR.v 
saveDesign v_core256.enc 
summaryReport -noHtml -outfile summaryReport.rpt 
reportGateCount -level 5 -limit 100 -outfile v_core256.gateCount 
reportNetStat 
########################################## 
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Appendix B: MAC Javascript Source Code 

 

The following is the Javascript source code for the Monolithic Architecture 

Calculator (MAC) mentioned in Section 4.6. 

 

<html> 
<head> 
   <title>Monolithic Architecture Calculator</title> 
<style> 
p { 
    font-family: Tahoma, Geneva, sans-serif; 
} 
 
table, th, td { 
    margin-left:15px; 
    border: 1px solid black; 
    border-collapse: collapse; 
} 
th, td { 
    padding: 10px; 
}  
* { 
    box-sizing: border-box; 
     font-family: Tahoma, Geneva, sans-serif; 
} 
 

.row { 
    display: flex; 
    border-style: double; 
    border-width: thick; 
} 

.input_form { 
    padding:0px; 
    margin:0px; 
    margin-left: 25px; 
} 
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/* Create two equal columns that sits next to each other */ 

.column { 
    flex: 50%; 
    padding: 10px; 
    border-style: double; 
    border-width: thin; 
     
}  

.slidecontainer { 
    margin-left: 25px; 
} 
 

.slider { 
    -webkit-appearance: none; 
    width: 50%; 
    height: 10px; 
    //border-radius: 5px; 
    background: #d3d3d3; 
    outline: none; 

    opacity: 0.7; 
    -webkit-transition: .2s; 
    transition: opacity .2s; 
} 
 

.slider:hover { 
    opacity: 1; 
} 
 

.slider::-webkit-slider-thumb { 
    -webkit-appearance: none; 
    appearance: none; 
    width: 25px; 
    height: 25px; 
   // border-radius: 50%; 
    background: #537d9b; 
    cursor: pointer; 
} 
 

.slider::-moz-range-thumb { 
    width: 25px; 
    height: 25px; 
 //   border-radius: 50%; 
    background: #537d9b; 
    cursor: pointer; 
} 
 
</style> 
<script language=javascript type="text/javascript"> 
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function round(value, precision) { 

    var multiplier = Math.pow(10, precision || 0); 
    return Math.round(value * multiplier) / multiplier; 
} 
function calculate(){ 

    var memSelected = document.getElementById('memory_type'); 
    var networkSelected = document.getElementsByName('networkT'); 
    var procSelected = document.getElementsByName('procT'); 
    var procT = document.getElementById('procT'); 
    var diesize = document.getElementById("diesize"); 
    var numMCs = document.getElementById("Input_numMC").value; 
    var slideCol = document.getElementById("cache_ratio"); 
    var cache_ratio = slideCol.value; 
    var l2l3_ratio = slideCol2.value; 
 

 //var cache_ratio = document.getElementById("cache_ratio").value; 
 

    var availArea=diesize.value; 
 //calculate available area based on memory type selected 
    var CPoverhead = 0; 

 if (memSelected.value == "NVR") { 
        //charge pump % area -> typical flash ratio 
        //Reference:  7% of 16nm Micron NAND flash diesize of 173 mm^2 

        CPOverhead=0.07*173;   
        availArea = availArea-CPoverhead; 

 } else if (memSelected.value == "dram") { 
        //no charge pump, but external Memory controller interface logic 
        // Typical 10% area  
        //Reference:  10% of 16nm Micron NAND flash diesize of 173 mm^2 

        CPOverhead=0.1*173;   
        availArea = availArea-CPoverhead; 

 } else if (memSelected.value == "VR") { 
        //charge pump % area -> half of typical flash ratio 

        //Reference:  3.5% of 16nm Micron NAND flash diesize of 173 mm^2 
        CPOverhead=0.035*173;   
        availArea = availArea-CPoverhead; 
 } 
     
    //calculate NoC overhead 

 if (networkSelected[0].checked) { 
        //Mesh -- upto 4 links per node 
        //TODO placeholder 10% overhead   
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        availArea = availArea*0.9; 
 } else if (networkSelected[1].checked) { 
        //Hoffman-Singleton -- upto 3 links per node 
        //TODO placeholder 7% overhead   

        availArea = availArea*0.93; 
 } 
     
    //Calculate available SRAM Cache area 

 //Reference:  IEDM 2013, TSMC 6T SRAM bit cell area for 16nm: 0.07 
sq. micron 
 //Using typical value of 70% array efficiency for overhead circuitry 

 var SRAMcellsize=0.07; 
 var SRAMarea=(1-cache_ratio)*availArea*1000000*0.7; 
 var SRAMsize = SRAMarea/(SRAMcellsize*1024*1024*8);    

 document.getElementById("Total_Cache").innerHTML = 
round(SRAMsize,1)+" MB"; 

 document.getElementById("L2").innerHTML = "L2: 
"+round(SRAMsize*l2l3_ratio,1)+" MB"; 

 document.getElementById("L3").innerHTML = "L3: 
"+round(SRAMsize*(1-l2l3_ratio),1)+" MB"; 
     
 //Fixed 32kB size for Queuing buffer of Memory controller -- 
supports 512 depth of 512 bits 

 var MCBuffer_area=(SRAMcellsize*32*1024*8/1000000)/0.7; 
     
    //set processor area 

    var procSize = 0.0284077; 
    if (procSelected[0].checked) { 
        //Raven-3 RISC-V: Scaled 0.46x from 28nm node 
        procSize = 0.46*1.19; //mm^2 
 } else if (procSelected[1].checked) { 
        //Fujitsu Sparc64 X+: Scaled 0.46x from 28nm node 
        procSize = 0.46*10.907; //mm^2 
 } else if (procSelected[2].checked) { 
        //Intel Skylake-X CPU core (14nm) 

        procSize = 16.9; //mm^2 
 } else if (procSelected[3].checked) { 
        //Intel Xeon-Phi core -- knights landing (14nm) 

        procSize = 3.13; //mm^2 
 } 
  
 var Procarea= cache_ratio*availArea; 
    var numProcessors = Procarea/procSize; //initial value ignoring ReRAM 
congestion penalty 
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    //calculate Main-Memory bandwidth, latency 
    //for ReRAM (default), bw=8*4 bits per memory controller 
    var bw = 32*numMCs; 
    var rLatency = 200; 
    var wLatency = 1000; 
 
 //Power numbers derived based on McPAT memory access model  
 //Crossbar for ReRAM cell energy number 

 var rPwr=4.24; //W 
 var wPwr=41.86; //W 
 
   //Calculate # of Mem Controllers under SRAM  

    if (memSelected.value == "dram") { 
        //charge pump % area -> typical flash ratio 
        //Reference:  7% of 16nm Micron NAND flash diesize of 173 mm^2 

        document.getElementById("Total_ReRAM").innerHTML = "External MM 
"; 

        document.getElementById("Total_ReRAM2").innerHTML = " "; 
        document.getElementById("Total_ReRAM8").innerHTML = " "; 
 
  //128 bits per memory controller 
        bw = 128*numMCs; 
        rLatency = 55; 
        wLatency = 55; 
  rPwr=0; //W 
  wPwr=0; //W 
 
 }  else if (numMCs>0) { 
   
  //calculate ReRAM storage amount 
  //Assumptions:  50% array efficiency 

  //Cell-size at 16nm: 0.011236 sq-um at 45nm --> scales down 
by 10x at 16nm 
  //Reference: Crossbar ReRAM 
  // Avail area =  with 25% periphery overhead +  congestion 
penalty 
 

  var MMArea = availArea*0.5;  //50% array efficiency 
  var ReRAMcellsize=0.011236/10; 
  var 
ReRAMsize=MMArea*1000000/(ReRAMcellsize*1024*1024*1024*8);  
  //check if numMemory Controllers entered is invalid 
  var MMGranularity=ReRAMsize*2*1024/numMCs; 
   
  /////////////Calculat congestion penalty 
//////////////////// 

  var congestion = 0.12;  //congestion penalty is function of 
# of MCs 
 
  //remove RERAM periphery circuit area -- applies to Proc and 
Cache 
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  availArea = availArea*(1-0.5*0.25); 
  //remove Memory-Controller queuing buffer area 
  availArea = availArea-(numMCs*MCBuffer_area); 
   
  if (numMCs <= (availArea/procSize)) { 

   congestion = 0.12*(numMCs/(availArea*0.88/procSize)); 
//numMCs/numProcTiles (approx) 
  } else { 
   congestion = 

congestion+0.04*Math.log2((numMCs/(availArea/procSize))); 
//numMCs/numProcTiles (approx) 
   var tmpArea  = availArea*(1-congestion); //not 
available for either proc or sram  
   congestion = 

congestion+0.04*Math.log2((numMCs/(tmpArea/procSize))); 
//numMCs/numProcTiles (approx) 
  }  
  if (congestion<0) 

document.getElementById("debug").innerHTML = " **** ERROR:   INVALID 
Congestion Penalty parameter **** " ; 

  //document.getElementById("debug").innerHTML = " 

numproctiles="+(availArea*0.88/procSize)+" MMarea="+MMArea; 
  //document.getElementById("debug").innerHTML = " 
MCBuffer_area="+MCBuffer_area*numMCs; 
   
 
  //recalculate after removing wasted area for congestion 
  availArea = availArea*(1-congestion); //not available for 
either proc or sram  
  ReRAMsize=MMArea*1000000/(ReRAMcellsize*1024*1024*1024*8);  
  MMGranularity=ReRAMsize*2*1024/numMCs; 
   
  if (MMGranularity > 1) { 

   document.getElementById("Total_ReRAM").innerHTML = 
round(ReRAMsize,1)+" GB ";//congestion="+congestion; 

   document.getElementById("Total_ReRAM2").innerHTML = 
round(ReRAMsize*2,1)+" GB for 2-layer stack "; 

   document.getElementById("Total_ReRAM8").innerHTML = 
round(ReRAMsize*8,1)+" GB for 8-layer stack"; 
  } else { 

   document.getElementById("Total_ReRAM").innerHTML = 
"ERROR -- too high # of Memory Controllers"; 

   document.getElementById("Total_ReRAM2").innerHTML = " 
"; 

   document.getElementById("Total_ReRAM8").innerHTML = " 
"; 
   bw=0; 
   rLatency=0; 
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   wrLatency=0; 
  }  
 
  //update num processors after considering reram congestion 
penalty   
  Procarea= cache_ratio*availArea; 
  numProcessors = Procarea/procSize; 
    } else { 

        document.getElementById("Total_ReRAM").innerHTML = "0 GB "; 
        document.getElementById("Total_ReRAM2").innerHTML = "0 GB "; 
        document.getElementById("Total_ReRAM8").innerHTML = "0 GB "; 
  bw=0; 
  rLatency=0; 
  wLatency=0; 
 } 
  
 if (availArea <= 0) { 

  document.getElementById("NumMC").innerHTML = "ERROR -- 
Invalid Configuration"; 

  document.getElementById("NumProc").innerHTML = " "; 
 } else { 

  document.getElementById("NumMC").innerHTML = 
round(numMCs,0); 

  document.getElementById("NumProc").innerHTML = 
round(numProcessors,0); 
 } 
    //calculate number of NoC controllers: 1 per tile 
    var numNoCs = numMCs; 

 if (networkSelected[0].checked) { 
        //Mesh -- upto 4 links per node 
        //TODO placeholder 10% overhead   
        numNoCs = numMCs; 

 } else if (networkSelected[1].checked) { 
        //Hoffman-Singleton -- upto 3 links per node 
        //TODO placeholder 7% overhead   

        numNoCs = numMCs*0.75; 
 } 

    // document.getElementById("NumNoc").innerHTML = round(numNoCs,0); 
     
 
    //add NoC Latency 

 if (networkSelected[0].checked) { 
        //Mesh -- upto 4 links per node 
        //TODO placeholder 10% overhead   

        //rLatency = rLatency * 1.1; 
        //wLatency = wLatency * 1.1; 
 } else if (networkSelected[1].checked) { 
        //Hoffman-Singleton -- upto 3 links per node 



236 

        //TODO placeholder 7% overhead   

        //rLatency = rLatency * 1.07; 
        //wLatency = wLatency * 1.07; 
 } 
    //convert to bytes 
    bw=round(bw,0) 
    bw = bw/8; 

    document.getElementById("bw").innerHTML = round(bw,2); 
    document.getElementById("latency").innerHTML = round(rLatency,2)+" 
ns & "+round(wLatency,2); 
     
    //calculate power consumption for Processor, MM, SRAM 
    pwr = 0; // unit mW/Hz 
    performance = 0; 
    //for Processor: 

    if (procSelected[0].checked) { 
        //RISC-V Ref IEEE Micro 2016: 961MHz, 173mW, 34GFLOPS/w 

        //pwr = 0.173*numProcessors/961; //w/MHz 
        pwr = 0.173*numProcessors; //w 
        performance = 34; //GFLOPS/W   

 } else if (procSelected[1].checked) { 
        //Sparc Ref: Fujitsu Sparc64 X+ wikipedia 392W, 448GFLOPS, 3.5GHz 
        //pwr = 392*(numProcessors/16)/3500;  //w/MHz 
        pwr = 392*(numProcessors/16);  //w 

        performance = 448/392; //GFLOPS/W at 1.4GHz 
 } else if (procSelected[2].checked) { 
        //Intel Skylake-X CPU core (14nm) spec: 165W, 1152 GFLOPS at 

4.4GHz (turbo) 
        //pwr = 165*(numProcessors/18)/4400; //w/MHz 
        pwr = 165*(numProcessors/18); //w 
        performance = 1152/165; //GFLOPS/W at 1GHz 

 } else if (procSelected[3].checked) { 
        //Intel Knights Landing/Mill Xeon Phi  (14nm) spec: 260W, 3456 

GFLOPS at 1.7GHz (turbo) 
        //pwr = 260*(numProcessors/72)/1700;  //w/MHz 
        pwr = 260*(numProcessors/72);  //w  
        performance = 3456/260; //GFLOPS/W at 1GHz 
  } 

    document.getElementById("pwr").innerHTML = "Processor: 
"+round(pwr,3)+" w"; 

 if (memSelected.value == "dram")  
  document.getElementById("pwr_MM").innerHTML = " "; 
 else 

  document.getElementById("pwr_MM").innerHTML = "Main-Memory: 
Read: "+round(rPwr,2)+" W & Write: "+round(wPwr,2)+" W"; 
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    document.getElementById("performance").innerHTML = 
round(performance,2)+" GFLOPS/W "; 
 
} 
</script> 
 
</head> 
 
<body> 
<h2>Monolithic Architecture Calculator (MAC)</h2> 
 
<b>Purpose:</b>  Preliminary estimates on what can "fit" in a given chip 
dimension and assess architectural tradeoffs with various design options 

on a Memory-Processors System. 
 
<br> Process Node: 16nm<br><br> 
 
 
<div class="row" > 
 
<div class="column"  > 
<form name="calc" action="post"> 
<p> 
1) Main Memory Type:   
<select id="memory_type"> 
    <option value=NVR>Non-Volatile ReRAM </option> 
    <option value=dram>DRAM</option> 
    <option value=VR>Volatile ReRAM</option> 
</select> 
<br> 
<br> 
 
2) Die-Size [mm^2]: <input type=text id="diesize" size=10 value="686"> 
<br> 
  <div class="input_form"></div> 
 
3) Select Processor Core Type: 
  <div class="input_form"> 
    <input type="radio" id="riscv" 
     name="procT" value="riscv"> 
    <label for="riscv">Raven-3 RISC-V w/56kB L1 per core </label><br> 
 
    <input type="radio" id="sparc" 
     name="procT" value="sparc"> 
    <label for="sparc">Sparc64 XII w/128kB L1 per core </label><br> 
 
    <input type="radio" id="gpu" 
     name="procT" value="gpu"> 
    <label for="gpu">Intel Skylake-X w/64kB L1 per core  </label><br> 
 
    <input type="radio" id="knl" 
     name="procT" value="knl" checked="checked"> 
    <label for="gpu">Intel Xeon Phi (Knights Landing) w/32kB L1 per core 
</label><br> 
  </div> 
  <br> 
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4) Core-to-Cache Area ratio for SRAM Cache on Chip (0 to 1):<br> 
  (0:all SRAM; 1: all Processor, no SRAM): <br>  
<div class="slidecontainer"> 

   <input type="range" min="0" max="1" step="0.05" value="0.85" 
id="cache_ratio" class="slider">   
  Value: <span id="f" style="font-weight:bold;"> </span> 
<script> 

var slideCol = document.getElementById("cache_ratio"); 
var y = document.getElementById("f"); 
y.innerHTML = slideCol.value; 
 

slideCol.oninput = function() { 
    y.innerHTML = this.value; 
} 
 
</script> 
 
</div> 
<br> 
 
5) Number of Memory Controllers: <input type=text id="Input_numMC" 
size=10 value="131"> <br> 
  <div class="input_form"></div> 
  <br> 
 
  
6) Network Topology: 
  <div class="input_form"> 
   
    <input type="radio" id="mesh" 
     name="networkT" value="mesh" checked="checked"> 
    <label for="mesh">Mesh network</label><br> 
     <!--- 
    <input type="radio" id="singleton" 
     name="networkT" value="singleton" disabled> 
    <label for="singleton">Hoffman-Singleton Graph</label><br> 
 --> 
  </div> 
  <br> 
 
-------------------------------------------------------<p 
align="center"> 
<input type=button value="CALCULATE" onClick="calculate()"></p> 
</form> 
</div> 
<div class="column" > 
 Final Architecture Configuration for given die-size and components:<br> 
<a id="debug"></a>  
<table> 
  <tr> 
 <th>Parameter</th> 
 <th>Value</th> 
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  </tr> 
  <tr> 
 <td>Total Main Memory Storage Size </td>   
 <td><a id="Total_ReRAM"></a><br><a id="Total_ReRAM2"></a> <br><a 
id="Total_ReRAM8"></a> <br> </td> 
  </tr> 
  <tr> 
 <td>Total SRAM Cache Size  
  <p>L2-to-L3 ratio: <p> 
<div class="slidecontainer"> 

   <input type="range" min="0" max="1" step="0.05" value="1" id="l2_l3" 
class="slider"> <p> 
    <span id="l2l3" style="font-weight:bold;">  </span> 
<script> 

var slideCol2 = document.getElementById("l2_l3"); 
var y2 = document.getElementById("l2l3"); 
y2.innerHTML = slideCol2.value; 
 

slideCol2.oninput = function() { 
    y2.innerHTML = this.value; 
} 
 
</script> 
 
</div>  
 </td>   
 <td> 
 <a id="Total_Cache"></a> <br> 
 <a id="L2"></a> <br> 
 <a id="L3"></a>  
 
</td> 
  </tr> 
  <tr> 
 <td>Number of Processors <br> 
    Number of Memory Controllers <br> 
  <!--  Number of NoC Controllers <br> --> 
    </td>   
 <td><a id="NumProc"></a> <br> 
        <a id="NumMC"></a> <br> 
   <!--     <a id="NumNoc"></a> <br> --> 
    </td> 
  </tr> 
  <tr> 
 <td>Main Memory (MM) Bandwidth </td>   
 <td><a id="bw"></a> bytes per access   </td> 
  </tr> 
  <tr> 
 <td>MM Read & Write Latency </td>   
 <td><a id="latency"></a> ns  </td> 
  </tr> 
  <tr> 
 <td>Power Consumption </td>   
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 <td><a id="pwr"></a>   <br> 
 <a id="pwr_MM"></a>    <br> 
 </td> 
  </tr> 
  <tr> 
 <td>Energy Efficiency </td>   
 <td><a id="performance"></a>  </td> 
  </tr> 
</table> 
</div>  
 
 
</div> 
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