
ABSTRACT

Contrary to existing work that demonstrate significant improvements in perfor-

mance with larger reorder buffers, the work presented in this dissertation shows that larger 

instruction windows do not necessarily provide the significant improvements in perfor-

mance. By using detailed models of the DRAM system and the memory subsystem, we 

show that increasing out-of-order aggressiveness by increasing reorder buffer sizes 

beyond 128 entries no longer buys any improvement in processor performance. In fact we 

observe that it can actually degrade processor performance. Additionally, this dissertation 

demonstrates a non-intuitive problem associated with the out-of-order execution of mem-

ory instructions: the reordering of memory instructions can cause a degradation in the per-

formance of the memory subsystem. Specifically, we show that increasing out-of-order 

aggressiveness in terms of reorder buffer sizes increases the frequency of replay traps and 

data cache misses. The presentation of this problem in itself is of utmost significance: the 

very mechanisms commonly used to improve performance are sources of performance 

degradation in the memory subsystem. We observe that while the negative effects of out-

of-order execution existed for only a small fraction of the time with small reorder buffers, 

eliminating other sources of stalls by increasing out-of-order capability introduces these 
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unexpected side effects in the memory subsystem to represent significant overhead. This 

reveals that one can not overlook rarely occurring events in the memory subsystem. To 

gain insight on the source of the problem, we attempt to measure the degree to which 

memory system performance relies on out-of-order execution. Using the network commu-

nication concept of windowing, we decided to change the load/store scheduling window 

independently of the ALU scheduling window. Our study revealed that memory instruc-

tions issued out-of-order are the primary reason for the increase in the frequency of replay 

traps. On the other hand, the out-of-order issue of memory instructions is responsible for 

the constructive and destructive references to the data cache. Incorporating detailed mem-

ory subsystem models and a realistic DRAM model into existing simulators and filtering 

out the destructive references from the total cache references can allow for aggressive out-

of-order cores to reap the true benefits of out-of-order execution.
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CHAPTER 1 Introduction
As the gap between the processor and DRAM system continues to grow, a processor can 

stop instruction processing due to the latencies associated with misses in the last on-chip 

cache. This is because instructions directly or indirectly dependent on the instruction 

missing in the last-level cache cannot be issued until the data is delivered to the processor by 

the DRAM system. To tolerate the long latencies associated with DRAM, out-of-order 

execution has been one of the fundamental techniques used to tolerate the long latencies 

associated with misses in the largest on-chip cache. The primary goal behind out-of-order 

execution is to allow the processor to continue doing possible useful work rather than stay 

idle. To do so, the processor maintains several different out-of-order hardware structures 

to schedule and issue instructions from. One such hardware structure is the instruction 

window or reorder buffer.

It is a widely held belief that the efficiency of an out-of-order core is directly 

dependent on the number of instructions available to the instruction scheduler. The larger 

the number of instructions, the more a processor is able to exploit an applications inherent 

instruction level-parallelism. One of the most popular mechanism to maximize out-of-order 

efficiency is to provide the instruction scheduler with a gigantic window of instructions to 

support the scheduling and issuing of instructions. Large instruction windows and 

aggressive instruction schedulers provide the processor with a large number of instructions 

deep into an applications instruction stream. The larger the number of instructions an 
1



instruction scheduler is able to view, the better the instruction scheduler can extract multiple 

independent instructions.

In efforts to exploit maximum ILP, recent trends have categorized the instruction 

window as one of the most important design parameters in the development of high 

performance superscalar processors. Many previous studies have illustrated that increasing 

the size of out-of-order hardware structures like the instruction windows or reorder buffer, 

issue queues and load/store queues (even to enormous sizes) can lead to increased 

performance [5, 7, 31, 63, 74]. Consequently, much research has looked at the feasibility of 

increasing the size of these hardware data structures without negatively impacting clock 

cycle time [30, 51, 38, 55]. In presenting the huge performance improvements, however, 

most of the existing studies have discounted real effects that occur in the memory 

subsystem (due to which potential performance gains largely disappear).

 1.1  Contributions of Dissertation

 1.1.1 Problems With Aggressive Out-of-Order Mechanisms

The work presented in this dissertation demonstrates that continuing to increase the 

aggressiveness of an out-of-order core to improve processor performance can come at the 

cost of a degradation in performance in the memory subsystem. By varying the 

aggressiveness of an out-of-order core in terms of reorder buffer sizes, issue queues, 

load/store queues, and renaming registers, this dissertation brings to light problems present 

in real systems that many previous simulation-based studies have not addressed.
2



• With a detailed model of the memory subsystem and DRAM system, we show that 

application performance saturates beyond a 128-entry reorder buffer. In fact, we 

observe applications can observe a 5-10% degradation in performance beyond the 

use of a 128-entry reorder buffer.

• Increasing out-of-order capability conflicts with a processor’s memory ordering 

model and requires the processor to take frequent expensive replay traps. An 

increase in the frequency of replay traps causes a processor to re-fetch and re-

execute instructions beyond the trap causing instruction. This can require the fetch, 

map, and execution units to unnecessarily dissipate energy on work that has 

already been done before

• Increasing out-of-order capability destroys cache locality, thereby causing an 

application to suffer from a higher number of cache misses than a lesser aggressive 

out-of-order mechanism. The increase in the number of cache misses is associated 

with the increase in the amount of speculation as a result of large instruction 

windows or reorder buffer sizes. The increase in the number of cache accesses and 

cache misses needlessly dissipates energy.

 1.1.2 Disorder — A New Metric To Measure Reordering

Having presented the problem with mechanisms to increase out-of-order capability, we 

show that the side effects in the memory subsystem are primarily due to the reordering of 

memory instructions and increased speculation. Increasing out-of-order aggressiveness 

allows for both ALU and memory instructions of a program to be reordered. We show that 

speculation and the reordering of memory instructions in aggressive out-of-order processors 
3



can cause significant overhead in the system, i.e. the very mechanisms commonly used to 

improve performance can cause significant performance degradation in the system. To 

measure the reordering of memory instructions we introduce a new metric called disorder to 

quantify the degree by which memory instructions are issued out-of-order. 

Disorder can be of two types: global disorder and local disorder. Global disorder is the 

degree by which memory instructions are issued out-of-order when compared to program 

order. The global disorder metric is used to measure how memory instructions issue out-of-

order when compared to program fetch order. Local disorder on the other hand is the degree 

by which memory instructions issue out-of-order when compared to those memory 

instructions issued in the same cycle or a prior cycle. Our disorder study of the workloads 

illustrates that increasing out-of-order aggressiveness causes large global disorder and small 

local disorder in the system. The disorder results indicate that on a program level memory 

instructions are heavily re-ordered but when compared to other memory instructions they 

issue in close proximity to each other. 

After illustrating the existence of global and local disorder, we investigate any 

correlation between increased global disorder with the degradation in the memory 

subsystem. We show that the global disorder metric correlates well with the degradation in 

the memory subsystem: the larger the global disorder the more the degradation. Based on 

this finding we conclude that mechanisms to reduce global disorder are required to reduce 

the sources of performance loss in the memory subsystem.
4



 1.1.3 Observing the Reordering of Memory Instructions

To determine the degree to which memory system performance relies upon the out-of-

order execution of memory instructions. Rather than reduce the size of the reorder buffer, 

which restricts the reordering of both ALU and memory instructions, we decided to 

change the load/store scheduling window independently of the ALU scheduling window. 

To do this, we use the network communication concept of windowing. Windowing 

essentially introduces a virtual load/store queue (VLSQ) within the existing physical 

load/store queue. The VLSQ reduces the reordering of memory instructions by limiting 

the number of memory instructions visible to the select and issue logic. Thus, the 

instruction scheduler is restricted to issue only those memory instructions that reside within 

the virtual load/store queue. The virtual window “slides” onto younger memory instructions 

only when the instruction at the virtual head is issued. Thus, younger memory instructions 

that are ready to be issued can only be issued when the virtual window slides onto them. By 

restricting the number of memory instructions visible to the instruction scheduler, 

windowing reduces the reordering of memory instructions. The smaller the size of the 

virtual window, the smaller the degree to which memory instructions are reordered. The 

larger the size of the virtual window, the larger the degree of memory instruction reordering. 

Our study using windowing provides important insights on the effects of reordering 

memory instructions in aggressive out-of-order systems. We observe that memory 

instructions issued out-of-order are responsible for the frequent replay traps. Furthermore, 

the out-of-order issue of memory instructions in the presence of speculation is also 

responsible for constructive and destructive cache references. We observe that by reducing 

the reordering of memory instructions windowing reduces the frequency of replay traps. 
5



On the other hand, even though reducing the reordering of memory instructions reduces 

the total number of cache misses, it can degrade overall processor performance. This is 

because the use of smaller virtual windows eliminates early cache miss detection, thus 

delaying the request to get data from DRAM. Based on our study we conclude that 

filtering the constructive memory references from the destructive references can allow for 

aggressive out-of-order cores to avoid frequent replay traps and the unneeded cache 

misses and reap the benefits of increased out-of-order aggressiveness.

 1.1.4 Importance of Dissertation

The main contributions of this dissertation are as follows: 

• The work presented in this dissertation shows that continuing to increase out-of-

order aggressiveness to improve processor performance will come at the cost of a 

degradation in performance. By using a realistic model of the memory subsystem, 

contrary to existing work, we show that increasing out-of-order aggressiveness by 

increasing instruction window sizes beyond 128 entries does not buy any 

improvement in processor performance. In fact, we show that it can actually 

degrade processor performance. 

• The degradation in processor performance comes as a result of an increase in the 

frequency of replay traps This can lead to a degradation in both performance and 

energy in redoing work already done before.

• The degradation in performance also comes from an increase in the total number of 

cache misses. The increase in the amount of speculative instructions in flight can 

cause destructive interference in the caches resulting in an increase in the total 
6



number of cache misses when compared to smaller instruction windows.

• The side effects of increased out-of-order aggressiveness in the memory subsystem, 

in the presence of speculative execution, is primarily due to the reordering of 

memory instructions. We introduce a metric called disorder to measure the 

reordering of memory instructions and correlate increase in disorder with increased 

out-of-order capability. Furthermore, we also correlate the performance degradation 

in the memory subsystem with increased disorder.

• To determine the degree to which out-of-order execution of memory instructions 

affects processor performance, we investigated the degree to which processor 

performance is dependent on the out-of-order issue of memory instructions. We use 

the network communication concept of windowing to control the reordering of 

memory instructions while allowing ALU instructions to execute in any order. We 

show a direct correlation between the size of the instruction window and the 

frequency of replay traps and cache misses. Our investigations by statically varying 

the size of the window revealed that reducing the reordering of memory instructions 

via the use of smaller windows causes fewer occurrences of replay traps and cache 

misses.

• The dissertation places significance in the presentation of a problem: continuing to 

increase aggressiveness of an out-of-order core to tolerate the long latencies 

associated with DRAM will cause a degradation in the performance of the memory 

subsystem.
7



 1.2  Organization of Dissertation

The work presented in this dissertation is organized as follows. First in Chapter 2 we 

provide a detailed description of out-of-order execution, the different hardware structures 

used, and different mechanisms used to improve out-of-order efficiency and tolerate DRAM 

latency. Next, Chapter 3 describes the trends in both industry and academia to improve the 

performance of high performance microprocessors. Next, Chapter 4 discusses in further 

detail memory instruction speculation and the issues associated with speculatively executing 

memory instructions. Next, after a description of the simulation methodology, Chapter 5

presents the pitfalls associated with increasing out-of-order aggressiveness. For aggressive 

systems that use blind load speculation and sequential data prefetching, we present in this 

chapter the increase in the frequency of replay traps and the number of cache misses. In this 

chapter we arrive at the conclusion that the problems are primarily associated with the 

reordering of memory instructions. Next, Chapter 6 presents a metric called disorder to 

measure the degree by which memory instructions are reordered. In this chapter we show 

that increasing out-of-order aggressiveness causes significant memory disorder and 

conclude that reducing the reordering of memory instructions can reduce the overheads 

associated with the negative effects in the memory subsystem. Next, Chapter 7 correlates the 

degradation in performance with increased global disorder. Next, Chapter 8, for systems 

with controlled load speculation and stride data prefetching, we present the use of 

windowing to gain insight on the effects of out-of-order execution of memory instructions 

on processor and memory subsystem performance. This chapter also discusses the effects of 

reducing the reordering of memory instructions on the data caches, replay traps, processor 

performance and power consumption. Finally, Chapter 9 concludes the dissertation and 
8



provides future work to reduce the unexpected negative effects in the memory subsystem 

due to increased out-of-order execution.
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CHAPTER 2 High Performance 
Computing Techniques
 2.1  Out-of-Order Execution

Out-of-order execution is a widely used technique to tolerate the long latencies 

associated with cross-chip delays and last-level cache misses. Unlike in-order execution, 

out-of-order execution has the capability to schedule ready instructions independently of 

long latency instructions. The hardware needed to support this activity involves hardware 

structures such as instruction windows or reorder buffers, issue queues, and load-store 

queues. In general, increasing out-of-order aggressiveness implies an increase in the size of 

each of these hardware data structures. 

We now provide a brief description of the different out-of-order hardware data structures 

mentioned and their functionality in out-of-order processors.

 2.1.1 Instruction Window or Reorder Buffer (ROB)

The instruction window or reorder buffer is a hardware queue that keeps track of all 

instructions fetched into the pipeline. The instruction window is maintained via two 

pointers: head and tail. New instructions that are fetched into the pipelined are enqueued at 

the tail of the instruction window after being decoded. At the back end of the pipeline, old 

instructions are retired from the head. The main purpose of an instruction window is to 

queue up completed instructions so that they may be retired in program order, thus providing 
10



the illusion that all instructions are executed in sequential order—this simplifies the process 

of handling interrupts precisely [65, 68].

 2.1.2 Issue Queue or Scheduling Window

The issue queues hold a subset of instructions that reside within the instruction window 

or reorder buffer. Issue queues are responsible for tracking the dependencies of instructions, 

determining when instructions are ready to be issued, and arbitrating among all instructions 

that are ready to issue. Each cycle, all members of the issue queue are informed about 

instructions that are about to be completed so that dependents of completed instructions may 

mark themselves as ready to be issued [42]. To reduce the overhead of searching for ready 

instructions, issue queues are commonly partitioned into integer and floating point queues. 

Figure 2.1: Out-of-Order Hardware Data Structures.   
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Integer queues hold all integer operations as well as the address computation operations of 

memory instructions and floating point queues hold all floating point operations. 

 2.1.3 Load and Store Queues

Load and store queues are content-addressable-memory (CAM) structures that hold all 

memory instructions fetched into the pipeline. At the instruction decode and renaming 

pipeline stage, if an instruction is determined to be a load or store instruction, it is queued 

into the load or store queue. Load and store queues have the capability of supporting 

multiple searches to support memory dependencies or different memory consistency models 

[55]. For example, when a load instruction is issued, the address of the load instruction is 

CAMed in the store queue to determine if the data should be read from the data cache or 

from an existing older store residing in the store queue. In modern microprocessors, the 

load/store queues are one of the main hardware structures used to enforce consistency via 

the use of replay traps as described in Chapter 4.

 2.2  Speculation 

To maximize performance improvements, there are a variety of speculation techniques 

that are also used in conjunction with out-of-order execution. Speculation allows processors 

to predict the outcome of a given operation and act according to the predicted outcome. 

Speculation is necessary if the latency to determine the result of an operation is more than 

one cycle and the prediction can be made with some reasonable accuracy. As with any 

prediction technique, mechanisms to recover from mispredictions are also required to ensure 
12



program correctness. We now discuss a few common speculation techniques used in high 

performance processors. 

 2.2.1 Branch Prediction

Branch instructions are control instructions that determine the flow of execution. The 

direction and target of branch instructions can either be determined at decode time or 

execute time if the branches are unconditional or conditional respectively. In general, 20% 

of all program instructions have been identified as control transfer instructions. Since 

instructions are fetched during the first stage of the pipeline, and the decode and execution 

stages are several stages down the pipeline, the fetch stage somehow needs to be provided 

intuition of branch instructions being fetched and their appropriate targets. 

One method of handling branch instructions is to allow the instruction fetch unit to 

continue fetching and be oblivious to branches. This is also known as always fetching down 

the untaken path. However, such a mechanism can cause frequent pipeline flushes if a 

program has frequent taken branches. Thus, hardware data structures are introduced into the 

pipeline that track branch outcomes and targets based on the program counter (PC) of the 

branch instruction. At instruction fetch time, the fetch hardware consults the branch 

prediction hardware based on the fetchPC. If the PC hits in the branch prediction hardware, 

the fetch hardware redirects fetching of instructions from the target address provided in the 

prediction hardware. 

There have been several branch predictors implemented e.g. two-level predictors, 

McFarling predictions, global history predictors, etc. that have provided the capability of 

predicting the outcomes of branches with predictions as good as 90-95%. Such accurate 
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branch predictors allow for the out-of-order execution hardware a larger view of real 

program instructions thus providing them the capability of dynamically extracting 

application ILP.

 2.2.2 Data Prefetching

The ability to predict what data a processor will be using in the near future and be able to 

bring that data into the cache from lower levels of memory (e.g. DRAM) before the 

processor actually requests the data is known as data-prefetching. The ability to accurately 

predict what data to prefetch and the mechanisms to allow for data prefetching is an 

important area of research to tolerate long DRAM latencies. Modern high performance 

microprocessors use prefetching mechanisms that are implemented using software, 

hardware, or helper threads. We now provide a brief description of each of these 

mechanisms.

Software prefetching [6, 40, 46] is a technique by which explicit prefetch instructions 

can be introduced into the application stream to bring data into the cache ahead of time. 

Normally this is done by the compiler by inserting a load instruction to the same memory 

address several instructions before the value of the load is actually used. Since the compiler 

or program writer is directly involved in explicitly prefetching the data, the task of software 

prefetching is non-trivial. Furthermore, the fact that explicit instructions are inserted into the 

existing instruction stream can also increase the instruction bandwidth requirements.

In attempts to reduce the overhead in terms of instruction bandwidth and the non-trivial 

nature of predicting the address stream of the application statically, hardware prefetching 

techniques [6, 18, 34, 22] can be used to dynamically detect the access pattern of 
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applications and prefetch data based on the access pattern. The most common hardware 

prefetch techniques are the sequential prefetching [20, 21, 64] and stride prefetching [14, 

21]. Sequential prefetching attempts to exploit spatial locality by prefetching consecutive 

blocks of data (on a hit or miss) in hopes that future accesses will not miss in the data cache. 

On the other hand, stride prefetching detects and prefetches data based on access stride 

patterns that the hardware prefetcher dynamically detects. The benefit of a stride prefetcher 

is that it does not require spatial locality to be present. The main problem with hardware 

prefetching is the hardware cost and complexity to build a prefetcher that can accurately 

determine the different types of access patterns. Additionally, if the accuracy of the 

hardware prefetcher is low, cache pollution and wasted memory bandwidth can degrade 

processor performance.

With the introduction of multi-threaded architectures [13], prefetching can also be 

exploited by assigning helper threads to prefetch data [17, 39, 75]. By using idle threads, a 

processor can schedule tasks threads to help the primary thread [13]. The helper threads 

execute code that prefetch data required by the primary thread. However, the main 

disadvantage of thread-based prefetching techniques is that they require idle threads and the 

availability of spare resources to handle the demands of the helper thread.

 2.2.3 Load-Hit Speculation

In general, the latency from the time when an instruction is issued to the time when it is 

actually executed is usually greater than one. This is because of the delays associated with 

register file accesses or the transfer of data across bypass paths. To accommodate this extra 

latency, the instruction issue logic allows for the early issue of instructions dependent on 
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older instructions from the queues. The early issue of instructions handles well for non-load 

dependent instructions, however, the early issue of instructions dependent on load 

instructions poses unwanted behavior as load instructions have a non-deterministic latency 

due to their unknown hit/miss status. 

There are a couple of ways of handling the non-deterministic latency. The issue logic 

can wait until the result of the load is determined before it issues instructions dependent on 

the load. However, this can be a source of performance loss as the first level caches usually 

have a high hit rate. Thus, a more aggressive approach is to assume that all loads issued hit 

in the L1 data cache. This is known as load-hit speculation, and allows for instructions 

dependent on the load to be issued early. However, this approach requires the need to handle 

the re-issue of instructions dependent on the load incase the load misses in the data cache 

[42]. 

 2.2.4 Load Speculation

Since the effective addresses associated with memory instructions are determined after 

they are issued to execute, prediction techniques can be used to determine the dependencies 

of instructions in memory. For example, a load instruction to memory address M must only 

be issued after a store instruction to memory address M (if it exists). However, the question 

arises as to what to do if a load instruction is ready to be issued but an older store instruction 

has not been issued yet. The conservative approach is to wait till the older store instruction is 

issued before the newer load instruction can be issued. Such a mechanism can be a source of 

performance loss if the load instruction was not dependent on the store instruction. Thus, 
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prediction mechanisms can be used to predict whether a younger load is dependant on older 

stores. 

Rather than requiring all loads to wait on prior unresolved stores, load speculation is 

commonly used. To allow for load speculation, Calder et al. [10] perform a survey of 

techniques that tackle the false memory aliasing problem. They analyze four different 

mechanisms that allow for load speculation: dependence prediction, address prediction, 

value prediction, and memory renaming. Loads predicted to not alias to older stores are 

issued speculatively. If the load is mispredicted and it actually depends on an older store, 

instructions are squashed and execution restarts at the mispredicted load instruction.

Load speculation is a mechanism used to send loads that are ready to execute to the 

memory subsystem as soon as possible even before older store addresses are not resolved. 

However, processors need mechanisms to ensure that the memory independence prediction 

is valid. To do so, after the store instruction computes its effective address, the store CAMs 

the load queue to determine if any younger loads that were dependent on the store were 

issued before the store did. If so, the younger load instruction must be replayed (as it 

acquired stale data from the cache) and is flagged with a replay trap. Replay traps are further 

discussed in Chapter 4.
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CHAPTER 3 Trends in Improving 
Processor Performance
 3.1  Industry Trends

The designs of modern high performance microprocessor architectures rely on very 

aggressive hardware mechanisms to maximize processor performance. Techniques such as 

branch prediction, data speculation, load speculation, hardware and software prefetching, 

cache line prediction and pipeline scheduling speculation are a few of the numerous 

techniques utilized by modern high performance microprocessors to tolerate the growing 

gap between the processor and DRAM system. The different techniques mentioned strive 

towards one common goal—boost processor performance by continuing to do possibly

useful work rather than stay idle. 

To avoid staying idle, most ILP processors improve processor performance by executing 

instructions in an order different from sequential program order. This is called instruction 

reordering and is also more commonly known as out-of-order execution. The motivation for 

out-of-order execution is to overlap useful work with work that takes a while to do. To be 

capable of executing instructions in an order different from actual program order, 

instructions are fetched into an instruction window. Each cycle the processor’s out-of-order 

hardware consults the instruction window for instructions that are ready to execute. If an 

instruction has all of its dependencies resolved and is ready to execute, the out-of-order 

hardware issues it to the appropriate functional unit. Thus, by overlapping useful work with 
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work that takes a while to do, modern microprocessors achieve a much higher performance 

with out-of-order execution than with in-order execution. 

Processor performance, in general, is determined by the amount of time it takes to 

execute a given program. Mathematically, processor performance is expressed by IPC x 

clock speed, where IPC is Instructions Per Cycle, i.e. the average number of program 

instructions completed in a processor clock cycle. From this equation, it is easy to realize 

that processor performance can be improved by either increasing IPC, clock speed or both. 

These methods for increasing microprocessor performance belonged to two well known 

trends in the architecture community: brainiacs and speed demons. Brainiacs improve 

processor performance by concentrating only on increasing IPC. They attempt to build 

smarter processors that are capable of dynamically exploiting maximum application ILP. 

Using large instruction window and queue sizes and complex issue logic schemes to execute 

several instructions at a time, the brainiac approach increases IPC while maintaining low 

clock speeds (e.g. IBM’s POWER2, MIPS R10000 and others as shown in Figure 3.1). 

Speed demons, on the other hand, only concentrate on increasing clock speeds to improve 

processor performance. Their design philosophy is to accommodate any amount of design 

complexity as long as it does not compromise the primary goal of maintaining high clock 

speeds. With continued decreases in feature size and improved micro-architectural 

techniques in microprocessor design, speed demons have been able to continue to increase 

clock speeds and achieve high processor performance by relying on smart compilers to 

expose an application’s inherent ILP (e.g. Pentium 4, UltraSPARC-III).

Exactly which path of design decision (brainiac or speed demon) is the “right” path for 

improving microprocessor performance was a hot debate. From Figure 3.1, we observe that 
19



some microprocessor vendors such as the DEC/Compaq and MIPS started off as speed 

demons (Alpha 21064, Alpha 21164, MIPS R2000, MIPS R4000) and then changed their 

design philosophy to brainiac (Alpha 21264, MIPS R5000, MIPS R8000, MIPS R1000, 

MIPS R12000). Sun on the other hand started off as a brainiac (SPARC, microSPARC, 

superSPARC, hyperSPARC), however of late has changed to the speed demon design 

philosophy (UltraSPARC-III). 

More recently, industry is now moving towards multiple cores per die. With the growing 

amount of transistors available with each new shrink in the process technology, the trend is 

now to increase computation power by adding more cores rather than cache space. With the 

growing amount of parallel programs in the fields of multimedia, transaction processing and 

many other emerging fields, the goal of multi-cores now is to provide the capability of more 

compute power per square millimeter of chip area. 

Figure 3.1:   Brainiacs Vs. Speed-Demons.   Trends in industry microprocessor designs.

http://www.pattosoft.com.au/Articles/ModernMicroprocessors/
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 3.2  Related Work

In general, it is desirable if the design philosophy of a microprocessor were both 

brainiac and speed demon, however, the two design philosophies are often at odds against 

one another. This is because the complex logic required to extract ILP in the brainiac

approach cannot handle the high clock speeds desired by the speed demons. One such 

example is the complex out-of-order issue logic, the core of an ILP processor. 

It is a well known fact that a processor’s out-of-order efficiency (i.e. ILP extraction 

capability) depends on the total number of instructions it views at any given time, i.e. the 

instruction window size. The more instructions an out-of-order core views, the more 

opportunity a processor has to exploit an applications inherent ILP [5, 51, 55, 63]. With the 

growing gap between the processor and DRAM system, the need for larger instruction 

windows to exploit ILP has become extremely important to avoid processor idle time. 

However, with increasing instruction window sizes, the instruction selection and issue logic, 

synchronization logic, and required data paths become critical paths with latencies that 

cannot meet high clock frequencies. Consequently, on going research have proposed a 

variety of techniques to improve processor performance. 

Since memory latency is one of the major hurdles that a microprocessor has to 

overcome, most research investigations have proposed and investigated mechanisms to 

tolerate this latency. Prediction techniques such as load speculation allow processors to send 

load requests as early as possible to the memory subsystem so as to reduce latencies in the 

event of a cache miss. Other research methods have proposed novel techniques to increase 

ILP by providing mechanisms to achieve the performance of large instruction windows 
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without sacrificing clock speeds. We now discuss some of the relevant work that others have 

proposed to tolerate memory latency.

Even though there exists a longing desire to improve processor performance by 

increasing the sizes of instruction windows and reorder buffers, in general clock speeds and 

the size of instruction windows are at odds against one another. Increasing the size of the 

instruction windows requires a longer amount of time to consult all entries within the 

instruction window to determine potential instructions for scheduling. Thus, researchers 

have arrived at an understanding that larger hardware structures (e.g. instruction windows) 

conflict with increasing clock speeds and alternative design methodologies must be 

investigated. 

Based on this, a good deal of recent effort has aimed at solving the large instruction 

window problem by investigating alternative mechanisms. These mechanisms can be 

categorized in two different ways: 

• Better Algorithms and Circuit Implementations: The research contributions in 

this category aim at designing better algorithms and/or efficient circuit techniques 

that are not on the critical path when scaling the size of the instruction window.

• Emulate the Behavior of Large Instruction Windows with Smaller Instruction 

Windows: The research contributions in this category introduce additional hardware 

data structures, when used, emulate the behavior of large instruction windows 

without impacting clock cycle time. Such mechanisms may also be required to 

maintain checkpoints at regular intervals in the event a roll back is needed. 

We now describe some of the important contributions to both these categories. 
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Better Algorithms and Circuit Implementations

Henry et al. [30] proposed new circuit implementations for the logic components that 

limit the critical path of a processor with large instruction windows. Specifically, they 

proposed new circuit implementations for the rename, schedule, wake-up, and commit 

logics. They propose the use of log-depth cyclic segmented prefix (CSP) circuits to re-

implement the schedule and wake-up logic. They show that their modified circuits can be 

used with existing technology to build a 500 MHz processor with 8-way issue width and a 

128-entry instruction window. Thus, using an alternative circuit design for the timing critical 

portions of the instruction window they were able to build larger instruction window sizes 

while still maintaining high clock speeds.

Onder et al [51] illustrated that existing mechanisms to wake-up instructions that are 

dependent on instructions that have finished execution do not scale well with increase 

instruction window sizes. They propose a new wake-up algorithm to dynamically associate 

explicit wake-up lists associated with each executing instruction. The wake-up list is 

essentially a list of all direct dependents of any instruction. The insight here is that rather 

than repeatedly examining an instruction to determine if it can be woken up, only a subset of 

waiting instructions can be woken up based on the explicit wake-up list associated with the 

instruction. Such a mechanism allows for the reduction in the fan-out of the wake-up logic 

and hence allows for the implementation of larger instruction windows.

Emulate Behavior of Large Instruction Windows

Lebeck et al. [38] illustrate the need for large instruction windows to be able to continue 

doing useful work while an older instruction misses in the data cache. The insight here is 
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that those instructions that are dependent on the long latency operation cannot execute until 

the source operation completes. Thus, all instructions dependent on the long latency 

operation can be moved from the instruction window into an alternate waiting instruction 

buffer (WIB). This frees up room for new instructions to be fetched and executed, 

essentially emulating a large instruction window. When the older long latency operation has 

finished execution, the instructions are moved from the WIB back into the instruction 

window. Thus, this mechanism emulates the behavior of a large instruction window rather 

without having to physically increase the size of the instruction window.

Scaling up the size of the instruction window makes sense only if all associated out-of-

order hardware structures are scaled accordingly as well. One such hardware structure is the 

load/store queue which maintains a list of memory instructions in flight in-order. Since 

larger instruction windows bring on chip a larger number of memory instructions, the 

increase in size can lead to a extensive store to load communications. Since the load/store 

queue is a CAM structure, frequent store to load communications may not be able to be 

handled in the same cycle. Thus, Park et al. [55] propose the use of segmentation to scale the 

load/store queue size. 

Akkary et al. [5] show that large instruction windows usually have four critical 

components that need to be dealt with: a) scheduling instructions b) recovering from branch 

mispredicts c) buffering stores and forwarding data to loads and d) reclaiming physical 

registers. They show that scheduling window size (i.e. choice (a)) is not as sensitive to the 

other three issues when dealing with large instruction windows hence provide novel 

solutions for each one of them. They propose a novel checkpoint and recovery mechanism 

to recover from branch mispredicts, a hierarchical store queue organization for quick data 
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forwarding to loads, and a novel algorithm to reclaim physical registers as quickly as 

possible. 

Since the primary reasoning behind large instruction windows is to tolerate the long 

latencies to memory, Onur et al. [48] propose the use of runahead execution. With runahead 

execution, the processor checkpoints the current architectural state and unblocks the 

instruction window (which is blocked by a long latency operation). The long latency 

operation is provided with a a bogus value. The processor then enters “runahead mode” and 

continues executing as if normal, but does not commit state to the architectural register file. 

Eventually when the blocked operation finishes, the pipeline is flushed and the processor 

enter “normal mode” and execution restarts at the blocked operation. Such a mechanism 

effectively creates very accurate data and instruction cache prefetches. Thus, the use of 

runahead execution provides the emulation of a large instruction window to prefetch data.

Even though much work has discussed mechanisms to tolerate long latencies, it is 

important to also mention that Burger et. al. [8] point out that when attempting to use 

aggressive latency tolerance techniques, memory bandwidth, particularly pin bandwidth, 

and not raw memory access latencies will prevent future processors from gaining higher 

performance. To quantify this they decomposed execution time into processing cycles, raw 

memory latency stall cycles, and limited bandwidth stall cycles. Using this mechanism they 

were able to show that applications running on future aggressive processors will stall 

primarily due to memory-bandwidth limitations.

Our work differs from prior work in that it explicitly illustrates that even though 

increasing out-of-order capability by increasing instruction window sizes does improve 

performance, it however, comes at a cost of a degradation in performance in the memory 
25



subsystem. Existing work [47, 57] has discussed the effects of speculative execution on the 

performance of caches, and have proposed mechanisms to filter the effects [47]. Our work 

shows that continuing to increase aggressiveness of the out-of-order core can result in an 

increase in the frequency of replay traps and the number of cache misses in the memory 

subsystem. We correlate these sources of performance degradation to the reordering of 

memory instructions and propose the concept of windowing. Windowing essentially reduces 

the reordering of memory instructions, the performance degradation in the memory 

subsystem, and the power and performance overheads of speculatively issuing memory 

instructions.
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CHAPTER 4 Memory Subsystem Issues
In attempts to improve performance, the out-of-order issue logic exploits an 

application’s inherent instruction level parallelism (ILP) by finding and issuing to execute 

instructions that are independent of long-latency instructions. As a result of instruction 

scheduling both ALU and memory instructions are executed in an order different from 

program order. Since register renaming maintains the dependencies of ALU instructions, the 

out-of-order issue of ALU instructions poses no threat to functional correctness. This is 

because ALU instruction dependencies are defined by their source registers; the source and 

destination registers are defined in the bytes of the instruction itself. Thus, at decode time, 

the instruction decoder knows which instructions ALU instructions depend on and the 

register renaming logic sets the appropriate dependency chains to determine when to 

dispatch instructions to execute. Thus, the out-of-order issue logic issues instructions only 

when the appropriate producer instructions have finished execution.

Though the dependencies of ALU instructions are easy to determine, the dependency 

chains of memory instructions are not as trivial. The execution of memory instructions 

usually involves the computation of the effective address and then the loading/store of data 

to caches/memory. The computation of the effective address of memory instructions cannot 

be determined statically, instead the memory instruction must actually be issued to 

functional units. Thus, any dependencies associated with these instructions in memory can 

be determined only after they have been issued to execute. If it so happens that after having 
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issued to execute, if a direct or indirect memory dependence is determined e.g. if two 

memory instructions access the same memory location, then measures must be taken to 

ensure functional correctness. In general, issuing memory instructions that access the same 

memory location (regardless of the order in which they are issued) can cause inconsistency 

issues depending on the consistency model defined by the processor. To handle the issues of 

inconsistency or functional correctness, mechanisms to ensure correct execution are 

required. Modern processors use the mechanism of replay traps to ensure consistent state 

and functional correctness.

 4.1  Replay Traps

A replay trap occurs when the processor must roll back its state to force accesses to a 

particular memory location in order, or to handle different-sized accesses to the same 

memory location. The Alpha Compiler Writer’s Guide describes replay traps as: 

“Replay traps occur when there are multiple concurrent loads and/or stores in 

progress to the same address or the same cache index. The best way to avoid replay 

traps is to keep values in registers so that multiple references to the same address are 

not in progress at the same time” [2]. 

Replay traps preserve a programs producer-consumer semantics between load and store 

instructions and is an internal processor mechanism that should not be confused with 

software managed traps/interrupts.
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We now describe the different types of replay traps that are possible when issuing 

memory instructions are executed. Figure 4.1 lists the different types of replay traps, and we 

now provide a detailed description of the replay trap and the reasoning behind their use. 

 4.1.1 Replay Traps For Functional Correctness

When executing memory instruction in a modern superscalar, certain conditions must be 

met to ensure the execution of any application is functionally sound. In some cases, even 

with in-order processors certain corner cases may arise where a processor needs to handle 

the special case in order to avoid complexity during the design process. We now discuss two 

replay traps that are required to ensure functional correctness.

Load-Store Replay Trap

Load-store replay traps, in the presence of load speculation, are required to handle the 

fact that applications can communicate with each other via memory rather than explicitly 

through registers. This usually happens when the compiler is required to spill data to 

memory due to register pressure. For example, for a given program, a store instruction may 

write to a particular location 0xABB0 in memory (e.g. STQ r10, 0xABB0) and at a later 

point in the program a load instruction reads from location 0xABB0 (e.g. LDQ r4, 0xABB0) 

2. ST BYTE A (3)

3. LD BYTE A (2)

1. LD BYTE A (1)

4. LD BYTE B (4)

2. ST BYTE A (2)

3. LD HALF A (3)

1. LD BYTE A (1)

4. LD BYTE B (4)
2. ST BYTE A (2)

3. LD BYTE A (1)1. LD BYTE A (4)

4. LD BYTE B (3)

P2P1

Figure 4.1:  Classification of Replay Traps.   The figure illustrates the different types of replay traps that can 
occur in both uniprocessor and multiprocessor environments. (a) Load-Store Replay (b) Wrong Size Replay (c) Load-Load 
Replay (d) Load-Miss Load Replay. In the examples, due to a replay trap, re-execution starts from the shaded instruction. 
Numbers in parenthesis show program execution order and numbers in italics show actual program order.

3. LD BYTE A (3)

2. ST BYTE A (2)1. +LD BYTE A (1)

4. LD BYTE B (4)

P2P1

+Memory Instruction Misses in Data Cache

(a) (b) (c) (d)
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the value stored by the older store instruction. To ensure correctness, the order of the store 

and the load must be maintained as there is a dependence associated between the load 

instruction and the store instruction. The dependence is based on the fact that they both share 

the same effective address, and this is commonly termed as a memory dependence.

In the presence of load speculation [60], load instructions can be issued before all prior 

store instructions are executed, i.e. before a stores effective addresses are resolved. Without 

load speculation, a load instruction would issue after all older stores are resolved and either 

gets its data from the data cache or the store queue (in case the store has not retired). 

However, with load speculation, if a load instruction did issue out-of-order when compared 

to an older store instruction, then the load instruction acquires stale data from the cache 

(since the store has not executed or stored data into the cache). To avoid this source of 

inconsistency, in the presence of load-speculation, store instructions are required to CAM 

the load queue at execute time to detect if any younger load instructions had the same 

effective address. If so, then the younger load instruction and all of its dependents must be 

re-executed to propagate the correct value of the store. To identify that the younger load 

instruction must be re-executed, the processor flags the load instruction to be replayed, and 

this fact is noted within the load instruction reorder buffer entry.

P1.I1: STB R4, 0xABB2(R1) (R1 = 0)

P1.I2: LDB R4, 0xABB0(R2) (R2 = 2)

P2.I3: STB R8, 0xABB2(R0) (R0 = 0)

P1.I4: ADD R1, R4, R6

P1.I5: LDB R5, 0xABB4(R0) (R0 = -2)
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To illustrate the need for a a load-store replay trap, we now provide an example below. If 

the processor executes the program in the order I1, I2, I5, I4, and I3, then memory 

instruction ID 5 will receive the data stored by memory instruction ID 1, rather than memory 

instruction ID 3. This is incorrect execution of the program and must be rectified by re-

executing memory instruction ID 5 and all of its dependent instructions.

Of course, load-store replay traps are only required if a microprocessor employs load 

speculation, i.e. it issues load instructions before older store instructions have been resolved. 

Studies have shown that being conservative and not using load speculation can cause 

unnecessary performance degradation especially if younger load instructions did not depend 

on any older unresolved stores. The performance degradation become significant especially 

if the younger loads miss in the data cache [60]. This is because sending the load to the 

memory subsystem as early as possible can allow for early cache miss detection and can 

overlap useful processor work with cache miss latency. Thus, some microprocessors employ 

the use load speculation to enhance performance, e.g. Alpha, POWER4 [1, 2, 24, 70].

Wrong Size Replay Trap

A wrong-size replay trap is required when the data required by a load instruction is 

partially present in the data cache and partially present in the store queue. This usually 

occurs when the address of the load instruction overlaps partially or completely with the 

address of an older store instruction, i.e. there is a partial memory dependence between a 

younger load and an older store instruction. 

For example, if a store instruction writes two bytes (a half word) worth of information to 

location 0xABB2 (e.g. sth r0, 0xABB2), then on a byte addressed machine, data is written to 
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location 0xABB2 and 0xABB3. If a younger load instruction wishes to read two bytes of 

information from location 0xABB2 (e.g. ldh r2, 0xABB2) or one byte of information from 

0xABB3 (.e.g. ldb r1, 0xABB3), the data can be forwarded from the store queue to the 

appropriate destination registers. However, if the load instruction attempts to read four bytes 

(a word) worth of information from address location 0xABB0 (e.g. ldw r4, 0xABB0), then 

for such a request, the data associated with addresses 0xABB2 and 0xABB3 is in the store 

queue and data associated with addresses 0xABB0 and 0xABB1 is in the data cache. To 

avoid additional circuitry to MUX and merge portions of the needed data from the data 

cache and the store queue, the younger load instruction is flagged with a replay trap. 

Since store instructions write data to the data cache only after commit time, the younger 

load instruction must wait till the store instruction commits and drains its data into the data 

cache. Thus, the overhead of a wrong-size replay traps is the total time for the store 

instruction to commit and drain the data in the data cache. It is important to point out here 

that a wrong size replay trap can occur even if memory instructions are issued in program 

order [1, 2, 70]. In general, a compiler is responsible for ensuring that partial memory 

dependencies do not exist between loads and stores. However, there are times during the 

compilation process that this is unavoidable. Hence, all high performance microprocessors 

must be able to detect and overcome this hazard [24].

P1.I1: STH R0, 0xABB2

P1.I2: ADD R1, R4, R6

P1.I3: LDH R4, 0xABB2

P2.I4: STB R4, 0xABB8

P1.I5: LDW R5, 0xABB2

(wrong size replay trap)
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 4.1.2 Replay Traps To Enforce Memory Consistency

To be able to write correct and efficient shared memory programs, programmers need to 

understand exactly how memory behaves when it comes to read and write operations that 

originate from multiple processors in a shared-memory multiprocessor environment. To 

shed some light on this behavior a memory consistency model is defined for shared- 

memory multiprocessor systems. Memory consistency models [4, 26, 44, 59, 76] provide a 

formal specification of exactly how the memory system will appear when processors read or 

write to locations in memory. In general, the consistency model places restriction on the data 

value that is returned upon reads. Intuitively, a read should always return the last data value 

written. In a uniprocessor system, this is easy to do: the last value written is based on 

program order. However, in a multi-processor environment this is harder to do as reads and 

writes can be on different processors of a multi-processor system. To solve this problem, a 

number of consistency models have been proposed to allow for hardware and compiler 

optimizations. A detailed discussion of memory consistency is out of the scope of this work, 

however we refer the reader to the following excellent tutorial [4].

Load-Load Replay Trap

A load-load replay trap is initiated when two loads to the same memory address are 

issued out-of-order. In a uniprocessor environment this poses no problems, however in the 

case of a multiprocessor environment, out-of-order issue of loads can lead to subtle memory 

consistency problems. For example, if two loads to the same address are issued out-of-order, 

and a different processor changes the value between the execution of these two loads, then, 
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the newer load instruction can obtain the older value and the older load can obtain a newer 

value. 

We now illustrate an example of load-load replay traps with two processors P1 and P2. 

Assume that processor P1 and P2 execute the following instructions that are listed in 

program order:

The global in-order execution requirements as required by the programmer is shown in 

parenthesis next to each instruction. That is, the multi-processor state should be comparable 

to the state if the program were to execute on a uniprocessor with instructions committing in 

the order described by the numbers in parenthesis. In an out-of-order core processor, 

instructions on both of these processors can be reordered. The ordering of instructions on P1 

for example could be P1.I3, P1.I1, P1.I2. Thus, memory instructions can be reordered 

because the instructions producing R0, and R2 could produce the values at different times 

based on their producers or the individual instruction latencies. From a uniprocessor 

perspective such a reordering of the memory instructions is absolutely ok. However with a 

multiprocessor perspective this will lead to an inconsistent result because now P1.I3 will 

acquire the old value of the data stored at memory location 0xABB2 by P2.I2 and P1.I1 will 

now have the new value stored by P2.I2. This is a problem and needs to be handled to allow 

for correct execution of programs. 

P1

P1.I1: LDB R4, 0xABB0(R2) (R2 = 2)

P1.I2: ADD R1, R4, R6

P1.I3: LDB R5, 0xABB4(R0) (R0 = -2)

P2

P2.I1: MOV R1, R8

P2.I2: STB R8, 0xABB2

P2.I3: SUB R1, R2, R3.

(2)

(3)

(6)

(1)

(4)

(5)
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The above load-load ordering problem can either be handled in hardware or explicitly by 

the software programmer. In the software approach, if a relaxed memory consistency model 

is supported, a programmer can use memory barrier instructions provided by the processor. 

Memory barrier instructions allows the programmer to enforce ordering among memory 

instructions where ever needed. With memory barrier instructions, all processors wait at a 

particular location in the program until everybody reaches that barrier. Thus, instructions 

beyond the barrier aren’t executed until everybody reaches the barrier. For example, in the 

code above, a programmer can insert barrier instructions before P1.I2 and after P2.I2. In 

such a case, the processor can handle instructions beyond the barrier in one of two ways: (1) 

do not execute instructions beyond the barrier, or (2) speculatively issue instructions but 

restart execution of instructions beyond the barrier after all processors reach the barrier. By 

inserting the barriers programmers can ensure that instructions execute and produce results 

as they expect them to do.

However, it has been addressed that extensive use of memory barriers can negatively 

hurt performance [55]. This is because application level ILP is lost whenever barriers are 

reached as no further useful progress can be made until all processor reach the barrier. Thus, 

hardware support, via replay traps, is also provided by processors to guarantee load-load 

ordering to the same address. (e.g., Alpha [1, 2, 24], POWER4 [70], and MIPS R10000 [3], 

Sparc)

Load-miss Load Replay Trap

A load-miss load replay trap occurs when two loads to the same memory address are 

issued and the first load misses in the data cache and already has a miss information/status 
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holding register (MSHR) allocated to it. An MSHR keeps track of an outstanding memory 

request to a single cache line [37]. It is used to coalesce multiple requests to the same cache 

line by keeping track of all requests that are waiting on the same cache line of data to arrive 

from memory. In doing so, MSHRs prevent multiple requests for the same data to be sent to 

memory. Eventually, when the data arrives from memory, the MSHR provides all 

outstanding destination requestors with the data they were waiting on. 

Just like the load-load replay trap, memory inconsistency issues can occur if two loads 

miss in the data cache and are waiting on an MSHR and an intervening store from a different 

processor exists. In such a case the data written by the remote store would be lost as the 

MSHR provides the waiting loads with data from DRAM. We point out here that this 

problem does not require for the out-of-order issue of load memory instructions. Instead, 

two loads to the same address issued in program order can cause memory inconsistency in a 

multi-processor environment. We now illustrate an example of load-miss-load replay traps 

with two processors P1 and P2. Again, if we assume the fetch sequence and illustrated by 

the order of instructions listed for each processor and the needed execution sequence as 

described by the numbers in parenthesis. 

In our example we assume that cache coherence protocols are present to update or 

invalidate remotely cached copies of data. Again, we assume that there are no memory 

P1

P1.I1: LDB R4, 0xABB0(R2) (R2 = 2)

P1.I2: ADD R1, R4, R6

P1.I3: LDB R5, 0xABB4(R0) (R0 = -2)

P2

P2.I1: MOV R1, R8

P2.I2: STB R8, 0xABB2

P2.I3: SUB R1, R2, R3.

(2)

(3)

(6)

(1)

(4)

(5)
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barrier instructions used by the programmer. If we assume that instructions on processor P1 

are issued in order and instruction P1.I1 misses in the data cache and has a miss status 

holding register assigned to it. Meanwhile P1.I3 also executes and since it is to the same 

address it will also miss in the data cache, however with an outstanding MSHR to the same 

cache line, P1.I3 will merge with the existing outstanding MSHR. Eventually the data 

arrives from memory and the data is provided to both P1.I1 and P1.I3. However, now P1.I3 

receives stale data and not the most up-to-date copy of the data that should have been 

provided by P2.I2. Thus, to avoid this source of memory inconsistency, when the processor 

detects an outstanding load to the same memory address, it flags a replay trap on the newer 

memory instruction and waits until the data for the first load is loaded into the destination 

register. (e.g., Alpha [1, 224]). 

 4.2  Handling Replay Traps

Having illustrated the need and detection of replay traps, we now require mechanisms to 

fix the problems associated with replay traps. Since replay traps are associated with 

incorrect data being consumed by load instructions, it is required that the load instruction be 

re-executed with the correct data value. However, it is not enough to just re-execute the load 

instruction as any dependents on the load need to be propagated with the correct value of the 

load, and in turn their dependents, and so on. Thus, handling a replay trap requires the re-

execution of the entire direct and indirect dependency chain of the affected load instruction. 

There are two mechanism of handling this re-execution: the squash and re-execute method 

and the re-execute method. We now briefly discuss both these mechanisms.
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 4.2.1 Squash and Re-Execute

With the squash and re-execute mechanism, replay traps can be handled in the same way 

that branch mispredicts are handled: flush the entire pipeline and re-execute from the replay 

trap causing instruction. With such a mechanism, when a load instruction is detected to be 

replayed, the fact is noted in the instructions reorder buffer entry. While committing 

instructions, if the processor detects that the instruction caused a replay trap, the pipeline is 

flushed and execution is restarted at the replay trap causing instruction. With such a 

mechanism, all instructions younger than the load instruction are re-fetched, and re-

executed. This can be a tremendous source of performance and energy loss as instructions 

that are independent of the trap causing instruction must be re-fetched and re-executed. 

However, such a scheme can be easily built into existing hardware as it can use existing 

mechanisms already built into the processor e.g. interrupts, branch mispredicts. Thus, if the 

frequency of replay traps are relatively low then the overheads of re-fetching and re-

executing instructions can be negligible or overlooked.

 4.2.2 Re-Execute Architecture

An alternative to flush and re-execute is to only execute those instructions that are 

dependent on the exception causing instruction. Such a mechanism would require the 

hardware to do one of two things: 

• Retain all instructions dependent on load instructions in the reservation stations or 

issue queues until it is determined with good certainty that the load instruction does 

not cause a replay trap

• Remember the dependency chain of all instructions dependent on all load 
38



instructions in case it is determined later that it causes a replay trap

Both these solutions are complex and require additional hardware structures and complexity. 

The first approach is overkill as the latency to determine whether a load causes a replay trap 

or not can be extremely long, in fact, it cannot be determined until the commit time of the 

load. Such a mechanism can cause undue performance degradation in ensuring that no 

replay traps occur. With the second approach, attempting to maintain or remember the direct 

and indirect dependency chains of a load instruction can be relatively expensive and 

complex. This can become an even larger problem as the sizes of instruction windows are 

scaled up. Hence this mechanism will not scale well with growing demands to increase 

instruction window sizes. However, assuming that the complexity and latency to determine 

all the dependencies of the load instruction are negligible, the hardware now requires a 

mechanism to re-inject the instructions back into the issue queue so that they can be re-

executed.

 4.3  Summary

This chapter provided a detailed overview of the different types of replay traps that can 

occur due to the execution of memory instructions. We showed the existence of four replay 

traps, two which are required for the correct execution of programs on both single and multi-

processor systems and two that are required to maintain memory consistency in a multi-

processor environment. We showed that these traps need not occur due to the reordering of 

memory instructions, in fact they can occur even if memory instructions are issued in 

program order. Furthermore, we showed that the mechanisms of handling replay traps can 
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be rather expensive either in the way that they are handled or in the hardware required to 

implement them. With a flush and execute method needless time and energy is spent in re-

executing a window of instructions. On the other hand, the re-execute only method can be 

expensive to build into existing hardware. Thus, based on the fact that the mechanisms that 

are required to handle replay traps themselves are expensive, it is of extreme importance that 

the frequency of replay traps be minimal.
40



CHAPTER 5 Pitfalls of Increased Out-
of-Order Capability
 5.1  The Problem

Though large instruction windows and aggressive instruction schedulers provide the 

processor with a large number of instructions deep into an application’s instruction stream, 

selecting and issuing to execute such distant independent instructions inherently causes an 

application’s instructions to be reordered. The reordering of ALU instructions poses 

minimal effects on program execution; however, the reordering of memory instructions in 

modern superscalar processors can affect program execution in two distinct ways: 

increased replay traps and cache misses. We observe that while these events occur only a 

fraction of the time with lesser aggressive out-of-order mechanisms, increasing out-of-order 

capability exposes them as an overwhelming hazard to overall performance. 

 5.1.1 Increased Replay Traps

The reordering of memory instructions can create a variety of hazards that can affect the 

correct execution of an application. For example, when using load speculation [52, 60], if it 

is later determined that the speculated load utilizes the same effective address as an older but 

unresolved store, then the load causes a fault, and the processor must replay the faulting load 

instruction. This is known as a “replay trap.” A replay trap can be handled either by flushing 

the pipeline and restarting execution at the faulting instruction or by re-executing only the 

faulting instruction and all of its direct and indirect dependent instructions. Even though the 
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re-execute method is better than the pipeline flush method, the complexity in logic required 

to determine and re-execute an entire dependence chain of the replay trap causing 

instruction is relatively expensive and can become even more so with increased instruction 

window sizes [60]. However, with either method of handling traps, as the frequency of 

replay traps increases, significant performance and energy is wasted in re-fetching and re-

executing instructions. 

To measure the increase in the number of replay traps with increased out-of-order 

aggressiveness, we define two metrics: replay trap frequency and replay trap overhead. We 

define the replay trap frequency as the total number of times a processor is required to 

handle a replay trap per 1000 instructions committed. Replay trap overhead on the other 

hand is a measure of the total amount of work wasted (in cycles) normalized due to the 

occurrence of replay traps. 

 5.1.2 Increased Cache Misses

Executing memory instructions speculatively or in an order different from actual 

program order can negatively impact an application’s cache locality. For example, a load 

instruction issued out-of-order can evict data required by both older and future memory 

instructions that are waiting to be issued. When the older or future memory instruction later 

executes and misses in the data cache, energy is needlessly wasted in re-fetching and re-

filling the recently evicted data cache line. Even more, if the out-of-order issued load 

instruction is speculative, energy is unnecessarily dissipated by accessing the data cache and 

evicting a data cache line in the event of a cache miss. Thus, with increase in out-of-order 

capability, an increase in the frequency of conflict misses due to speculative or non-
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speculative memory instructions can result in unnecessary thrashing of the data cache 

resulting in the wastage of energy.

 5.2  Simulation Methodology

 5.2.1 Performance Simulator

For the purpose of our study, we use a validated execution-driven Alpha 21264 

simulator [22, 23]. The simulator has a detailed memory system with two-way set 

associative L1 instruction and data caches, 4-way set associative unified L2 cache, 8 

MSHRs per cache, and 128-entry fully associative TLBs. The simulator models a detailed 

SDRAM memory and bus model[19]. The simulator also models two prefetching schemes 

for the L2 data cache: a) sequential prefetching without stream buffers and b) stride 

prefetching with a 256 entry 2-way associative stride table and eight 8-entry stream buffers. 

With sequential prefetching, the processor requests the next four cache-lines on a cache 

miss. Like the Alpha 21264 processor, the simulator allows for aggressive out-of-order 

techniques such as load speculation; i.e., the processor issues load instructions even though 

prior store instructions aren’t resolved. Additionally, like the Alpha 21264 processor, the 

simulator detects memory ordering problems like those mentioned in Chapter 4.1 and 

handles them in the same way exceptions are handled—the pipeline is flushed and 

instructions are re-fetched starting from the faulting memory instruction. We remind the 

reader that these hardware events do not require handler support—they merely require re-

execution of instructions starting from the older memory instruction. 
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 5.2.2 Baseline Study Processor Configuration

For this baseline study, we vary the aggressiveness of the out-of-order core by changing 

the ROB size, issue widths, issue queue and load-store queue size, number of functional 

units, and the number of renaming registers as shown in Table 5.1. Additionally, we vary the 

data cache parameters as shown in Table 5.2, and assume a perfect instruction cache. In this 

study, we assume aggressive processor configurations in both prefetching and load-

speculation. The purpose of choosing aggressive mechanisms as part of our initial study is to 

measure the effects of increased out-of-order aggressive mechanisms on the memory 

subsystem. Secondly, our choices of aggressive mechanisms (prefetching and load-

speculation) are easy to build into existing systems without any additional hardware support. 

As prefetch mechanisms are becoming standard in modern high performance processors, the 

prefetch mechanism we chose to model is the fetch next sequential line mechanism that 

automatically prefetches the next four lines on a cache miss. In terms of load-speculation, 

i.e. the issuing of load instructions even if older store instructions are not resolved, the 

simulator models “blind speculation.” This means that the out-of-order issue logic assumes 

that a load instruction is independent of all older store instructions. In the event that a 

younger load instruction depends on an older store instruction, the processor replay traps the 

younger load instruction. Later in Chapter 8 we investigate the effects of increased out-of-

order aggressiveness with stride prefetching and load speculation using predictive 

mechanisms (store sets) to track the dependencies between younger load instructions and 

older store instructions.

To measure the impact of out-of-order execution, we define three issue logic 

configurations: ALU-in/MEM-in, ALU-out/MEM-in, and ALU-out/MEM-out as described 
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in Table 5.3. The cores for these three different configurations are identical and only differ in 

their respective issue logics. In the ALU-in/MEM-in configuration, the core issues 

instructions only when the instruction reaches the head of the reorder buffer (ROB). By 

definition of a ROB this enforces in-order execution. The configuration does allow for 

**INT ALU/INT MULT/FP ALU/FP MULT

Table 5.1: Processor Parameters

Configuration 
Name

ROB 
Size

Issue Width
INT/FP

IssueQ 
Size

INT/FP

# 
Functional 

Units**
LQ/SQ 

Size

 
Renaming 
Registers
INT/FP

Alpha 21264 x 1 80 4/2 20/15 4/4/1/1 32/32 41/41

Alpha 21264 x 2 128 4/2 40/30 8/8/2/2 64/64 82/82

Alpha 21264 x 4 256 4/2 80/60 16/16/4/4 128/128 164/164

Alpha 21264 x 8 512 4/2 160/120 32/32/8/8 256/256 328/328

Table 5.2:  Cache Configurations

 L1 Size L1 Latency L1 Line Size L2 Size L2 Latency L2 Line Size

16 KB 2 32 Bytes 512 KB 8 64 Bytes

32 KB 2 32 Bytes 1 MB 12 64 Bytes

64 KB 3 64 Bytes 2 MB 15 64 Bytes

Table 5.3: Issue Logic Configurations

Configuration Name Configuration Description

ALU-in / MEM-in Instructions are issued only when they reach the head of the reorder buffer 
(ROB). Speculation is enabled. By definition of a ROB this enforces in-order 
issue.

ALU-out / MEM-in ALU operations are issued out-of-order. Memory operations are issued from the 
issue queues in program order. 

ALU-out / MEM-out ALU and memory operations are issued out-of-order with speculation enabled.

Table 5.4: Benchmarks

SPEC
SUITE

art swim mcf parser perlbmk

twolf vortex vpr
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speculative execution but by definition mandates that both ALU and memory operations be 

issued in strict program order. The ALU-out/MEM-in configuration allows the out-of-order 

issue of ALU operations but mandates issuing of memory instructions from the load and 

store queues in strict program order. The ALU-out/MEM-out configuration allows the issue 

of both ALU and memory operations out-of-order, which is representative of current 

hardware.

 5.2.3 Benchmarks

For our preliminary baseline study, we use a subset of SPEC2000 integer and floating 

point [29] benchmarks as shown in Table 5.4. Each benchmark was allowed to warm up and 

perform its initialization routines before statistics and data were gathered. The SPEC 

benchmarks were acquired from the SimpleScalar developers [71] and were warmed up by 

fast-forwarding the first 250 million instructions and then data was gathered over the next 

500 million instructions. The benchmarks all operate on their reference input sets.

 5.3  Effects of Increased Out-of-Order 

Aggressiveness

 5.3.1 Replay Traps

To illustrate the effects of increased out-of-order aggressiveness on replay traps, Figure 

5.1 shows the replay trap frequency and the replay trap overhead averaged for the different 
46



benchmarks. In both graphs, the x-axis represents the four different reorder buffer sizes and 

the y-axis represents the trap frequency and trap overhead. For each reorder buffer size we 

present three bar graphs representing the three different issue-logic configurations. The first 

bar graph represents the ALU-in/MEM-in configuration, the next bar represents the ALU-

out/MEM-in configuration, and finally the last bar represents the ALU-out/MEM-out 

configuration. 

The graphs first of all show that even though the ALU-in/MEM-in configuration issues 

memory instructions in program order, the processor can still suffer from replay traps. This 

is because some replay traps (such as the wrong-size and load-miss load replay trap) can 

occur even though memory instructions are issued in program order. The figure also 

illustrates that as the CPU gets more aggressive (increasing reorder buffer sizes), it exposes 

traps as an important source of overhead. This is due to the mechanisms of handling traps— 

i.e. flushing the pipeline and restarting from the faulting memory instruction. Larger reorder 

buffer sizes allow for a processor to exploit ILP by executing instructions deep into an 

application’s instruction stream; the overheads of flushing and re-fetching an entire window 

Figure 5.1:  Reorder Traps.   (a) Trap Rate— Average Number of Instructions Executed Between Traps 
(b) Trap Overhead—Total Amount of Execution Lost Due to Traps Trends show that increase in out-of-order 
aggressiveness by increasing reorder buffer sizes increases the trap rate and trap overhead. For an ALU-
out/MEM-out core, the figure illustrates that trap overhead and trap rate can be reduced by more than 50% if 
the core is forced to issue memory instructions in order.
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of instructions can become expensive due to the amount of work that needs to be redone. For 

example, if a trap occurs on a system with a 512-entry reorder buffer, and if at the time of the 

trap the reorder buffer is full, then it takes a minimum of 128 cycles on a 4-way processor to 

restore the state of the reorder buffer to what it was before the trap. Furthermore, this latency 

is usually higher due to functional unit and cache access/miss latency. The bottom line: it is 

imperative that the frequency of traps be low on systems with larger instruction windows. 

Contrary to the desire for less frequent replay traps, by moving from an in-order, ALU-

in/MEM-in, core to an aggressive out-of-order core, ALU-out/MEM-out (black bars), we 

note a factor of 8-9 increase in trap rate, causing an application to waste on average 15-30% 

of its total execution time redoing work already done before. We observe that by restricting 

the out-of-order core to issue memory instructions in-order and executing ALU instructions 

out-of-order (ALU-out/MEM-in), the overhead of redoing work already done before can be 

reduced by more than 50%. However, this comes at the penalty of not exploiting ILP among 

memory instructions. 

The mere difference between the ALU-out/MEM-in and ALU-out/MEM-out 

configuration shows that the reordering of memory instructions, due to speculative 

execution, causes significant overhead in the system. This suggests the need for modern out-

of-order processors to throttle the degree by which they issue memory instructions out-of-

order rather than issuing memory instructions all out-of-order or all in-order. If during a 

certain window of execution the processor notes frequent reorder traps, it should have a 

mechanism to ease back and restrict the reordering of memory instructions completely or 

partially. 
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 5.3.2 Cache Performance

To measure the cache performance of the memory subsystem, we measure the total 

number of cache misses in the level one and level two data cache. Note that a cache miss is 

defined as miss in the cache as well as a miss in the MSHRs. Figure 5.2 illustrates the 16KB, 

32KB, and 64KB L1 and L2 cache misses normalized to the ALU-in/MEM-in 

configuration. The data is averaged across all benchmarks used in this study. The graphs 

display the different reorder buffer sizes on the x-axis and the percent change in cache 

misses with respect to the ALU-in/MEM-in configuration on the y-axis. For each reorder 

Figure 5.2:  Effects of OoO on Cache Performance.   The figures shows the increase in the L1 and 
L2 cache misses for the ALU-out/MEM-in and ALU-out/MEM-out configurations normalized to the ALU-
in/MEM-in configuration. The graphs show that out-of-order execution of both memory and ALU operations 
can hurt cache performance by up to 40% in the L1 cache and 20% in the L2 cache. Additionally, we observe 
that restricting the memory operations to be issued in-order eliminates more than 50% of the cache misses.

16 KB L1
ROB 80 ROB 128 ROB 256 ROB 512

0

10

20

30

40

50

ROB 80 ROB 128 ROB 256 ROB 512
0

10

20

30

40

50

ROB 80 ROB 128 ROB 256 ROB 512
0

10

20

30

40

50

ROB 80 ROB 128 ROB 256 ROB 512
0

5

10

15

20

ROB 80 ROB 128 ROB 256 ROB 512
0

5

10

15

20

ROB 80 ROB 128 ROB 256 ROB 512
0

5

10

15

20

32 KB L1 64 KB L1

512 KB L2 1 MB L2 2 MB L2

(a) Effects of Increased Out-of-Order Capability on L1 Cache Misses

(a) Effects of Increased Out-of-Order Capability on L2 Cache Misses

ALU-out/MEM-in

ALU-out/MEM-out
Pe

rc
en

t C
ha

ng
e

Pe
rc

en
t C

ha
ng

e

49



buffer size, the percent change for the ALU-out/MEM-in configuration is represented by the 

first bar and the ALU-out/MEM-out by the second bar. 

From the figure we observe that applications can observe a degradation in cache 

performance due to the out-of-order issue of instructions. On average we observe a 40% 

increase in the total number of cache misses with an ALU-out/MEM-out configuration, with 

some individual benchmarks showing miss rate increases by as much as 20% when 

compared to a total in-order system. For these applications we also observe that the worst of 

the performance degradation is due to the reordering of memory instructions. This 

observation is based on the fact that moving from an ALU-out/MEM-in system to an ALU-

out/MEM-out configuration causes an increase in the total number of cache misses when 

compared to ALU-in/MEM-in by a factor of 2 to 3. Thus, for these applications we observe 

that an increase in the reordering of memory instructions and speculation causes significant 

performance degradation in the memory subsystem.

Similarly, Figure 5.2(b) illustrates the 512KB, 1MB, and 2MB L2 cache misses 

normalized to the ALU-in/MEM-in configuration. From the figure we observe an increase 

in the total number of L2 cache misses by 2% in the 512KB L2 cache, 7% in the 1MB L2 

cache, and 15% in the 2MB L2 caches. On a per-benchmark basis we observe increase in 

cache misses by as much as 20% in art and 35% in twolf. In the case of the L2 caches, we 

observe that restricting the processor to issue memory instructions in-order reduces the total 

number of L2 cache misses by a factor of 10 or more. Since the difference between the 

ALU-out/MEM-in and ALU-out/MEM-out configurations is a higher degree of speculation 

and the out-of-order issue of memory instructions, the increase in the number of cache 

misses can be associated with the reordering of memory instructions that are speculatively 
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executed. Even though speculative execution of memory instructions is classified as yet 

another type of data-prefetching [47, 49], speculative memory accesses can evict data 

required by younger or older non-speculative memory accesses.

From the figure, we also observe that the performance degradation in the caches increase 

with larger cache sizes. For example, when compared to an in-order system, we observe on 

average a 20%, 30% and 40% cache performance degradation in the 16KB, 32KB, and 

64KB cache. Similarly, we observe on average a 2%, 7%, and 15% cache performance 

degradation in the 512KB, 1MB, and 2MB L2 cache respectively. This can be explained by 

the fact that larger data caches allow for better speculation than smaller data caches due to 

the high hit-rates in large data caches. With larger data caches, an out-of-order system has 

more opportunity to progress deep into an application’s instruction stream while with 

smaller data cache the processor can spend most of the time stalling for data from lower 

levels of memory to arrive.

To understand the effects of increased out-of-order aggressiveness on cache 

performance, we now plot in Figure 5.3 the increase in the number of cache misses in the 

64KB L1 and 2MB L2 caches on a per-benchmark basis. For each benchmark we present 

Figure 5.3:  Effects of OoO on Cache Misses.   Increasing the out-of-order capability of a processor 
can cause (a) increase in L1 cache misses (b) increase in L2 cache misses.
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the increase in the number of cache misses normalized to a processor with an 80-entry 

reorder buffer. The first bar represents the increase with respect to a 128-entry ROB, the 

second bar represents the increase with respect to a 256-entry ROB, and the last bar 

represents the increase with respect to a 512-entry ROB.

Based on the figure, we see that increasing the reorder buffer size from 80 to 512 

negatively impacts application cache locality by increasing the total number of cache misses 

by 5–20% in the L1 cache and by 5-35% in the L2 cache. Based on this data we conclude 

that eliminating sources of stalls by increasing the out-of-order capability causes additional 

overhead in the memory subsystem. We observe that the very mechanisms commonly used 

to tolerate long latencies associated with memory can themselves cause degradation in the 

memory subsystem. Such degradation not only leads to a performance degradation but also 

dissipates energy in doing unnecessary work. Thus, based on this data, we conclude that it is 

imperative that the negative effects in the memory subsystem be reduced with increasing 

out-of-order aggressiveness. 

 5.4  Summary

This chapter reveals two important findings. First, increasing out-of-order capability 

conflicts with the memory ordering requirements of a processor causing the processor to 

incur frequent memory replay traps. Second, the speculative, out-of-order issue of memory 

instructions tends to increase the number of cache misses in the L1 and L2 caches. By using 

different issue-logic configurations, in the presence of branch prediction, we identify that 

both these negative effects are due to the reordering of memory instructions. By issuing 
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memory instructions in-order we observe that the negative effects in the memory subsystem 

are drastically reduced. Since recent research and industry trends are focusing on increasing 

out-of-order capability, it is imperative that the frequency of traps and the number of cache 

misses be reduced so that future high performance processors can realize the full potential of 

more complex out-of-order designs. Thus, these findings motivate the understanding of how 

memory instructions are reordered in aggressive out-of-order core systems. The next chapter 

introduces a metric to measure the reordering of memory instructions.
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CHAPTER 6 Disorder of Memory 
Instructions
The transition from an ALU-out/MEM-in configuration to an ALU-out/MEM-out 

configuration increased the trap frequency by more than a factor of 2 and the total number of 

cache misses by more than 25%. Since the difference between the two processor 

configuration merely involves controlling the order in which memory instructions are 

issued, it is highly likely that the degradation in performance is primarily due to the 

reordering of memory instructions. Thus, we propose a methodology to measure and 

understand the degree by which memory instructions are issued out-of-order. In doing so, 

we can quantitatively understand the reasons for the degradation in the memory subsystem. 

We define a new metric called disorder to measure the degree by which dynamic instruction 

schedulers issue memory instructions.

 6.1  Defining Disorder

When executing instructions on an in-order processor, every instruction executes in 

strict program order. With out-of-order execution however, instructions are executed in an 

order different from fetch/program order. We define disorder as the degree by which an 

instruction is issued out-of-order. We classify disorder into two types: global disorder and 

local disorder. Disorder can be measured for any type of instruction. Since the performance 
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degradation in the memory subsystem is primarily due to the reordering of memory 

instructions, we only measure the disorder of memory instructions. 

To measure disorder, at the time of instruction decode, each memory instruction is 

assigned a sequential ID. The first memory reference is assigned sequential ID one, the next 

memory instruction is assigned sequential ID two, and so on. In the event of pipeline 

flushes, the sequential ID is restored to the last successfully retired memory instruction ID + 

1. Disorder is computed ONLY after a memory instruction has all of its dependences 

resolved and is about to be issued to the cache memory system. Thus, disorder for a load 

instruction is measured when it is issued to the caches to read data, and the disorder for a 

store is computed when it is issued to the cache system at commit time.

 6.1.1 Global Disorder

Global disorder is the degree by which a memory instruction is issued out-of-order with 

respect to actual program order. Global disorder is computed by calculating the difference 

between the current memory instruction and the memory instruction that should have been 

issued had the processor executed the program in sequential order. Figure 6.1 illustrates an 

example on computing global disorder. The figure shows in cycle 101 memory instructions 

1 and 3 issued to the cache memory system. If the system were in-order, then memory 

instructions 1 and 2 would have been issued instead. Thus, the global disorder of memory 

instruction 1 is 0 (1-1) and the global disorder of memory instruction 3 is 1 (3-2). A global 

disorder value of zero indicates that the memory instruction was issued on time, a disorder 

value less than zero indicates that the memory instruction was delayed, and a disorder value 
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greater than zero indicates that the memory instruction was issued earlier than it would have 

were it an in-order processor. 

We point out here that out-of-order execution is not the only source of global disorder. 

Modern microprocessors issue load and store instructions to the cache system out of 

program order with respect to each other. This is because loads access the cache when they 

reach the memory stage of the pipeline while store instructions access the data cache at 

commit time. Since load instructions merely read the contents of the data cache, they can 

access the cache as soon as their effective address is available. A store on the other hand 

must wait until commit time before writing to the data cache; this is to ensure that only non-

speculative writes are sent to the data cache. Thus, for a particular program, if a store is 

immediately followed by a load, the newer load instruction will access the data cache before 

the store instruction, hence inherently causing disorder in the system.
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Figure 6.1:  Global Disorder.   he degree to which a memory instruction is issued out-of-order with 
respect to actual program order. The disorder is computed by computing the difference between a memory 
instruction issued and the memory instruction that should have been issued.
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 6.1.2 Local Disorder

Local disorder is the degree by which a memory instruction is issued out-of-order with 

respect to recently issued memory instructions. The intuition behind global disorder was to 

measure disorder from a “program order” perspective. The intuition behind local disorder is 

to measure how a memory instruction issues with respect to other memory instructions 

issued in the previous cycle and younger memory instructions issued in the same cycle. 

Figure 6.2 provides an example on computing local disorder of memory instruction number 

10. Memory instruction 10 is issued by the processor in cycle 126 along with memory 

instruction number 2. In the recent past the processor issued memory instructions in cycle 

105, and the memory instructions issued were 5, 7, and 8. To compute local disorder, we 

first compute the distance in instruction stream (in terms of memory instructions) between 

Figure 6.2:  Local Disorder.   The degree by which an instruction is issued out-of-order as compared to 
other instructions issued in the same and previous cycle. The disorder is computed by extracting the minimum 
difference between a memory instruction and other memory instructions issued in the same and previous 
cycle.
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memory instruction 10 and memory instructions 2, 5, 7, and 8 respectively (done by 

subtracting from 10 each of the other memory instruction IDs). Furthermore, to be 

consistent with the definition of global disorder, we subtract 1 for uniformity between the 

two disorder metrics. This was done because global disorder defined in-order issue as a 

value of zero, thus to ensure that back to back issue of 7, 8 in-order provides local disorder 

of zero, we needed to subtract 1. Thus, the local disorder of 8 would be 8 - 7 - 1 = 0. 

After computing individual disorders of memory instruction 10 with other memory 

instruction issued in the previous cycle and younger memory instructions in the same cycle, 

local disorder is defined to be the minimum of the magnitudes of all the computed disorders. 

Since the disorder values of memory instruction 10 with memory instructions 2, 5, 7, and 8 

are 7, 4, 2, and 1 respectively, the minimum of all computed disorders is 1, thus making the 

local disorder of memory instruction 10 to be 1. Similarly, for memory instruction 9, the 

instructions issued in the same cycle is 11 and in the previous cycle is 4. Since memory 

instruction 11 is older than memory instruction 9, it is omitted. Thus, the local disorder of 

memory instruction 9 is only computed with 4, hence the local disorder of memory 

instruction 9 is 9-4-1 which equals 4.

Local disorder is a measure of how a processor issues memory instructions compared to 

other memory instructions, i.e. if a processor issues memory instruction M in a given cycle, 

how far apart in the instruction stream are other memory instructions that are issued in the 

current and following cycle. It is used to determine whether memory instructions closer to or 

further from M issue in the same or next cycle. We chose the minimum value of all 

computed disorders and not anything else (e.g. standard deviation, or average of all 

computed disorders) because we wanted to be able to capture how well a processor issues 
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memory instructions in-order. By keeping track of the minimum of the computed disorder 

values, the minimum value provides intuition of how far apart in the instruction stream other 

memory instructions reside. By doing so, we are able to quantitatively capture in-order 

streams of issue embedded in the out-of-order stream. A local disorder of 0 indicates that 

there exists one memory instruction in the same or previous cycle that immediately precedes 

the relevant memory instruction. Local disorders other than 0 indicate the degree by which 

memory instructions are separated from others in the sequential instruction stream. 

 6.1.3 Why Measure Disorder?

Having introduced global and local disorder, we now briefly discuss what we expect to 

learn by experimentally measuring the degree of disorder. From the previous chapter, we 

concluded that the negative effects in the memory subsystem are primarily due to the 

reordering of memory instructions. By defining a methodology to measure both global and 

local disorder, our first attempt at understanding the source of the problem is to measure the 

total amount of disorder prevalent in the system. Indeed, the out-of-order issue logic will 

reorder the issue of memory instructions; we are looking to quantitatively measure by how 

much memory instructions are reordered. This initial study will provide us with an intuition 

on the amount of disorder that can prove to be harmful in the memory system. Once we have 

identified the upper limit on the amount of disorder that proves to be harmful, our next 

approach would be to fine tune the amount of disorder by mechanisms that restrict the 

reordering of memory instructions. In doing so, we can then determine the threshold below 

which disorder is useful and beyond which disorder is harmful. 
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Before we propose mechanisms to reduce disorder, based on the above motivation, we 

now describe our experimental approach on measuring the amount of disorder present in 

aggressive out-of-order systems

 6.2  Experimental Measurements of Disorder

 6.2.1 Disorder Study Simulator Parameters

To measure disorder we vary the aggressiveness of the out-of-order core by scaling both 

the issue widths as well as the reorder buffer sizes. Using the same simulator parameters as 

described in the previous chapter, we vary out-of-order aggressiveness by scaling issue 

widths and reorder buffer sizes. We scale the issue widths from a 2-way issue system to an 

aggressive 32-way issue system, and the reorder buffer sizes from 80 entries to 512 entries 

as shown in Table 6.1. We varied both issue widths and reorder buffer sizes so as to 

quantitatively measure the effects of both issue-widths and re-order buffer sizes on the re-

ordering of memory instructions. In doing so, we hope to determine the parameter that 

contributes to the maximum disorder. 

To measure the impact of out-of-order execution on disorder we re-use the three issue- 

logic configurations ALU-in/MEM-in, ALU-out/MEM-in, and ALU-out/MEM-out as 

described in Table 6.2. We remind the reader that the cores for these three different 

configurations are identical and only differ in their respective issue logic. The ALU-

in/MEM-in configuration mandates that both ALU and memory operations be issued in 
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strict program order. The ALU-out/MEM-in configuration allows the issue of ALU 

operations out-of-order but mandates issuing of memory instructions in strict program order. 

The ALU-out/MEM-out configuration allows the issue of both ALU and memory 

operations out-of-order. Additionally, to determine the primary source of disorder, in 

addition to these issue logic configurations we also model the ALU-out/MEM-out/PerfL2 

and ALU-out/MEM-out/PerfL1 processor configurations. The ALU-out/MEM-out/perfL2 

and ALU-out/MEM-out/perfL1 configurations are identical to the ALU-out/MEM-out 

Table 6.1: Simulator Configurations

Configuration Name
ROB 
Size

Issue Width
INT/FP

IssueQ 
Size

INT/FP

# 
Functional 

Units**
LQ/SQ 

Size

# 
Renaming 
Registers
INT/FP

a) Alpha 21264 - 2way 80 2/1 Way 20/15 4/4/1/1 32/32 41/41

b) Alpha 21264 x 1 80 4/2 Way 20/15 4/4/1/1 32/32 41/41

c) 80 8/4 Way 20/15 4/4/1/1 32/32 41/41

d) 80 16/8 Way 20/15 4/4/1/1 32/32 41/41

e) 80 32/16 Way 20/15 4/4/1/1 32/32 41/41

f) Alpha 21264 x 2 128 8/4 Way 40/30 8/8/2/2 64/64 82/82

g) 128 16/8 Way 40/30 8/8/2/2 64/64 82/82

h) 128 32/16 Way 40/30 8/8/2/2 64/64 82/82

i) Alpha 21264 x 4 256 16/8 Way 80/60 16/16/4/4 128/128 164/164

j) 256 32/16 Way 80/60 16/16/4/4 128/128 164/164

k) Alpha 21264 x 8 512 32/16 Way 160/120 32/32/8/8 256/256 328/328
**INT ALU/INT MULT/FP ALU/FP MULT

Table 6.2: Issue Logic Configurations

Configuration Name Configuration Description

ALU-in / MEM-in Instructions are issued only when they reach the head of the reorder buffer 
(ROB). Speculation is enabled. By definition of a ROB this enforces in-order 
issue.

ALU-out / MEM-in ALU operations are issued out-of-order. Memory operations are issued from the 
issue queues in program order. 

ALU-out / MEM-out ALU and memory operations are issued out-of-order with speculation enabled.

ALU-out/MEM-out/PerfL2 ALU and memory operations are issued out-of-order, L2 cache is perfect.

ALU-out/MEM-out/PerfL1 ALU and memory operations are issued out-of-order, L1 cache is perfect.
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configuration and only differ in the configuration of the caches. The ALU-out/MEM-

out/PerfL2 models a perfect L2 data cache while the ALU-out/MEM-out/PerfL1 models a 

perfect L1 cache. To clarify, a perfect cache is identified as a cache configuration where all 

accesses to the cache provide a 100% hit-rate.

Based on the above experimental methodology, we now present data on the existence 

and measurement of global and local disorder in a system.

 6.2.2 Global Disorder Results

Disorder, as mentioned earlier, is the degree by which a memory instruction is issued out 

of program order. To verify the existence of global disorder, Figure 6.3 illustrates the global 

disorder measurements for the application SWIM on ten different configurations of the 

processor. Additionally, Figure 6.4 illustrates pictorially the trends in global disorder with 

different reorder buffer sizes. The x-axis represents the disorder of a memory instruction, 

and the y-axis represents the percent of overall memory instructions exhibiting the disorder. 

Figure 6.3 and 6.4 show that out-of-order execution can create significant disorder with 

respect to actual program order. We observe that roughly half of the memory instructions are 

issued in actual program order on an Alpha 21264 with 4/2-way issue and an 80-entry 

reorder buffer. The remaining instructions either have a negative disorder (issued late due to 

dependencies or missing in the data cache) or a positive disorder (issued early because older 

memory instructions could not be issued). The wide variation in disorder is most likely due 

to memory references missing in the data caches or functional unit latency. The low 

disorders primarily due to misses in the L1 cache (L2 hit latency 15 cycles) or functional 
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unit latency while the extreme disorders are due to misses in the L2 cache, i.e. due to DRAM 

latency. We observe that increasing aggressiveness of the out-of-order core (increasing issue 

widths going across and increasing ROB sizes going down) allows for increased 

speculation; thus we observe that the number of memory instructions issued on time (global 

Figure 6.3:  Illustration of Global Disorder.   The figure shows the global disorder for the application 
SWIM for increasing issue widths (left to right horizontally) and increasing ROB sizes (top to down 
vertically). The x-axis represents the disorder, and the y-axis represents the percent of instructions with the 
disorder. One obvious feature from the graph is that memory instructions are significantly reordered, and as 
out-of-order aggressiveness increases fewer and fewer memory instructions are issued in program order. 
This re-ordering may have side affects in terms of cache performance as well as memory re-ordering issues.

Figure 6.4:  Global Disorder of Memory Instructions.   The figure illustrates how memory 
instructions are reordered in an out-of-order issue machine: they are either issued late, on time, or early. 
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disorder of zero) decreasing. For a 32/16-way processor with a 512-entry ROB, the number 

of memory instructions issued on time is about 10% (3-4% for swim). The graphs also show 

that increasing window sizes correlate with increasing global disorder (10-25%), where as 

increasing issue widths change global disorder by only a few percent (2-4%). This can be 

explained by the fact that with increasing issue widths and constant reorder buffer sizes, the 

window of instructions available to the processor stays constant. If the processor is unable to 

issue from the window, then, irrespective of the issue width, instructions cannot be issued 

until older instructions retire, eventually causing the reorder buffer to become full and the 

processor to stall. On the other hand, increasing the window size provides the processor a 

much larger choice of instructions to issue from, hence causing an increase in total global 

disorder.

To better understand disorder, in Figure 6.5 we compare the average global disorders for 

our five different processor configurations of the Alpha 21264: ALU-in/MEM-in, ALU-

out/MEM-in, ALU-out/MEM-out, ALU-out/MEM-out/perfL2, and finally ALU-out/MEM-

out/perfL1. For all the benchmarks, the figure illustrates increased out-of-order capability on 

the x-axis and the average global disorder on the y-axis. 

Global disorder is a measure of the degree by which memory instructions are reordered 

when compared to in-order execution. In other words, the re-ordered listing of memory 

instructions executed is merely a permutation of the ordered sequential listing of the same 

execution stream. Mathematically, the average global disorder must be zero because the sum 

of the differences of the re-ordered and in-order list is zero. Graphs in Figure 6.5, however, 

do not reflect this. We wish to emphasize that this is not a mathematical or simulation 

inaccuracy. There are two reasons behind this. First, the fact that existing systems have a 
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built-in mechanism that causes loads to be issued earlier than stores. As mentioned earlier, 

this is because loads and stores access the memory subsystem in different pipeline stages 

after being issued. Thus, this can cause the average global disorder to deviate from the 

intuitive average value of zero. Second, the non-zero global disorder is also because the 

Figure 6.5:  Average Global Disorder.   The figures show the average global disorder across different 
issue-logic and memory system configurations. A general trend shows an increase in disorder with increase 
in out-of-order aggressiveness.
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calculation of average global disorder includes the global disorders of ALL memory 

operations executed; those that were committed as well as those that were executed 

speculatively. In doing so, we are able to capture the overall behavior of memory 

instructions executed in the system.

For all benchmarks, the graphs in Figure 6.5 show an average global disorder that is 

negative. Recalling our definition of global disorder, a disorder value less than zero implies 

that memory instructions are being issued later than they should have, i.e. newer memory 

instructions are issued before older memory instructions are issued to the memory system. 

This implies that on average, the processor usually delays the issue of a memory instruction 

to the memory system most likely due to dependencies on older long latency operations such 

as functional unit latency or cache miss latency. 

Additionally, from the graphs in Figure 6.5, we note disorder values other than zero for 

processor configurations that issue memory operations in strict program order (ALU-

in/MEM-in and ALU-out/MEM-in). Based on our definition of MEM-in, this should not be 

the case because every memory operation is issued in strict program order. The disorder 

values for these systems is not an error, but are due to the design of modern high 

performance microprocessors. Such processors wait till the commit stage of the pipeline for 

store instructions to access the data cache. This is because store instructions can only write 

data to the cache if they are non-speculative. Thus, even though store instructions are issued 

in-order, the store waits in the reorder buffer until commit time. Meanwhile, other load 

instructions are issued and access the memory system before the store does, thus causing 

global disorder. With in-order execution, if a bulk of the instructions awaiting commit in the 

reorder buffer are store instructions, the disorder can become more negative. This is because 
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newer load instructions access the data cache before the older store instructions. For exactly 

this scenario, in the configurations where memory instructions are issued in-order, we 

observe an increase in disorder (a decrease in the value of global disorder) with increasing 

issue widths and reorder buffer sizes. However, we observe that such disorder is negligible 

(on average it is less than 0.3), (see Figure 6.5(a)), implying that stores do not wait too long 

in the ROB to be committed.

Increasing the issue widths and reorder buffer sizes introduced some disorder into an 

already in-order system. By allowing just the ALU instructions to be issued out-of-order and 

still maintain the in-order issue of memory instructions, i.e. the ALU-out/MEM-in 

configuration we observe a factor of 2-4 increase in total global disorder when increasing 

issue widths and reorder buffer sizes. This can be explained by the fact that the ALU-

out/MEM-in configuration exploits ILP amongst ALU instructions by speculatively 

executing independent ALU instructions. Since memory instructions are scheduled in order 

from the issue queue, the issue logic configuration can issue load and store instructions 

simultaneously or in clusters. Since load and store instructions access the data cache in 

different stages of the pipeline, the issuing of multiple loads and stores in clusters can 

increase the global disorder. For a system that issues memory instructions in order, we 

observe that average global disorder is essentially a measure of the average number of loads 

issued to the memory subsystem prior to a store instruction is committed. 

We now analyze the effects of allowing both ALU and memory instructions to issue out-

of-order. Figure 6.5(c) shows the impact on global disorder for the ALU-out/MEM-out 

processor configuration. Comparing Figure 6.5(b) and Figure 6.5(c), we observe a factor of 

2-16 increase in global disorder by allowing memory instructions to be issued out-of-order. 
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On average, we observe that the issue of memory instructions to the memory subsystem can 

be delayed by as much as 8 or more memory instructions. Furthermore, Figure 6.5(c) shows 

that increasing out-of-order aggressiveness by means of increasing issue widths and reorder 

buffer sizes (moving from left to right on the x-axis) can increase the global disorder by a 

factor of 2 or more. Systems with a 32-way 512-entry reorder buffer have on average a 

global disorder value that is 6-8 orders of magnitude higher than a system with a 2-way 80-

entry reorder buffer. Thus, from this data we quantitatively observe that the more the out-of-

order aggressiveness, the more the global disorder in the system.

In general, we observe that the trends of increasing out-of-order aggressiveness causes 

the average global disorder to become more negative. The fact that the average global 

disorder value becomes more negative implies that memory instructions are being reordered 

and that they are being issued late to the memory subsystem. Since the average disorder is 

negative and not positive, what this also means is that the processor is speculatively 

executing memory instructions. Thus, we point out that average global disorder is not only a 

measure of the degree by which memory instructions are issued out-of-order, but it is also a 

measure of speculative execution of memory instructions. In general, if the processor is 

doing a lot of speculation—which is the case with large window sizes and large issue 

widths—the more negative the global disorder.

We know that an application’s global disorder is primarily due to misses in the caches or 

functional unit latency. To determine the source of global disorder, we also present the 

average global disorder for the ALU-out/MEM-out/perfL1 and ALU-out/MEM-out/perfL2 

configurations. Graphs in Figure 6.5(d) and Figure 6.5(e) show that a perfect L2 cache has 

little or no effect on the value of average global disorder. However, we observe that with a 
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perfect L1 cache system, global disorder values are significantly less than the ALU-

out/MEM-out configuration and are more comparable to the ALU-out/MEM-in 

configuration. Based on these findings, we observe that global disorder is primarily due to 

latencies associated with older memory instructions that miss in the L1 cache. This implies 

that global disorder is due to memory instructions that are indirectly waiting on the result of 

a memory instruction that misses in the primary data cache. In the meantime, younger 

memory instructions independent of the missing memory instruction issue to the memory 

system speculatively, hence creating global disorder.

Furthermore, we also note that even with a perfect L1 cache configuration, the average 

global disorder is still a factor of 1-8 worse than that of a core that issues all operations in 

order (ALU-in/MEM-in) or one that issues just memory operations in order (ALU-

out/MEM-in). From this behavior, we gather further insight in that global disorder is not 

only due to cache misses but also due to latencies associated with functional units and 

producer consumer relationships.

From the data presented in this section, we have quantitatively illustrated the existence 

of global disorder in a system with out-of-order capability. We showed that increasing out-

of-order capability by increasing issue-widths and reorder buffer sizes causes an increase in 

global disorder in the system. In general, we observe that global disorder is negative, 

illustrating that memory instructions are usually issued late to the memory subsystem. We 

also quantified that maximal re-ordering of memory instructions is primarily due to misses 

in the L1 data cache. We will illustrate later in this dissertation that it is due to the reordering 

of memory instructions that we observe the unexpected side effects in the memory 

subsystem. 
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 6.2.3 Local Disorder Results

Global disorder illustrated the degree of out-of-order execution of memory instructions 

Figure 6.6:  Illustration of Local Disorder.   The figure shows the local disorder for the application 
SWIM for increasing issue widths (left to right horizontally) and increasing ROB sizes (top to down 
vertically). We see that the bulk of the memory instructions issued to the memory system have a local 
disorder of zero signifying that instructions issued are usually in close proximity to each other, i.e. they are 
from within the same basic block or section of the code.

Figure 6.7:  Local Disorder of Memory Instructions.   The figure illustrates the behavior of local 
disorder as the reorder buffer size is increased. In general, memory instructions have small local disorder 
with increased reorder buffer sizes.
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from a program-order perspective. We now analyze an applications local disorder, i.e. the 

disorder with respect to other memory operations issued in the same and previous cycle. 

Based on data from the earlier section, we observed significant global disorder—about 30-

50% of memory instructions are issued on time. Figure 6.6 shows the local disorder for the 

memory application SWIM and is representative of other benchmarks. Based on the data, 

we observe that applications have extremely low local disorder—on average 70-80% of 

memory instructions have local disorder 0. This implies that memory instructions issued to 

the memory subsystem are usually in close proximity to each other i.e. memory instructions 

issued are usually from the same basic block or region of code. Since in most cases local 

disorder is 0, this implies that when memory instructions are issued to the memory 

subsystem they are usually issued back to back in-order. For example, for two memory 

instructions X, and X+1, if X is issued in a particular cycle, with high probability X+1 will 

also be issued either in the same cycle or the following cycle. Based on our data, we find that 

in general 70-80% of memory instructions follow this trend of issue. This implies that when 

executing instructions out-of-order, memory instructions that are close to each other are 

more likely to be scheduled together i.e. there seems to exist a “spatial locality” with respect 

to issuing memory instructions. From this behavior, we can gather that when a processor 

speculates in a particular region of code, it spends time issuing memory instructions in the 

same region of code rather than moving back and forth between older and younger memory 

instructions. Thus, we can conclude that when a processor speculates, it continues to 

speculate and delays the issue of older memory instructions to the memory subsystem. 

A closer look at the data shows that in general increasing ROB sizes causes the local 

disorder to decrease, i.e. a system with an 80-entry ROB has 68% of its memory instructions 
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issued with local disorder 0, while in a 512-entry ROB we observe as much as 85% of its 

memory instructions issue with local disorder 0. This can be explained by two reasons. First, 

increasing ROB sizes causes the processor to speculate deep into an applications instruction 

stream causing memory instructions from the same program region to be issued back to 

back. Secondly, as we will show later, the in-order stream of issue in the out-of-order stream 

is also due to one of the negative effects of increasing out-of-order capability. We observe 

that increasing ROB sizes cause a significant increase in replay traps causing memory 

instructions to be re-issued and re-executed in the correct order. The fact that memory 

instructions are re-issued and re-executed causes them to be issued closer to each other, 

hence causing the local disorder to be low.

To better understand the trends of local disorder, Figure 6.8 presents the average local 

disorder for the five different processor configurations. As expected, we observe that the 

average local disorder for memory instructions issued in-order for the ALU-in/MEM-in and 

ALU-out/MEM-in configurations is relatively close to zero. Furthermore, of all the 

benchmarks, we observe that the average local disorder of art, parser, and twolf increases 

with increase in out-of-order aggressiveness. This implies that the memory instructions of 

these benchmarks have small latencies either due to functional units or misses in the L1 data 

cache. Thus, during these small latencies the out-of-order issue logic speculates for a little 

while and then goes back to executing older memory instructions. Thus, the increase in local 

disorder with increase in out-of-order aggressiveness can be explained by the out-of-order 

core going back and forth in the issue of memory instructions between different basic blocks 

or regions of code. 
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Based on our introduction of the local disorder metric, we observe that in general 

memory instructions are issued in close proximity to each other. We conclude that when a 

processor issues instructions in a particular region of code, it usually finds memory 

Figure 6.8:  Average Local Disorder.   The figures show the average local disorder across different 
issue-logic and memory system configurations. The general trend shows an increase in disorder with 
increase in out-of-order aggressiveness.
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instructions that are ready to be issued in the same region, hence causing low local disorder. 

This local disorder results illustrate that when a processor speculates, it continues to 

speculate in the same region of code. 

 6.3  Summary

This chapter introduced the disorder metric to measure the degree by which memory 

instructions are issued out-of-order. We defined two types of disorders: global disorder and 

local disorder. Global disorder is the degree by which memory instructions are issued out-

of-order when compared to program order. Local disorder on the other hand measures the 

degree by which memory instructions issue out-of-order when compared to other memory 

instructions. From our study on measuring disorder, we observe that applications exhibit 

large global disorder and small local disorder. We showed that global disorder is primarily 

due to increasing reorder buffer sizes with only 10% of memory instructions issued to the 

memory subsystem on time. We showed that large global disorder and small disorder are a 

direct result of an out-of-order core processor speculatively issuing instructions. 
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CHAPTER 7 Relating Disorder To 
Negative Effects
Having defined disorder and illustrated its existence, we now present the correlation 

between disorder and the negative effects in the memory subsystem.

 7.1   Replay Traps

Figure 7.1 compares the trap rate for the different issue logic and cache configurations. 

Trap rate is defined as the total number of replay traps that are handled per 1000 instructions 

committed. The figure illustrates on the x-axis the aggressive out-of-order configurations 

with respect to issue widths and reorder buffer sizes, and on the y-axis the number of traps 

that are handled per 1000 instructions committed. In general, for the different configurations 

of the issue logic and cache, we observe that increasing out-of-order capability (going right 

on the x-axis) causes the trap rate to increase. We observe that the more aggressive the use of 

out-of-order mechanisms, the more frequently the occurrence of traps. This implies that 

increasing out-of-order aggressiveness comes at the cost of an increase in the frequency of 

replay traps. In general, we observe that while replay traps occurred infrequently with lesser 

aggressive out-of-order mechanisms, increasing out-of-order efficiency by increasing issue-

widths and reorder buffer sizes causes a degradation in performance in the memory 

subsystem. 
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From the graphs, we observe that while the occurrence of replay traps was rare when 

issuing memory instructions in-order, the out-of-order issue of memory instructions causes 

as much as a factor of 7 increase in the frequency of replay traps. Of the different 

Figure 7.1:  Memory Reorder Trap Rate.   The figure compares the number of memory re-ordering 
traps that occur with increased out-of-order aggressiveness for three different system cache configurations. 
The graphs show that increasing aggressiveness increases the trap rates by more than 50%. We also note 
that a good deal of reorder traps occur due to misses in the primary L1 data cache.
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benchmarks, we observe that art, twolf, and vpr suffer heavily from replay traps. Further 

investigation revealed that these benchmarks suffered extensively from store-replay traps, 

load-load replay traps, and load-miss load replay traps. We observed that these benchmarks 

have extensive load-store communication, thus with the use of blind load speculation these 

benchmarks hurt from frequent store replay traps. Another observation about most of the 

benchmarks is that they tend to reuse the same memory addresses frequently. This usually 

happens when a compiler is required to spill data to memory due to limited architectural 

registers and then at a later point in time re-load the data from memory. With larger re-order 

buffers, the spilling and re-loading of data to and from the same memory address is exposed 

more frequently than smaller reorder buffers as the processor is able to observe a larger view 

of the application instruction stream. With hardware mechanisms to maintain memory 

consistency by ensuring reads to the same memory address occur in program order, such 

replay traps increase with the increase in re-order buffer sizes. Thus, based on these reasons, 

we observe that increasing out-of-order capability by increasing reorder buffer sizes 

increases the frequency of the replay traps. 

From the figure, we observe that the trends for all five configurations closely match the 

trends for the average global disorder as depicted in Figure 6.5. Like global disorder, the 

frequency of traps increases with increased out-of-order capability. Like global disorder, we 

observe that reducing L1 data cache misses reduces the number of replay traps by a factor of 

2 or more. We observe that as the memory system becomes more “perfect”, the trap rate 

decreases, implying that the bulk of the replay traps occur primarily due to misses in the L1 

data cache. This behavior is consistent with the behavior of global disorder. To correlate the 

two metrics, we now present a scatter plot in Figure 7.2 with the average global disorder on 
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the x-axis and the trap rate on the y-axis. In the graph, the circles represent the behavior of 

all the applications studied in this chapter, and the diamonds connected via a dashed line is 

the overall average of global disorder and trap rate. From the figure, it can be observed that 

different benchmarks have varying trap frequencies with similar global disorders. However, 

in general, there is a direct correlation between the two: the more the global disorder, i.e. the 

later memory instructions are issued, the larger the trap rate. From the graph, if we only 

consider the average values (i.e. diamonds connected via dashed lines), we observe that the 

increase in trap rate correlates directly with increased global disorder. From the right going 

left, the five points are the 2-way 80, 80-entry ROB, 128-entry ROB, 256-entry ROB, and 

finally a 512-entry ROB. As before, we observe that issue-widths have no impact on global 

disorder with increased out-of-order aggressiveness. From the figure we observe that the 

smaller the global disorder the lesser the frequency of traps, thus we can conclude that it is 

imperative that global disorder be reduced with increasing out-of-order aggressiveness. We 

notice that there is not too much of difference between different global disorders and trap 
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Figure 7.2:  Trap Rate Vs. Global Disorder.   This figure correlates the trap rate with average global 
disorder. We observe a direct correlation between the increase in global disorder and the increase in the total 
number of replay traps.
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frequency, i.e. the average graph stays relatively flat. However, we expect this to change 

when we move from blind speculation methodology of issuing loads to controlled 

speculation. This will be evident in the next chapter of this dissertation.

 7.2  L1 Cache Performance

We now investigate the effects of out-of-order execution on the performance of the L1 

data cache. To measure performance of the data cache we measure the total number of cache 

misses an application encounters while changing the processor configuration from the ALU-

in/MEM-in configuration to the ALU-out/MEM-in and ALU-out/MEM-out configurations. 

We remind the reader that a cache miss is one that not only misses in the data cache but also 

in the outstanding MSHRs. 

Figure 7.3 plots the total number of cache misses encountered in the ALU-out/MEM-in 

and ALU-out/MEM-out configurations when normalized to the ALU-in/MEM-in 

configuration for three different L1 data cache sizes: 16K, 32K, and 64K. The x-axis 

represents the different benchmarks; for each benchmark we present two line graphs for the 

11 different configurations of increased out-of-order aggressiveness. The y-axis presents the 

percent increase in the number of cache misses when compared to the ALU-in/MEM-in 

configuration. The squares (dark) connected via lines represent the percent increase in cache 

misses of the ALU-out/MEM-out configuration as compared to ALU-in/MEM-in 

configuration, and the circles (light) connected via lines represents the percent increase in 

cache misses of the ALU-out/MEM-in configuration when compared to the ALU-in/MEM-
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Figure 7.3:  L1 Cache Misses: In-Order Vs. OoO.   The figure shows the L1 cache miss rates as a 
percent for the different benchmarks for a system with purely in-order execution, a system that executes 
memory instructions in order and ALU out-of-order, and a system that allows execution out-of-order.

Figure 7.4:  Effects of OoO on L1 Cache Misses.   (a) 16K L1 (b) 32K L1, (c) 64K L1
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in configuration. The benchmarks on the x-axis are separated via dashed lines to distinguish 

between the different data sets for each benchmark. Note that the graphs for the different 

cache sizes are not on the same scale.

From the graphs we observe that increasing out-of-order aggressiveness can increase the 

total number of application cache misses. For the three different cache sizes, we observe that 

for each benchmark, the general trend with increasing out-of-order aggressiveness (going 

right) in general increases the total number of cache misses when compared to a lesser 

aggressive out-of-order mechanism. When comparing the ALU-out/MEM-in issue-logic 

configuration to an in-order system, we observe an average of 5% increase in the total 

number of cache misses, with some benchmarks being affected by as much as 75% with a 

64K L1 data cache. Similarly, with the ALU-out/MEM-out configuration, we observe a 

much larger degradation in cache performance. In general, we observe a factor of 2-3 

degradation in cache performance when compared to the ALU-out/MEM-in configuration. 

When comparing the ALU-out/MEM-in configuration, an all out-of-order issue machine 

causes a 25-250% increase in cache misses when compared to the ALU-in/MEM-in 

configuration. These results thus show that increasing out-of-order aggressiveness comes at 

the cost of a degradation in the memory subsystem.

We observe two interesting behaviors from the graphs. First, increasing out-of-order 

aggressiveness in some cases can be beneficial. For example, for the benchmark perlbmk, 

when compared to the ALU-in/MEM-in configuration, the number of cache misses 

decrease. This can be explained by data prefetching due to the out-of-order issued memory 

instructions or due to wrong-path memory instructions prefetching data into the data caches. 

The second interesting behavior that we observe with increased out-of-order aggressiveness 
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is that increasing the cache size from 16K to 64K worsens the degradation in performance. 

At first this is non-intuitive as one would expect that a larger data cache should reduce the 

degradation in the memory subsystem. However, this can be explained by the fact that larger 

data caches provide a better hit rate allowing a processor to execute further into an 

application’s instruction stream. On the other hand, with smaller data caches frequent cache 

misses can cause an application to eventually stall. The fact that larger data caches allow for 

an application to do more speculation implies that the processor will execute more memory 

instructions out-of-order speculatively. This can cause an increase in the number of cache 

misses either due to constructive or destructive interference. Thus, even though the number 

of cache misses with a larger data cache is smaller than that of a smaller data cache, the 

overall degradation in the memory subsystem is larger due to the out-of-order issue of 

memory instructions. 

To further understand the impact of increased out-of-order capability, Figures 7.4 (a,b,c) 

illustrates the ALU-out/MEM-out behavior of the cache misses for the three different cache 

sizes. For each benchmark, the percent increase in the total number of cache misses is 

normalized to a processor configuration of the Alpha 21264 with a 2-way issue logic (see 

Table 6.1). From the figure, we observe that across all benchmarks and cache sizes, 

increasing issue-widths and reorder buffer sizes can increase the number of cache misses by 

25-30%. For most of the benchmarks, we observe that maximum degradation in cache 

performance occurs when reorder buffer sizes are increased, hence the step shaped pattern of 

the bar graphs. The data presented here clearly shows that continuing to increase out-of-

order aggressiveness leads to a degradation in performance in the first level data cache.
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Furthermore, we also observe that the trends in the degradation of cache performance 

closely match the trends in global disorder: increasing out-of-order capability also increased 

global disorder. To illustrate this explicitly Figure 7.5 presents a scatter plot of average 

global disorder on the x-axis and the increase in L1 cache misses when compared to a 2-way 

ROB-80 configuration on the y-axis. As before, we present the behavior of the different 

benchmarks (circles) as well as the average across all the benchmarks (diamonds connected 

via dashed line). Again, we observe that the degradation in performance varies across 

different benchmarks for the same average global disorder. However, we observe there is a 

direct correlation between average global disorder and the degradation in L1 cache 

performance. Based on the scatter plot, workloads with the largest global disorder have the 

worst degradation in cache performance, for example, a greater than 20% degradation in 

cache performance is experienced when memory instructions are delayed by more than 4 or 

5 memory instructions. Thus, we again conclude that increased global disorder correlates 

with the degradation in the performance of the L1 cache and we believe that mechanisms to 
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Figure 7.5:  L1 Cache Misses Vs. Global Disorder.   This figure correlates the increase in the 
number of L1 cache misses with average global disorder. We observe a direct correlation between the 
increase in global disorder and the increase in the number of L1 cache misses.
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reduce the reordering of memory instructions must be employed so as to reduce this source 

of performance loss. 

 7.3  L2 Cache Performance

Like the L1 data cache, Figure 7.6 plots the total number of cache misses encountered in 

the ALU-out/MEM-in and ALU-out/MEM-out configurations when normalized to the 

ALU-in/MEM-in configuration for three different L2 data cache sizes: 512KB, 1MB, and 

2MB. The x-axis represents the different benchmarks with the 11 different configurations of 

increased out-of-order aggressiveness and the ALU-out/MEM-in and ALU-out/MEM-out 

configurations. As before, the y-axis presents the percent increase in the number of cache 

misses when compared to the ALU-in/MEM-in configuration. Again the connected squares 

represent the ALU-out/MEM-out configuration and the connected circles represent the 

ALU-out/MEM-in configuration. Note that the graphs for the different cache sizes are not 

on the same scale.

The benchmarks show a varying behavior as a result of out-of-order execution of 

instructions. Depending on the memory access pattern of an application, out-of-order 

execution can either benefit, hurt, or bring no change to cache performance. We observe 

workloads can benefit by 2-10% with the out-of-order issue of instructions while others can 

experience up to a 30% degradation in cache performance. The decrease in the number of 

cache misses can be explained by useful prefetching performed by either the speculative 

issue of memory instructions or the sequential prefetch engine. On the other hand, the 
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Figure 7.6:  L2 Cache Misses: In-Order Vs. OoO.   The figure shows the L2 cache miss rates as a 
percent for the different benchmarks for a system with purely in-order execution, a system that executes 
memory instructions in order and ALU out-of-order, and a system that allows execution out-of-order.

Figure 7.7:  Effects of OoO on L2 Cache Misses.   (a) 512K L2 (b) 1MB L2 (c) 2MB L2
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increase in the number of cache misses can be explained by an increase in the number of 

conflict misses due to constructive or destructive interference between older and younger 

memory instructions.

Unlike the L1 data cache, with increasing L2 data cache sizes, only three benchmarks 

art, swim, and twolf suffer 50%, 15%, and 180% degradation when compared to an in-order 

configuration. Except for these benchmarks, such behavior implies that the L2 cache is 

resistant to the out-of-order issue of instructions while keeping out-of-order aggressiveness 

constant. However, from Figure 7.7, we observe that increasing out-of-order aggressiveness 

for the ALU-out/MEM-out configuration in most cases results in a degradation in L2 cache 

performance by 25% (twolf showing 180%) with a 2MB L2 cache. Of the different 

benchmarks, art, parser, and vortex display erratic behavior with increasing out-of-order 

aggressiveness. Attempts to investigate the reasoning behind such erratic behavior led us to 

arrive at the fact that such behavior is due to the randomness in which instructions become 

ready due to the different latencies on producers and the order in which the out-of-order 

issue logic selects the ready instructions. The different issue-widths and reorder buffer sizes 

add to the randomness thus causing erratic behavior in some of the benchmarks. However, 

such erratic behavior provides more reason to illustrate that the order in which memory 

instructions are issued to the memory subsystem can change the performance of the memory 

subsystem. 

To observe if there is a correlation between global disorder and the increase in L2 cache 

misses, we present in Figure 7.8 a scatter plot of the average global disorder on the x-axis 

and the increase in L2 cache misses on the y-axis. As before we plot the different 

benchmarks and the average across all benchmarks (diamonds connected via dashed-line). 
86



Again, we observe that the degradation in cache performance varies across different 

benchmarks with similar average global disorders. However, we observe that a general trend 

shows that increase in the number of L2 cache misses correlates well with an increase in 

global disorder. Based on the scatter plot, we observe that the “erratic behavior” discussed 

earlier was essentially varying global disorder across systems with different out-of-order 

aggressiveness. Thus, we again conclude that the increase in L2 cache misses correlates well 

with global disorder. Thus, it is imperative that mechanisms to reduce the global disorder be 

adopted with increasing out-of-order aggressiveness.
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Figure 7.8:  L2 Cache Misses Vs. Global Disorder.   This figure correlates the increase in the 
number of L2 cache misses with average global disorder. We observe a direct correlation between the 
increase in global disorder and the increase in the number of L2 cache misses.
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 7.4  Performance of Aggressive Out-of-Order 

Mechanisms

Increasing the aggressiveness of the out-of-order core increased the disorder, the total 

number of cache misses, and the number of replay traps. We know that these trends in 

normal cases significantly hurt performance. The question however is: Does the increase in 

out-of-order execution overcome these hurdles to provide net performance improvements?

Figure 7.9 shows the performance graphs for the five different processor configurations. 

with the different benchmarks and out-of-order configurations on the x-axis and cycles per 

instruction (CPI) on the y-axis. CPI is classified into stall cycles where memory instructions 

could not retire due to memory latency (black), stall cycles where instructions could not 

retire because they either had not been issued or had not yet finished execution due to ALU 

latency (medium grey), and overhead cycles due to recovering from branch mispredicts and 

replay traps (light grey). The ALU and memory components of CPI are computed by 

measuring the number of cycles the retire stage stalls because it could not retire an ALU or 

memory instruction. The overhead portion was computed by taking the difference between 

the total number of cycles and the sum of the ALU and memory instruction stall cycles in 

the retire stage. 

From the figure, we observe that moving from the ALU-in/MEM-in core to the ALU-

out/MEM-in core yields performance improvements by 33% or more. These improvements 
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Figure 7.9:  Performance.   The figure compares the CPI with increased aggressiveness of the out-of-
order core. We see two important yet independent scenarios. Firstly, increasing the aggressiveness of the 
out-of-order cores significantly increases memory consistency traps, thus rather than improving performance, 
it hurts performance. Secondly, even if we assume zero cycles memory consistency trap recovery, we see 
that improvements in CPI are minimal. 
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are largely due to the reduction in stalls while attempting to commit ALU instructions (ALU 

component of CPI). As expected, the memory component of CPI remains constant in both 

the systems as they both enforce the in-order issue of memory instructions. Even with 

improvements in performance, we observe that the effects of the increase in the replay traps 

is evident by the 3-20% increase in the overhead component of CPI. Thus, even though out-

of-order execution of ALU instructions improves overall performance, the degradation due 

to replay traps reduces maximal possible performance improvement.

Comparing the ALU-out/MEM-in and ALU-out/MEM-out core, a cursory glance of the 

performance graphs show no remarkable speedups. The performance of these two systems 

are about the same, within 2-10% (with the exception of art). Moving towards a system that 

executes both ALU instructions and memory instructions out-of-program order reduces the 

time spent in waiting for memory operations to finish execution, reduces the time spent 

waiting for ALU operations to finish execution, however increases the overhead by 200% or 

more (comparing the white bars of the ALU-out/MEM-in and ALU-out/MEM-out 

configurations). Thus, all potential gains due to the out-of-order issue of memory 

instructions are lost in the handling of replay traps.

One would expect that with increased out-of-order aggressiveness comes decreased CPI, 

however excluding the 2-way issue system, for the remaining configurations, the graphs 

show performance to be relatively flat. If we overlook the overheads, and assume that the 

processor would be able to fix the problem with zero overhead, increasing the issue width 

from 4 to 32 way and the ROB size from 80-512 produces no remarkable improvement in 

performance. In fact, there are scenarios where it actually hurts performance. We see that 

increasing the out-of-order aggressiveness is limited by the rate at which memory 
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instructions retire. Such behavior is perhaps indicative of the fact that commercial out-of-

order core processors have stayed stagnant at a maximum 4-way issue core.

If we consider the ALU-out/MEM-out configuration alone, the graphs reveal the 

tremendous overhead of replay traps with increased issue widths and reorder buffer sizes. 

The increased out-of-order capability causes memory instructions to be significantly 

reordered and conflicts with the processor’s memory ordering model. Our studies show that 

a processor can spend as much as 25-40% of total execution time handling replay traps. 

These results provide further motivation to reduce the frequency of replay traps and reduce 

wasted work and hopefully gain the performance lost.

 7.5  Summary

In this chapter we have correlated increased out-of-order aggressiveness with the 

negative effects in the memory subsystem. Furthermore, we have also correlated global 

disorder with an increase in the number of cache misses and replay trap overhead. We 

showed that aggressive out-of-order mechanisms have the largest amount of global disorder 

and the most negative effects in the memory subsystem. We conclude that mechanisms to 

reduce global disorder must be employed in out-of-order aggressive systems to reduce the 

negative overheads in the memory subsystem.
91



CHAPTER 8 Reducing Reordering of 
Memory Instructions
We have shown that the increase in the number of replay traps and cache misses can be 

directly correlated with the reordering of memory instructions. A direct approach to 

reduce the negative effects would be to reduce the reordering of memory instructions. 

Besides the approach of issuing memory instruction in program order, an alternative 

approach to reduce the reordering of memory instructions would be to reduce the total 

number of memory instructions visible to the select and issue logic. This can either be 

accomplished by trivial mechanisms such as reducing the size of the reorder buffer itself 

or alternatively reducing the size of the load-store queue. Reducing these hardware data 

structures effectively reduces the total number of memory instructions in-flight, thus indi-

rectly reducing the total number of memory instructions visible to the select and issue 

logic. However, reducing the reorder buffer size reduces the possibility of extracting max-

imum possible ILP. Alternatively, reducing the size of the load-store queue is a possible 

option, however, efficient use of all entries in a large reorder buffer directly depends on 

the size of the load/store queue. This is because the load/store queue not only supports 

simultaneous searches to find memory dependencies to adhere to memory consistency 

models, but it also maintains all in-flight memory instructions in program order. In the 

event that the load/store queue becomes full and a new load/store instruction is fetched, 

the fetch stage stalls until a memory instruction commits and frees space in the load/store 

queue. Since memory instructions constitute on average one third of a program’s total 
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instructions, attempting to use a load/store queue that is any less than one third the size of 

a reorder buffer can under-utilize the reorder buffer.

To determine how much out-of-order processor performance is dependent on the out-of-

order issue of memory instructions, we investigate a mechanism that uses large reorder 

buffers and load/store queues yet provides the benefits of smaller load/store queues. Rather 

than physically reducing the size of the load/store queue, we throttle the degree by which 

memory instructions are issued out-of-order via a windowing mechanism. 

 8.1  Windowing Memory Instructions

We observe that simply restricting memory instructions to be issued in program order 

reduces both the negative effects of out-of-order execution. However, we also observe that 

issuing memory instructions in program order hurts ILP among memory instructions. 

Thus, rather than issuing all memory instructions in order, we investigate the degree to 

which out-of-order processor performance is dependent on the out-of-order issue of mem-

ory instructions. To study this, we restrict the reordering of memory instructions based on 

a window of instructions by using the network communication concept of windowing 

[69]. By using a sliding window protocol, we restrict the scheduler to issue only those 

memory instructions that lie within the current window of memory instructions. The size 

of the sliding window can either be determined statically or dynamically. Such a mecha-

nism can reduce the disorder of memory instructions, hence reduce the negative effects of 

out-of-order execution of memory instructions.
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Windowing is a commonly used technique for implementing flow control while 

transferring data over communication networks. With typical network communication, a 

sender normally transmits data packets, and the receiver acknowledges (acks) them. The 

window size determines the maximum number of data packets that can be sent without 

waiting for an ack. Once an ack is received for the oldest packet in the sender’s queue, the 

window is extended by sliding the window down to allow the transmission of additional 

packets in the queue.

 8.1.1 Virtual Load/Store Queues (VLSQs)

We attempt to reduce the reordering of memory instructions by utilizing the property of 

windowing. We use the windowing concept to reduce the reordering of memory instructions 

by introducing a virtual window into the existing load/store queue. The size of the window 

determines the number of memory instructions available to the select and issue logic. The 

virtual window essentially acts as a virtual load/store queue (VLSQ). The virtual load/store 

queue is maintained using two pointers into the existing load/store queue: virtual head and 

virtual tail; virtual head always points to the oldest non-issued memory instruction and 

virtual tail points to the end of the virtual load/store queue. The difference between virtual 

head and virtual tail is Wsize, the size of the virtual load/store queue. During instruction 

scheduling, the select and issue logic must ensure that only memory instructions residing 

within the virtual load/store queue are selected to be issued. The virtual head and virtual tail 

pointers are changed when the memory instruction at the virtual head is issued. 
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Figure 8.1(a) illustrates a traditional load/store queue with head pointer at index 0 and 

the tail pointer at index N. The shaded load/store queue entries indicate instructions that 

have already been issued but waiting to retire. With a traditional load/store queue, the issue 

logic can schedule any memory instruction (between 2 and N) whose operands are ready. 

Figure 3(b) illustrates an example of a VLSQ with Wsize = 4. The virtual head pointer 

points to the first non-issued memory instruction, i.e. memory instruction 2. With a 4-entry 

VLSQ, the issue logic can only schedule memory instructions 2, 3, 4, or 5. If none of the 

instructions in the VLSQ have their operands ready, the issue logic stalls the issue of 

memory operations. When memory instruction two is issued, the virtual window slides 

down until the virtual head pointer reaches the first non-issued memory instruction. Thus, 

by controlling the size of the VLSQ one can control the degree by which memory 

instructions are reordered. The larger the size of the VLSQ the more the reordering of 

memory instructions. The smaller the size of the VLSQ the less the reordering. For example, 

Figure 8.1:  Windowing Memory Instructions:   A mechanism to reduce the reordering of memory 
instructions (a) The figure illustrates the traditional implementation of a load-store queue. (b) Using 
windowing, only memory instructions that lie within the virtual head and virtual tail pointers are issued to 
execute. Other memory instructions must wait till these lie within the virtual window before they can be issued 
to the memory system.
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by setting the VLSQ to be of size 1, the processor would issue memory instructions in 

program order, by setting the VLSQ to the size of the LSQ the processor would exploit 

maximum memory level ILP. Since we vary the size of the LSQ as part of our study, we 

define a VLSQ that is the size of the LSQ as a VLSQ that is Infinite in size.

The benefits of using a VLSQ are two-fold. First, a VLSQ reduces the reordering of 

memory instructions without affecting instruction fetch bandwidth or the execution of ALU 

instructions. By controlling the size of the VLSQ, windowing can control the reordering of 

memory instructions. For example, an infinite VLSQ allows for maximum possible 

reordering and a VLSQ of size 1 forces memory instructions to be issued in program 

order. Within these extremes, varying the size of the VLSQ serves as the throttle to control 

the degree by which memory instructions are reordered. 

The second advantage of using VLSQs is that they can reduce the total number of 

memory instructions executed speculatively. The benefits of reducing speculative memory 

instructions are: (a) fewer memory disambiguation related load/store queue searches and (b) 

fewer number of cache accesses and misses. A reduction in the number of speculative 

memory instructions issued and a reduction in replay traps caused due to the reordering of 

memory instructions can lead to significant power and energy savings in the data caches and 

the fetch, map, and execution hardware.

However, a downside associated with using VLSQs is a reduction in the amount of ILP 

available for memory instructions. Applications that are heavily dependent on the quick 

execution of memory instructions can suffer from a degradation in performance due to the 

delayed issue of memory instructions to the memory system. Such memory-instruction 

dependent (or memory intensive) applications may require a larger VLSQ than those 
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applications that are memory-instruction independent, i.e. those that are compute intensive. 

Characterizing application behavior with different window sizes statically can help 

determine an optimal virtual load/store queue size.

This dissertation explores the windowing concept by statically varying the size of the 

VLSQ. We profile applications with different virtual window sizes to determine an optimal 

VLSQ size. However, a dynamic approach of varying the size of the VLSQ based on 

application run time events such as replay traps and cache misses is also possible for 

extending the work presented in this dissertation.

 8.1.2 Controlling Global Disorder with VLSQs

Using VLSQs to throttle the degree by which memory instructions are issued out-of-

order reduces the global disorder in the system. To illustrate the impact of windowing on the 

issuing of memory instructions and global disorder, Figure 8.2 provides an example of 

memory instructions issued before and after windowing. For each memory instruction we 

provide the absolute disorder before and after the use of VLSQs. For the purpose of this 

example we assume a VLSQ of size 4. Based on the initial example, if we assume that the 

delay in the issue of older memory instructions are either due to functional unit latency or 

due to compulsory cache misses, then the time at which memory instructions can be 

scheduled with VLSQs will follow the same behavior as in the initial case. For example, 

with an infinite VLSQ, memory instruction ID 2 was issued in cycle 126. With our 

assumptions, with a VLSQ of size 4, memory instruction ID 2 would only issue in cycle 

126. Such behavior is also similar for memory instructions 4, and 6. Thus, with a VLSQ of 
97



size 4, the order in which memory instructions are throttled based on these limitations, 

hence, the possible ordering of memory instructions as listed on a cycle-by-cycle based in 

the figure. Thus, we observe that by the use of VLSQs, in this example, the global disorder 

of the instructions is reduced drastically. Such reduction in global disorder, as we show 

later in this chapter, reduces the number of replay traps and cache misses, however it affects 

performance due to the reduction in memory level parallelism.

From the earlier example, we can see that VLSQs aid in the reduction of global disorder. 

Based on this, the use of VLSQs can provide us with intuition on the total amount of global 

disorder that is beneficial in a system. By sizing the VLSQs so that they guarantee a 

Figure 8.2:  Windowing Vs. Absolute Disorder.   The figure illustrates the effect of windowing on 
absolute disorder. 
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particular maximum global disorder, we can use VLSQs to identify the maximum useful 

disorder in a system.

 8.2  Windowing Study Simulator Parameters

For this study, we use a validated execution driven Alpha 21264 simulator: sim-alpha [8, 

15]. The simulator models a 64KB two-way set associative L1 instruction cache with a 

single cycle hit latency, 64KB two-way set associative L1 data cache with a 3-cycle hit 

latency and a 2MB (unified) four-way set associative L2 cache with a 15-cycle hit latency. 

The caches have a 64-byte line size and also 8 MSHRs per cache. The simulator also models 

128-entry fully associative instruction and data TLBs. The simulator also models a 4,096-

entry branch target buffer (BTB), and a 2,048-line hybrid gshare-bimodal branch predictor. 

The simulator uses as its standard back-end DRAM system a detailed DRAM memory and 

bus model that was developed at the University of Maryland, College Park [6, 7]. For this 

study we use its 1.3 GB/s DDR SDRAM model. 

Unlike previous initial studies in this dissertation, the remainder of the work in this 

dissertation uses a stride prefetcher (which is now common in modern microprocessors) 

with a 256-entry 2-way set associative stride table and eight 8-entry stream buffers. The 

simulator allows for aggressive out-of-order techniques such as load speculation and also 

detects replay traps mentioned in Section 4.1 of this dissertation. Furthermore, the simulator 

also maintains a 1024-entry store-wait data structure to avoid recurring store-replay traps. If 

a load instruction causes a store-load replay trap, the load’s PC is stored in the store-wait 

table. At fetch time, if the processor finds the PC of the load in the store-wait table, the load 
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instruction is not issued until all prior store address are resolved. Note that this mechanism is 

similar to the store-set mechanism of handling memory dependencies [15]. Store sets keep 

track of loads and their exact store dependencies, thus they reduce false memory 

dependencies. Our store-wait structure on the other hand places the load on the youngest 

oldest store rather than the exact store as in the case of store sets. The mechanism used is 

more conservative than the store set implementation, but far superior than the blind 

speculation mechanism used in prior studies of this dissertation.

Furthermore, unlike previous studies where we varied both reorder buffer sizes and issue 

widths, we now fix the issue widths to 8-way. To increase ILP we vary out-of-order 

capability by changing the ROB size, issue and load/store queue size, as shown in Table 8.1. 

As our benchmarks we use the entire SPEC 2000 suite [10]. The benchmarks were warmed 

up by fast-forwarding the first 2 billion instructions. Data was gathered over the next 250 

million instructions. The benchmarks operate on their reference data input sets. 

**INT ALU/INT MULT/FP ALU/FP MULT

Table 8.1: Processor Parameters

Configuration 
Name

ROB 
Size

Issue Width
INT/FP

IssueQ 
Size

INT/FP

# 
Functional 

Units**
LQ/SQ 

Size

 
Renaming 
Registers
INT/FP

Alpha 21264 x 1 80 4/2 20/15 4/4/1/1 32/32 41/41

Alpha 21264 x 2 128 4/2 40/30 8/8/2/2 64/64 82/82

Alpha 21264 x 4 256 4/2 80/60 16/16/4/4 128/128 164/164

Alpha 21264 x 8 512 4/2 160/120 32/32/8/8 256/256 328/328

Table 8.2:  Memory System Configuration

 L1 Size L1 Latency L1 Line Size L2 Size L2 Latency L2 Line Size

64 KB 3 64 Bytes 2 MB 15 64 Bytes
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To study the dependence processor performance on the out-of-order issue of memory 

instructions, we statically vary the size of the VLSQ. We choose the size of the VLSQs such 

that they provide maximum global disorders of 0, ±2, ±4, ±8, ±16, and ±32. For example, a 

VLSQ of size of 1 implies in-order issue of memory instructions and ensures a maximum 

global disorder of 0. A VLSQ of size infinity (labeled Inf) is a traditional processor with a 

VLSQ size equal to the appropriate physical load/store queue size as shown in Table 8.1. 

 8.3  Effects of Increased Out-of-Order Capability

With realistic issue widths, stride prefetching techniques, and controlled load speculation, 

Figure 8.3 illustrates the pitfalls in the memory subsystem as they scale with increased 

reorder buffer sizes. For the SPEC2000 suite of benchmarks, we show the replay trap fre-

quency (in terms of traps/1000 instructions), the replay trap overhead, the increase in the 

Benchmark
DL1 MSHR 
Misses/1000

L2 MSHR 
Misses/1000

Benchmark
DL1 MSHR 
Misses/1000

L2 MSHR 
Misses/1000

bzip2 5.927 0.734 ammp 11.267 45.287

crafty 4.207 0.111 applu 17.838 21.699

eon 0.429 0.008 apsi 24.662 9.378

gap 1.019 0.955 art 117.284 22.955

gcc 26.488 1.351 equake 0.024 0.030

gzip 2.999 0.324 fma3d 0.008 0.005

mcf 90.54 107.778 galgel 0.471 0.091

parser 8.411 2.205 lucas 21.637 27.893

perlbmk 0.718 0.983 mesa 1.082 0.685

twolf 19.425 0.120 mgrid 7.898 7.078

vortex 4.67 0.739 swim 20.567 22.979

vpr 17.989 0.313 wupwise 3.484 4.625

Table 8.3: Per Benchmark Cache Miss Statistics
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L1 cache misses and the increase in the L2 cache misses when compared to an 80-entry 

reorder buffer. By increasing the reorder buffer size from 80 to 512 entries, we observe a 

factor of 1-600 increase in the replay trap frequency correlating with an increase in trap 

overhead by as much as 50%. We also observe that increasing the reorder buffer size from 

80 to 512 entries also negatively impacts an application’s cache locality by increasing the 

total number of L1 cache misses by 5–40% and the number of L2 cache misses by 5-

120%. For each benchmark we also present the number of cache misses per thousand 

instructions for an 80-entry ROB in Table 8.3. To clarify, a “cache miss” is one that misses 

both in the data cache and the miss status holding registers (MSHRs) [37]. From Figure 

8.3, we observe that, while the negative effects of out-of-order execution existed for only a 

small fraction of the time with small reorder buffers, eliminating other sources of stalls by 

increasing the out-of-order capability exposes these negative effects to represent signifi-

cant overhead. Since recent research and industry trends are focusing on increasing out-of-

order capability [5, 7, 30, 31, 38, 51, 55, 63, 74], with the results from Figure 8.3 in mind, 

we believe it is imperative that the frequency of traps and the number of cache misses be 

reduced so that future high performance processors can realize the full potential of more 

complex out-of-order designs. With these results in mind, we now present the use of mem-

ory instruction windowing and its impact on replay traps, cache misses, performance and 

power consumption.
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 8.4  Windowing Results

 8.4.1 Replay traps

When the reorder buffer is increased from 80 to 512 entries, less than one-third of the total 

number of memory instructions executed are issued in actual program order. In some 

benchmarks such as mgrid and swim, less than 10% are issued in actual program order. 

We observe that the rest of the memory instructions are either issued early or late due to 

functional unity latency, cache miss latency, or memory latency. This significant degree of 

reordering suggests that replay traps can (and we show that they do) become a tremendous 

source of performance and energy overhead with increasing out-of-order capability. To 

illustrate this, Figure 8.4 shows the total number of traps per 1000 instructions (trap fre-

quency) and the percent of total overhead due to replay traps. We remind the reader that 

replay trap overhead is tracked as the total amount of work wasted do to the occurrence of 

replay traps. The data is averaged for all benchmarks of the SPEC2000 suite. The x-axis 

shows the different Alpha configurations (Alpha-80, Alpha-128, Alpha-256 and Alpha-

512), and the different VLSQ sizes (Inf-1). We remind the reader that an “infinite” VLSQ 

is equivalent to the traditional implementation of a load/store queue.

In Figure 8.4(a), considering only the traditional implementation of a load/store queue, 

i.e. only the bars labeled Inf, we observe that replay traps become an important source of 

performance overhead and wastage of energy with increased out-of-order capability. 
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Increasing the ROB size from 80 to 512 entries decreases the frequency of replay traps on 

average by a factor of 3, meaning that increasing the out-of-order capability can cause an 

increase in trap frequency by 300%. However, as observed from Figure 8.3, we observe 

individual benchmarks that suffer from replay traps by more than a factor of 3, in some case 

as much as a factor of 50 or more. To provide understanding on the replay traps that are most 

common, Figure 8.4(b) provides the distribution of the occurrences of different replay traps 

as a percent averaged across all benchmarks. From the figure, we observe that, across all 

reorder buffer sizes the occurrence of different replay traps is roughly equally distributed. 

Thus, even though our benchmarks are single-threaded and do not require the memory 
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Figure 8.4:  Effect of VLSQs on Replay Traps.   The figure shows that VLSQs reduce (a) the frequency 
of traps by a factor of two to 30 and (b) the total execution time lost in traps by 10–45%.
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consistency replay traps, the equal distribution of these replay trap across all benchmarks 

implies that they are equally important when increasing out-of-order capability. 

As mentioned earlier in the dissertation, the mechanisms for handling replay traps 

requires the pipeline to be flushed and instructions to be re-fetched and re-executed from the 

replay trap causing instruction. It is intuitive that the overhead in performance and energy 

for flushing and re-fetching an entire window of instructions can become extremely high 

due to the amount of work that needs to be redone. Our studies show that, on average, 

increasing the out-of-order capability increases the total number of instructions flushed by a 

factor of two to 300. From Figure 4(c), we observe that the increase in trap frequency 

translates into on average 7–25% of total overhead due to replay traps. These results reveal 

that even though a processor can extract maximum possible ILP, too much out-of-order 

capability can cause the processor to spend an enormous amount of time (and energy) 

duplicating work that had already been done before. 

Clearly, we observe the necessity for reducing the degree by which memory instructions 

are issued out-of-order. With this in mind, Figure 4(a) also shows that the use of VLSQs can 

reduce the frequency of traps between instructions by a factor of two to 30. This correlates 

with a reduction in the total number of instructions flushed by 50–200% and a reduction in 

total execution time lost by 5–20% on average as shown in Figure 4(c). From the figure, we 

observe that maximum benefits come from smaller VLSQs. Since smaller VLSQs reduce 

the reordering of memory instructions, we observe a clear correlation between the 

reordering of memory instructions and the trap frequency and overhead. Thus, we can 

conclude that the use of VLSQs can reduce the frequency of replay traps and this can 
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translate into savings in energy that would otherwise be needlessly spent in re-fetching and 

re-executing instructions flushed.

To illustrate the behavior of windowing for the different benchmarks, Table 8.4

illustrates the behavior of each benchmark with windowing. For the different metrics of trap 

frequency, L1 accesses and misses, L2 misses, and performance, the table illustrates the 

windowing behavior of the benchmark with symbols such as “ ”, “ ”, “—”, and “U”. The 

“ ” symbol implies that the windowing causes the appropriate metric to increase with 

Benchmark
Trap 

Frequency
L1 Access 
Behavior

L1 Miss 
Behavior

L2 Miss 
Behavior

CPI Behavior

INTEGER BENCHMARKS

bzip2 — U

crafty U —

eon U

gap —

gcc

gzip

mcf

parser —

perlbmk U

twolf U U

vortex —

vpr U

FLOATING POINT BENCHMARKS

ammp — —

applu

apsi U U

art U

equake —

fma3d — — —

galgel — — — — —

lucas — —

mesa —

mgrid U

swim

wupwise U

LEGEND

Legend: —: No Change : Increase : Decrease U: Benefits with medium VLSQs 
but hurts with small VLSQs

Table 8.4: Per Benchmark Behavior of Windowing
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smaller virtual load/store queues, the “ ” symbol implies that windowing causes the 

appropriate metric to decrease with smaller virtual load/store queues, the “—” symbol 

implies that windowing causes the metric to have no change in behavior with smaller virtual 

load/store queues, and finally the “U” symbol means that windowing decreases the metric 

till some “medium” size of the virtual load/store queue beyond which windowing causes the 

metric to increase with smaller virtual load/store queues. Across all benchmarks, we observe 

that windowing causes the trap frequency to decrease. Only 7 of the benchmarks present no 

decrease in the frequency of traps from windowing. We observe that these benchmarks 

observed no benefit from windowing due to the fact that the bulk of the traps they 

experienced were those that occurred even with the in-order issue of instructions, i.e. the 

load-miss-load and wrong-size replay trap. Otherwise, for the remaining applications we 

observed reductions in trap frequency by factors of 2-600. Thus, we observe that reducing 

the reordering of memory instructions reduces the frequency of replay traps and the 

associated trap overhead.

 8.4.2 Cache behavior

Figure 8.5 shows the cache behavior in terms of change in L1 cache accesses, L1 cache 

misses, and L2 cache misses averaged over all benchmarks of the SPEC2000 suite. The 

data is graphed as the percent change in cache accesses or misses normalized to the Alpha-

80 configuration with an “infinite” VLSQ, i.e. each bar graph in the figure is normalized 

to the first configuration (Alpha-80-Inf). From the figure, considering only traditional 

load/store queues (first bar in each configuration), we observe that increasing the out-of-
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order capability can increase (on average) the total number of L1 cache accesses by up to 

28%, the total number of L1 cache misses by up to 12%, and the total number of L2 cache 

misses by up to 20%. Again, we observe a direct correlation between smaller VLSQ sizes 

and cache accesses and misses. We observe that smaller VLSQs can reduce the total num-

ber of cache accesses (on average) by 3–30% and the total number of cache misses by 5–

15%. These findings reveal that VLSQs can also aid in reducing the unnecessary wastage 

of energy in the data caches.

An important observation that can be made from the use of VLSQs is the large overhead 

of speculation. When comparing a VLSQ of size 1 with a VLSQ of size Inf, we observe that 

(a) Normalized L1 Cache Accesses
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Figure 8.5:  Effect of VLSQs on Cache Behavior.   VLSQs reduce (a) the number of L1 cache 
accesses by 5-60% and (b) the number of L1 cache misses by 5-15%. 
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speculation adds on average 5-30% extra cache accesses and about 5-10% additional cache 

misses in both the L1 and L2 data caches. Similarly, from Figure 8.4(b) we observe that 

speculation causes a 5-15% increase in overall trap overhead. From the figures we observe 

that for the different reorder buffer sizes, the overheads are larger in processors with larger 

reorder buffer sizes. With the large differences between the in-order and out-of-order issue 

of memory instructions, we observe that the windowing of memory instructions is another 

approach to reduce the amount of speculative waste that comes with larger reorder buffers. 

Such reduction in speculative waste is welcomed especially with the growing power 

envelopes of modern microprocessors.

As before, we refer the reader to Table 8.4 on the behavior of windowing on the L1 and 

L2 cache for the different benchmarks. Since windowing reduces the total amount of 

speculation in the system, we observe that all benchmarks observe a decrease in the total 

number of L1 cache accesses. When comparing the L1 and L2 cache misses, we observe 

that windowing behaves differently for different benchmarks. Some benchmarks have no 

effect on cache misses, for most of the benchmarks windowing reduces the total number of 

cache misses, and for a remaining few benchmarks, windowing causes an increase in the 

number of cache misses. A decrease in the number of cache misses is because reducing the 

reordering of memory instructions eliminates the number of conflict misses due to early 

execution and speculative execution. On the other hand, an increase in the number of cache 

misses can be explained by the fact that windowing lessens the benefits of speculative data 

prefetching.
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 8.4.3 Relating Global Disorder and Negative Effects

Figure 8.6 presents the relationship between the negative effects in the memory 

subsystem with average global disorder. As with all the metrics in this study, the average 

global disorder is averaged across all the benchmarks as well. The figure illustrates the 

average global disorder plotted against trap frequency, increase in L1 cache misses when 

compared to an infinite sized VLSQ with an 80-entry ROB, and the increase in L2 cache 

misses when compared to an infinite sized VLSQ with an 80-entry ROB. Each graph 

presents five line graphs. The dashed line compares global disorder and the different 

metrics with the increase in ROB sizes. The solid line graphs each represent average 

global disorders with windowing for the four different ROB sizes: 80, 128, 256, and 512. 

Based on the figures, we observe that global disorder correlates well with the trap 

frequency and the increase in the number of L1 cache misses. From the figure, we observe 

that a decrease in the global disorder decreases the total amount of degradation in terms of 

replay traps and total L1 cache misses. However, we observe that this is not true for the L2 

data cache. The degradation in cache performance for the different ROB sizes with global 

disorder of 0 can be by as much as 10% in a ROB-512 when compared to a ROB-80 

configuration. Further investigation into the reasoning for this behavior was attributed to 

the stride prefetcher. The stride prefetcher issues prefetches whenever it detects a stride 

and there is available bandwidth to the memory subsystem. As memory instructions are 

serialized and forced to be issued in-order, the available bandwidth to the memory system 

increases. Thus, the stride prefetcher can continue issuing prefetches, and this can cause 
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data pollution hence causing the increase in the total number of cache misses when 

comparing global disorder values of 0 across the four different ROB sizes. We observe 

that for the L2 cache, allowing a certain degree of reordering by using VLSQs of 16/32 

controls the stride prefetcher from running ahead.

 8.4.4 Power

With increased trap frequency, the components of a processor that are exercised heavily 

are the fetch, map, and execution units. In a similar manner, increases in cache accesses 

and misses appropriately require the respective caches to access and fill the required data. 

Figure 8.6:  Global Disorder Vs. Negative Effects.   
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Figure 8.7 shows the savings in average power consumed, normalized to the traditional 

load/store queue for each of the following components: fetch hardware, mapping hard-

ware, execution hardware, and the L1 cache. 

By reducing the reordering of memory instructions we observed a reduction in trap 

frequency by a factor of two to 30 and a reduction in the total number of instructions flushed 

by 50–200%, all of which translates into a total reduction in replay trap overhead by 10–

45%. This means that the fetch, map, and execute units spend less energy duplicating work 

that had already been done before. From the figure, we observe that a reduction in the total 

number of instructions flushed translates into average power savings ranging from 5–50% in 

Figure 8.7:  Average Power Savings Using VLSQs.   By reducing the reordering of memory 
instructions, VLSQs eliminate the needless amount of energy dissipated in re-fetching and re-executing 
instructions, and speculative cache accesses. This translates into power savings of 5-50% in the fetch and 
rename hardware, 10-40% in the execution hardware, and 5-50% in the data cache.
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the fetch and rename unit, and 10–40% in the execution unit. Such substantial savings in 

power are important especially since the total power of all hardware associated with the 

fetch, map, and execute units contribute to roughly half (46%) of an Alpha 21264’s total 

power consumption [28]. Additionally, we observe that reducing the reordering of memory 

instructions reduces the average power consumed in the L1 cache by 10–50%. Again, we 

observe that these savings in the caches are substantial since the on chip data cache 

contributes about 15% of an Alpha 21264’s total chip power [28].

 8.4.5 Performance

Figure 8.8(a,b) shows the performance graphs with the different benchmarks and ROB 

sizes on the x-axis and cycles per instruction (CPI) on the y-axis. As before, CPI is classi-

fied into stall cycles where memory instructions could not retire due to memory latency 

(black), stall cycles where instructions could not retire because they either had not been 

issued or had not yet finished execution due to ALU latency (medium grey), and stall 

overhead cycles due to recovering from branch mispredicts and replay traps (light grey). 

The ALU and memory components of CPI are computed by measuring the number of 

cycles the retire stage stalls because it could not retire an ALU or memory instruction. The 

overhead portion was computed by taking the difference between the total number of 

cycles and the sum of the ALU and memory instruction stall cycles in the retire stage. 

Note that, due to overlaps between memory and ALU stall cycles, the overhead portion of 

CPI is not the same as the total execution time lost in replay traps.

From Figure 8.8(a,b), we observe that for some benchmarks, increased out-of-order 

capability overcame the sources of performance degradation to provide 30–40% 
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Figure 8.8:  Performance of VLSQs.   (a) Base CPIs Vs. Out-of-Order Capability for SPEC2000 Integer 
and Float-Point benchmarks (b,c,d) Effect of VLSQs on processor performance distributed into categories.
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improvement in performance. We observe that for such benchmarks the bulk of the 

performance improvements is achieved by scheduling memory instructions early, thus 

hiding/overlapping memory latency with useful work. This is evident due to the fact that the 

memory stall portion of CPI (black) decreases with increased out-of-order capability. On the 

other hand, we observe that most benchmarks suffer from a performance degradation with 

reorder buffer sizes of 256 or more. For such applications we observe one or more of the 

three components of CPI increasing. An increase in the memory portion can be correlated to 

the increase in cache misses, while the increase in the ALU and overhead portions of CPI 

can be correlated with an increase in replay traps. 

Figure 8.8(c,d,e) show the results of varying the VLSQ size as the average CPI for all 

benchmarks, categorized as Group I, Group II, and Group III sets. As listed in Table 8.5, the 

benchmarks included in Group I are: crafty, vortex, fma3d, galgel, and lucas; the 

benchmarks included in Group II are: bzip2, gap, gcc, gzip, mcf, parser, ammp, applu, art, 

equake, mesa, mgrid, swim and vpr; finally, the benchmarks included in Group III are: eon, 

perlbmk, twolf, apsi, wupwise. Group I applications show no remarkable change in 

performance with reduced VLSQ sizes. This is because the Group I applications are 

memory-instruction independent, that is they are more compute-intensive. We infer this 

from the fact that the memory stall portion of CPI (black) does not vary with decreased 

Group Benchmarks

Group I crafty, vortex, fma3d, galgel, lucas

Group II bzip2, gap, gcc, gzip, mcf, parser, ammp, applu, art, 
equake, mesa, mgrid, swim, vpr

Group III eon, perlbmk, twolf, apsi, wupwise

Table 8.5: Benchmark Categories Based on Performance
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VLSQ size. Therefore, for such applications, we can gain maximum power savings of 15–

50% by issuing all memory instructions in actual program order (as shown in Figure 8.7).

For the Group II and III benchmarks, we observe two different behaviors with smaller 

VLSQs. First, the memory latency portion of CPI increases. This behavior can be expected 

because the use of a VLSQ reduces the reordering of memory instructions at the expense of 

memory ILP. This is apparent because reducing the size of the VLSQ causes an increase in 

the memory stall portion (black) of CPI. Thus, for applications that are memory-instruction 

dependent (or memory intensive), we observe a 15–30% degradation in performance with 

decreased VLSQs. However, for such benchmarks (Group II) we observe that VLSQ sizes 

of 16 and 32 are within 2–5% of the traditional load/store queue. On the other hand, for the 

group III benchmarks, we observe that medium VLSQs can reduce the negative overheads 

in the memory subsystem to provide net performance improvements of up to 6% when 

compared to a traditional load/store queue. For such applications, we observe that the 

performance improvement is achieved via a decrease in the memory, ALU and the overhead 

portions of CPI implying that reducing the reordering of memory instructions is successful 

in reducing the negative overheads in the memory subsystem. As mentioned earlier, a 

reduction in the memory portion of CPI implies reduction in cache misses and a reduction in 

the other portions of CPI implies a reduction in the replay trap overhead. Across all three 

behaviors of windowing, we observe that VLSQ sizes of 16 or 32 are optimal and can not 

only improve performance but also lead to power savings of 10–22% (as shown in Figure 

8.7).

Second, for the Group II and III benchmarks, we also observe that issuing of memory 

instructions in program order (VLSQ of size 1) can cause a factor of 2 increase in overhead 
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portions when compared to the traditional load/store queue. We relate this to the occurrence 

of replay traps. As mentioned in Section 4.1 of this dissertation, replay traps can still occur 

even if memory instructions are issued in program order. Besides the load-miss-load and 

wrong-size replay traps, we observed that a load-store replay trap can also occur with the in 

order issue of memory instructions in the event of a mispredict in the logic that tracks 

dependencies between loads and earlier stores. For example, a load-store replay trap occurs 

if a store and its memory-dependent load are simultaneously issued to execute in the same 

cycle. Since the load and store compute their effective addresses at the same time, store-to-

load forwarding cannot occur in the same cycle. Thus, the load instruction must be replayed. 

The reasoning for the larger overheads with smaller VLSQs is that a replay trap can become 

expensive if the reorder buffer is full, and this scenario is very likely when combining 

decreased VLSQ sizes and memory intensive benchmarks. This is because of the latencies 

associated with the delayed issue of load instructions to the cache and memory subsystem 

with smaller VLSQs. Thus, in the event of a replay trap the overhead of re-fetching and re-

executing an entire window of instructions can become expensive, especially with larger 

reorder buffer sizes.

Finally, from Figure 8.8(c,d,e), we also observe that out-of-order processors need only a 

window of 16 or 32 memory instructions to select and issue from. We observe that selecting 

and issuing to execute memory instructions outside of a window of 32 instructions can 

unnecessarily waste time and energy recovering from replay traps as well as needless data 

cache accesses and misses. 
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 8.5  Summary

In this chapter we investigated the use of the network communication concept of 

windowing to determine the degree to which out-of-order execution of memory instructions 

determines processor and memory performance. By introducing a virtual window into the 

existing load/store queue, we restrict the out-of-order scheduler to issue only those memory 

instructions that reside within the virtual window. Those memory instructions that reside 

outside the virtual window must wait till the virtual window slides over them. The virtual 

window of instructions within the load/store queue is essentially a virtual load/store queue 

(VLSQ). By controlling the size of the VLSQ one can control the degree by which memory 

instructions are issued out-of-order. For example, a VLSQ of size 1 would imply that 

memory instructions be issued in program order, while a VLSQ that is infinite in size is the 

same as traditional load/store queues. Our simulations for various VLSQ sizes reveal that 

the negative effects in the memory subsystem are directly proportional to the size of the 

VLSQ. The larger the virtual load/store queue, the larger the negative effects in the memory 

subsystem, and the smaller the load/store queue the smaller the negative effects. We observe 

that reducing the reordering of memory instructions can reduce the number of cache misses 

and replay traps to provide power savings. We observe that reducing the reordering of 

memory instructions can either benefit, provide no change, or hurt performance. We observe 

that across all benchmarks, a VLSQ of size 16/32 is sufficient to reduce the negative effects 

in the memory subsystem with degradation in performance of 0-5%.
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CHAPTER 9 Conclusions and Future 
Work
 9.1  Conclusions

 9.1.1 Dissertation In a Nut Shell

The use of large instruction windows coupled with out-of-order execution has been the 

widely proposed technique to tolerate the long latencies associated with data cache misses 

and cross-chip communication. The work presented in this dissertation shows that 

continuing to increase out-of-order aggressiveness does not buy any improvements in 

processor performance, in fact it can actually degrade processor performance. By varying 

the aggressiveness of an out-of-order core in terms of reorder buffer sizes, issue queues, 

load/store queues, and using a realistic DRAM system model, the work presented in this 

dissertation brings to light problems present in real systems that many previous simulation-

based studies have not addressed. 

We observe that continuing to increase out-of-order aggressiveness to improve processor 

performance will come at the cost of a degradation in the performance of the memory 

subsystem. Specifically, we observe that increased out-of-order capability conflicts with the 

memory-ordering requirements of a processor, requiring the processor to initiate frequent 

traps to enforce correct state. Furthermore, we also show that increasing out-of-order 

capability can destroy an application’s cache locality by causing it to suffer from a higher 

number of cache misses than a lesser aggressive out-of-order system. 
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To gain insight on the reason for the degradation in the performance of the memory 

subsystem, we measured the degree to which memory subsystem performance relies on out-

of-order execution By using the network communication concept of windowing, we 

restricted the degree by which memory instructions are reordered. By restricting the 

reordering of memory instructions, our study revealed that memory instructions issued out-

of-order are the primary reason for the increase in the frequency of replay traps. 

Furthermore, the out-of-order issue of memory instructions is also responsible for both the 

constructive and destructive references to the data cache. The destructive references as a 

result of increased speculation is the primary reason for the increase in the number of cache 

misses when comparing an aggressive out-of-order system to a lesser aggressive out-of-

order system.

 9.1.2 Detailed Overview

Contrary to existing simulation based studies, this dissertation shows that larger 

instruction windows and reorder buffers do not necessarily provide significant 

improvements in performance. With the use of detailed models of the processor and DRAM 

system, we show that improvements in processor performance saturates beyond a 128-entry 

reorder buffer. In fact, we observe that it can actually degrade processor performance. 

Furthermore, this dissertation presents a non-intuitive problem associated with increasing 

out-of-order aggressiveness—the reordering of memory instructions can cause a 

degradation in the performance of the memory subsystem. Specifically, we show that 

increasing out-of-order aggressiveness in terms of reorder buffer sizes increases the 

frequency of replay traps and the total number of data cache misses. We show that while 
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these negative effects existed for only a fraction of the time in lesser aggressive systems, 

removing other sources of stalls by increasing out-of-order capability represents these 

negative effects to be sources of significant performance loss and unnecessary power 

dissipation. We believe that reducing these overheads with increasing out-of-order 

capability is important for future high performance systems to reap the true benefits of 

increased out-of-order capability. 

In efforts to determine the source of the performance loss in the memory subsystem, we 

conducted studies to determine the degree to which memory subsystem performance relies 

on out-of-order execution. This was done by varying the issue-logic configurations while 

keeping the processor constant. Specifically, we defined three issue-logic configurations: 

ALU-in/MEM-in, ALU-out/MEM-in, and ALU-out/MEM-out. The ALU-in/MEM-in 

configuration issues all instructions in program order; the ALU-out/MEM-in configuration 

restricts memory instructions to be issued to the memory system in-order while allowing the 

out-of-order issue of ALU instructions; and the ALU-out/MEM-out configuration allows for 

the out-of-order issue of both ALU and memory instructions. When comparing the 

performance degradation in the memory system for the three issue-logic configurations with 

increased out-of-order capability, we observe that the transition from the ALU-out/MEM-in 

issue logic configuration to the ALU-out/MEM-out issue logic configuration causes a 

significant amount of degradation in the performance of the memory subsystem. Since the 

only difference between these two issue-logic configurations is the out-of-order issue of 

memory instructions and a larger degree of speculation, we conclude that both speculation 

and the out-of-order issue of memory instructions are responsible for the degradation in the 

performance of the memory subsystem.
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Having determined that the degradation in the performance of the memory subsystem is 

due to the reordering of memory instructions, we defined a metric called disorder to 

measure the degree by which memory instructions are issued out-of-order to the memory 

subsystem. We define disorder to be of two types: global disorder and local disorder. Global 

disorder is the degree by which memory instructions are issued out-of-order when compared 

to fetch-order. Local disorder on the other hand is the degree by which memory instructions 

are issued out-of-order when compared to other memory instructions issued in the same or 

previous cycle. Based on our studies, we observe that applications can have a large amount 

of global disorder with about 10-20% of memory instructions being issued to the memory 

subsystem on time when increasing reorder buffer sizes. We observe that local disorder with 

increasing out-of-order aggressiveness is low illustrating the increase in speculation. 

Next we showed that there exists a good correlation between the global disorder metric 

and the negative effects in the memory subsystem. We observe that increase in global 

disorder is the primary reason for the degradation in the performance of the memory 

subsystem: the larger the global disorder the worse the performance of the memory 

subsystem. Based on this correlation, we conclude that reducing the global disorder by 

throttling the out-of-order issue of memory instructions can mitigate the unexpected 

negative effects with increasing out-of-order aggressiveness. 

To throttle the degree by which memory instructions are issued out-of-order, we use the 

network communication concept of windowing. With windowing, the out-of-order 

instruction scheduler is limited to schedule only those memory instructions that lie within a 

window of instructions. The window is determined by two new pointers into the existing 

load/store queue, a head pointer that points to the beginning of the window and a tail pointer 
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that points to the end of the window. The head pointer points to the oldest non-issued 

memory instruction and the tail pointer points to the end of the instruction window. The 

window of memory instructions essentially acts like a virtual load/store queue (VLSQ) 

embedded into the existing load/store queue. The use of the VLSQ limits the number of 

instructions available to the select and issue logic. Thus, the instruction scheduler can issue 

only those memory instructions that reside within the virtual load/store queue. The virtual 

window slides onto younger memory instructions only when the instruction at the virtual 

head is issued. Thus, younger memory instructions (that are ready to be issued) can only be 

issued when the virtual window slides onto them. By restricting the number of memory 

instructions visible to the instruction scheduler, we are able to reduce the reordering of 

memory instructions. The smaller the size of the virtual window, the smaller the degree by 

which memory instructions are reordered. The larger the size of the virtual window, the 

larger the degree of memory instruction reordering. 

By using the windowing concept and statically varying the size of the VLSQ, we studied 

the degree to which memory subsystem performance relies on the out-of-order execution of 

memory instructions. By changing the size of the VLSQ we vary the degree by which 

memory instructions are issued out-of-order. We show that the degradation in the memory 

subsystem is directly proportional to the total global disorder allowed, i.e. the size of the 

virtual load-store queue. The smaller the size of the virtual load/store queue, the smaller the 

global disorder, and the lower the frequency of replay traps and cache misses. 

We observe that reducing the reordering of memory instructions reduces the frequency 

of replay traps, cache accesses, and cache misses. These reductions categorize applications 

into three different behaviors. Applications either benefit from a reduction in the reordering 
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of memory instructions, they have little or no change in performance, or they hurt from the 

reduction in the reordering of memory instructions. In the cases where the use of windowing 

provided no benefits to performance, we observe benefits in power savings due to the 

reduction in the wasted work due to replay traps and the needless cache accesses and misses. 

In the cases where the use of windowing hurt performance, we observe that the degradation 

is primarily due to the fact that the memory subsystem relies heavily relies on the out-of-

order execution of memory instructions. 

 9.2  Significance Of This Dissertation

We believe that this dissertation makes three important contributions to the computer 

architecture community: 

• This is the first study that demonstrates a non-intuitive problem associated with the 

reordering of memory instructions. To our knowledge there is no existing study or 

published work that explicitly illustrates that the reordering of memory instructions 

can cause a degradation in the performance of the memory subsystem. The 

presentation of this problem in itself is of utmost significance: the very mechanisms 

commonly used to improve performance are sources of significant performance 

degradation in the memory subsystem.

• Existing work on tolerating DRAM latency have proposed novel techniques to 

implicitly or explicitly scale the size of the scheduling window. However, the effects 

of increased out-of-order capability on the memory subsystem have been vastly 

discounted. We observe that while the negative effects of out-of-order execution 
125



existed for only a small fraction of the time with small reorder buffers, eliminating 

other sources of stalls by increasing out-of-order capability introduces unexpected 

side effects in the memory subsystem that represent significant overhead. 

• The prior statement brings up an important point: we can no longer overlook rarely 

occurring events in the memory subsystem. Thus, the need for detailed execution 

driven simulators is of utmost importance. The incorporation of detailed memory 

subsystem models and a realistic DRAM model into existing simulators, e.g. 

SimpleScalar, can allow for the problems described in this dissertation to be 

observed.

Besides the above important contributions, this dissertation also places significance in 

the following findings:

• Workloads can perform even better once the negative effects in the memory 

subsystem are reduced. This implies that schemes that reduce the performance 

degradation in the memory subsystem can allow workloads to reap the true benefits 

of out-of-order execution. 

• Some workloads have little or no benefit from executing memory instructions out-

of-order. Since the out-of-order issue logic of high performance microprocessors is 

complex and consumes large amounts of power, simplification in the issue logic for 

memory instructions may be able to reduce power.

• Reducing the reordering of memory instructions reduces unnecessary/speculative 

work. For example, reducing the reordering of memory instructions can reduce 

unnecessary power consumed in execution units and cache accesses.
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 9.3  Future Work

In efforts to investigate the degradation in the performance of the memory subsystem, 

the work presented in this dissertation investigated the degree to which processor and 

memory system performance is dependent on the reordering of memory instructions. By 

statically varying the degree to which memory instructions are reordered, we observe that 

reducing the reordering of memory instructions can reduce the negative effects in the 

memory subsystem at the cost of processor performance. Thus, we observe that we have two 

mechanisms that are at odds against each other. Increasing the reordering of memory 

instructions can improve processor performance at the expense of a degradation in the 

performance of the memory subsystem. On the other hand reducing the reordering of 

memory instructions reduces the degradation in memory subsystem performance at the 

expense of processor performance.

 9.3.1 Convert Distant Loads to Useful Prefetches

In attempts to improve processor performance without degrading the performance of the 

memory subsystem, it would also be possible to convert load instructions that reside outside 

of the virtual window to be issued to the memory subsystem as early as possible by 

converting them to prefetch instructions. Since our performance graphs showed that the 

primary reason for the degradation in processor performance is waiting on memory (due to 

the late issue of memory instructions), we propose to convert load instructions that reside 

outside of the virtual window to be sent as early prefetches to the last-level data cache. Once 

the load memory instruction resides within the virtual window, we propose to send the actual 
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load to the L1 data cache. Thus, by pushing the load instructions out to the memory 

subsystem as prefetches as early as possible can reduce processor performance loss without 

sacrificing memory system performance.

 9.3.2 Dynamic Mechanisms for Varying VLSQ Sizes

Based on the intuition that the negative effects in the memory subsystem do not always 

exists, it would make sense that the reordering of memory instructions only be reduced 

during the phases in which the negative effects exists. Thus, a dynamic approach to reduce 

the reordering of memory instructions can provide for improvements in processor and 

memory subsystem performance. To exploit the benefits of out-of-order execution, it would 

be desirable that we reap the benefits of out-of-order execution in the phases where there are 

no negative effects while throttle the degree to which memory instructions are reordered in 

the phases where the negative effects are prominent. Thus, the work presented in this 

dissertation can be further extended by a mechanism to dynamically detect the different 

phases of execution and throttle the reordering of memory instructions at run time.

There are different ways to dynamically throttle the degree by which memory 

instructions are issued out-of-order. Hardware can monitor the trap frequency and the total 

number of cache misses periodically. If during a period/phase the hardware detects an 

increase in trap frequency or cache misses, it can dynamically throttle itself. Alternatively, 

since we observed a correlation between global disorder and the negative effects in the 

memory subsystem, the average global disorder metric can be used to throttle the degree by 

which memory instructions are issued out-of-order. With such a mechanism, the processor 

must track the average global disorder over time, if at some point in time the average global 
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disorder increases the processor should start throttling itself and reduce the reordering of 

memory instructions. 

When throttling the reordering of memory instructions dynamically, it is also important 

to determine dynamically when to let go of the throttle and allow for memory instructions to 

be re-ordered again. One mechanism could be to let go of the throttle is after a pre-allotted 

number of memory instructions have executed or a pre-allotted number of cycles have 

passed. 

Thus, the dynamic mechanism of throttling the degree by which memory instructions 

are issued out-of-order can allow for applications to exploit memory level parallelism during 

phases where memory instructions do not cause negative effects and control the reordering 

during phases where the negative effects in the memory subsystem exist. 
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