
ABSTRACT

Title of Document: Performance Analysis of
 NAND Flash Memory Solid-State Disks

 Cagdas Dirik
 Doctor of Philosophy, 2009

Directed By: Professor Bruce Jacob
 Department of Electrical and Computer Engineering
 University of Maryland, College Park

As their prices decline, their storage capacities increase, and their endurance improves,

NAND Flash Solid-State Disks (SSD) provide an increasingly attractive alternative to

Hard Disk Drives (HDD) for portable computing systems and PCs. HDDs have been an

integral component of computing systems for several decades as long-term, non-volatile

storage in memory hierarchy. Today’s typical hard disk drive is a highly complex electro-

mechanical system which is a result of decades of research, development, and fine-tuned

engineering. Compared to HDD, flash memory provides a simpler interface, one without

the complexities of mechanical parts. On the other hand, today’s typical solid-state disk

drive is still a complex storage system with its own peculiarities and system problems.

Due to lack of publicly available SSD models, we have developed our NAND

flash SSD models and integrated them into DiskSim, which is extensively used in

academe in studying storage system architectures. With our flash memory simulator, we

model various solid-state disk architectures for a typical portable computing

environment, quantify their performance under real user PC workloads and explore

potential for further improvements. We find the following:

• The real limitation to NAND flash memory performance is not its low per-device

bandwidth but its internal core interface.

• NAND flash memory media transfer rates do not need to scale up to those of

HDDs for good performance.

• SSD organizations that exploit concurrency at both the system and device level

improve performance significantly.

• These system- and device-level concurrency mechanisms are, to a significant

degree, orthogonal: that is, the performance increase due to one does not come at

the expense of the other, as each exploits a different facet of concurrency

exhibited within the PC workload.

• SSD performance can be further improved by implementing flash-oriented

queuing algorithms, access reordering, and bus ordering algorithms which exploit

the flash memory interface and its timing differences between read and write

requests.

PERFORMANCE ANALYSIS OF NAND FLASH MEMORY SOLID-STATE DISKS

by

Cagdas Dirik

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2009

Advisory Committee:

Professor Bruce Jacob, Chair
Professor Donald Yeung
Professor Gang Qu
Professor Jeff Hollingsworth
Professor Prakash Narayan

© Copyright by
Cagdas Dirik

2009

To my parents,

Zehra and Engin Dirik

ii

Acknowledgements

First, I would like to thank my advisor, Professor Bruce Jacob. This thesis would not have

been possible without his guidance, support, and endless patience.

I had the privilege to be friends and work with many great people. Mustafa Tikir

has always been there for me through good times and bad times. He always listened to

my drama and shared his valuable thoughts. I am very grateful to him for all the things he

has done. Professor Yavuz Oruc has been a great mentor to me. He provided his advice

throughout my struggles and kept me challenged. Thanks to Okan Kolak, Murat Ungor,

Nihal Bayraktar, Betul Atalay, Parag Kulkarni, Samuel Rodriguez, Hongxia Wang, Amol

Gole, Akin Akturk, Aydin Balkan, Fusun Yaman, Evren Sirin, Burcu Karagol, Fazil Ayan,

Yakup Bayram for their friendship and emotional support.

Special thanks to my wife, Allyson. She had to witness the last years of a PhD

student and I am afraid this has irreversibly damaged her perception of graduate school. I

am grateful for her endless love and support, without which I could not survive.

Foremost, I would like to thank to my mother and father for their love and

support. They have always been there for me, every step of my education. Long time ago

they stopped asking me "when I will be graduating". This is the biggest relief for a

graduate student. Thank you for believing in me.

iii

Table of Contents

..Chapter 1: Introduction 1

...1.1. Problem Description 1

...1.2. Contribution and Significance 5

...1.3. Organization of Dissertation 8

...Chapter 2: Overview of NAND Flash Memory 10

...2.1. Non-Volatile Memory 10

..2.2. Flash Memory Cell 13

..2.3. NOR vs. NAND FLASH 14

...2.4. Industry Trends 17

..Chapter 3: NAND Flash Solid-State Disks 23

............................3.1. SSD vs. HDD: Cost, Performance and Power Comparison 23

..3.2. Endurance: Reality or Myth? 27

..3.3. SSD Organization 29

..Chapter 4: Related Work 45

...4.1. Flash Memory Simulations 45

...4.2. Flash Memory Architectures and Performance 48

..4.3. Hybrid Memory Systems 52

..4.4. Flash Memory Data Structures and Algorithms 53

..Chapter 5: Methodology 62

...5.1. DiskSim Disk Simulator 62

...5.2. NAND Flash Solid-State Disk Simulator 63

...5.3. Disk I/O Traces 66

iv

..5.4. Simulation Parameters 72

...Chapter 6: Experimental Results 82

..6.1. Banking and Request Interleaving 82

...6.2. Superblocks 97

..6.3. Concurrency: Banking vs. Superblocks 103

..6.4. Media Transfer Rate 113

..6.5. System Bandwidth and Concurrency 118

...6.6. Improving I/O Access 136

...6.7. Request Scheduling 148

..6.8. Block Cleaning 163

..6.9. Random Writes and Mapping Granularity 175

...Chapter 7: Conclusions and Future Work 181

...References 187

v

Chapter 1: Introduction

1.1. Problem Description

Flash-based solid-state disks are rapidly becoming a popular alternative to hard disk

drives as permanent storage, particularly in netbooks, notebooks and PCs, because of

flash's faster read access, low power consumption, small size, shock resistance, and

reliability compared to hard disks. SSDs are commercially available in numerous

commodity PC models today; they are considered a high-end option due to price-per-bit

that is higher than HDDs, but that price gap is closing very quickly.

Flash technology has additional characteristics that have slowed its takeover of

hard disks, including a lower bit density relative to HDDs, limited endurance (i.e., its

limited number of write cycles), and write performance. Solutions have reached a level of

maturity to place flash on a near-term crossover with disks. Rapid migration to later

technology has been driving the bit cost of NAND flash significantly lower and its

density higher. NAND flash capacity has doubled every year since 2001 and is expected

to continue at that rate until 2010; by 2010 it is expected to reach 32/64 Gb single chip

density [39, 58, 74]. Over the same period, cost of NAND flash memory has decreased

40-50% per year [69]. In addition, technological enhancements and architectural

mechanisms have improved flash memory endurance - currently, NAND flash from

several vendors is commercially available with an endurance rating of more than 50 years

at 50 GB write per day. Soon, the limit on the number of writes will become a fading

memory.

1

Today’s typical hard disk drive is a highly complex electro-mechanical system

which is a result of decades of research, development, and fine-tuned engineering.

Despite this complexity, extremely detailed and accurate models of HDDs are publicly

available [33]. Compared to HDD, flash memory provides a simpler interface, especially

one without the complexities of mechanical parts. On the other hand, today’s typical

solid-state disk drive is still a complex storage system with its own peculiarities and

system problems. NAND flash solid-state disks employ multiple flash memory arrays in

parallel to increase storage system bandwidth and performance. When multiple flash

memory arrays are available, data placement becomes a critical problem for performance

and load balancing. Flash memory programming rate is considerably slow and in-place

update of data is not allowed. Asymmetric read and write rates make solid-state disk

performance more dependent on user workload. Effective wear leveling and block

cleaning are two other issues unique to flash memory systems. As it is stated by Agrawal

et. at., issues that arise in flash memory solid-state disk design mimic complex system

problems that normally appear higher in the storage stack, or even in distributed systems

[1].

The relationship between flash memory system organization and its performance

is both complex and very significant [1, 40, 24]. Very little has been published on the

internals of solid-state disk drives; even less has been published on the performance

resulting from various flash memory design options. The most in-depth study to date has

been by Agrawal et. al. [1], who analyzed different mapping and ganging/striping policies

at the device level (i.e., assuming a flash device exported multiple array-select lines to

2

enable concurrent access within the device) and ganging at the system level, targeting

both enterprise workloads and synthetic workloads. In this dissertation we study the full

design space of system-level organization choices for solid-state disks, investigate

device-level design trade-offs, and provide a model on how SSDs work. We address the

following issues:

• Concurrency: By system-level organization we mean the design of the SSD,

treating the individual flash devices as constants. Variables in this space include

the number of independent busses, their organizations (widths, speeds, etc.),

banking strategies, and management heuristics that connect the SSD’s flash

controller to the flash devices. As shown by Agrawal et al., increasing the level of

concurrency in the flash SSD system by striping across the planes within the flash

device can amortize the write overhead and increase throughput significantly [1].

Concurrency has been shown in the HDD space to provide tremendous bandwidth

increases in interleaved organizations (e.g. RAID). Flash is interesting because

unlike disks, its form factor need not change when accommodating interleaved

organizations: one can achieve significant levels of concurrency in an SSD

without significantly changing its overall size and shape. We investigate the

effects of concurrent access to different flash banks via the same channel or by

replicating resources and providing multiple independent channels to different

flash banks, or by a combination of two.

• Bandwidth issues: Common wisdom holds that SSD performance is limited by its

media transfer rate. Currently, access to a single flash memory chip is provided by

3

an 8-bit bus which limits the available bandwidth to 33 MB/s (30 ns bus speed is

common) for read access. For write requests, single chip bandwidth can be much

lower at 6-10 MB/s due to slow programming time (200 µs for programming 2KB

page). As interface transfer rates increase with the introduction of serial I/O

interfaces and fiber channel, HDD performance will continue to scale, but SSD

performance is expected to be limited by the device’s media transfer rate.

Samsung's solution to this problem has been to move to a wider and higher

performance bus, which can sustain 108 MB/s (16 bit, 54 MHz). Other vendors

have followed suit. Two to three years ago, an 8-bit bus clocked at 50 ns was

typical, whereas today most flash solid-state disks come with clocks speeds of 20–

30 ns. There is also a push by other vendors to improve read/write performance of

flash disks by access via 800 MB/s bus in a ring topology [37].

• Write performance: Another approach to improving flash performance is to reduce

the programming time, thus improving the throughput of write requests. For

example, Micron proposed using two-plane flash devices which can

simultaneously read and program two pages (2 KBytes each) in the same flash die

[59]. This effectively doubles sustainable read and write bandwidth (reported page

program performance increases from 8.87 MB/s to 17.64 MB/s). Another

approach taken by Micron is combining flash memory blocks into so-called

superblocks, enabling the simultaneous read or write of 2 or 4 pages within a flash

device or even across different flash dies [57]. This mechanism is similar to

Agrawal’s ganging and striping mechanisms. Samsung supports similar

4

architecture to hide programming latency wherein the flash controller controls 2

separate channels and supports 4-way interleaving (write throughput of 30 MB/s

is reported) [64, 69].

In this dissertation we address the question; which of these issues is the most significant -

i.e., what approaches to improving solid-state disk drive performance provide the best

performance at the lowest cost? We model various flash solid-state disk architectures for

a typical portable computing environment and quantify their performance under diverse

user applications such as browsing, listening to music, watching videos, editing pictures,

editing text and document creation, office application, and email applications. This

dissertation also explores the potential for improvements to SSD organizations by flash

oriented heuristics and policies. We study flash oriented queuing algorithms, access

reordering, and bus ordering algorithms to accommodate asymmetric nature of read and

write requests. We also address the question; how to optimize the internal I/O access to

SSD storage system without significant changes to its physical organization?

1.2. Contribution and Significance

The contributions of this dissertation are three-fold:

1) We develop a solid-state disk simulator which can be used to measure

performance of various NAND flash memory architectures. Our SSD simulator is

designed as an extension to DiskSim v2.0 and models a generalized NAND flash solid-

state disk by implementing flash specific read, program, erase commands, block cleaning

and logical-to-physical address mapping, all while providing the illusion of an HDD. Our

simulator is highly configurable and can simulate various solid-state disk architectures

5

while maintaining a view of a single disk drive to host system. We have used our own

disk traces collected from portable computers and PCs running real user workloads to

drive the SSD simulator. Our workloads represent typical multi-tasking user activity,

which includes browsing files and folders, emailing, text editing and document creation,

surfing the web, listening to music and playing movies, editing pictures, and running

office applications. These workloads consist of not only I/O traffic generated by user

applications, but also I/O read and write requests generated by system and admin

processes [24].

2) We study NAND flash SSD architectures and their management techniques,

quantifying SSD performance as a function of bandwidth, concurrency, device

architecture, and system organization. We explore full design space of system-level

organization choices for solid-state disks. Variables in this space include number of flash

memory chips, number of independent busses, their organizations (widths, speeds, etc.),

banking strategies, and management heuristics that connect the SSD's flash controller to

the flash devices. We also investigate device-level design trade-offs as well, including pin

bandwidth and I/O width [24]. We find the following:

• The flash memory bus does not need to scale up to HDD I/O speeds for good

performance. Average read response times, a good indicator of system-level CPI

[40, p. 52], do not improve much beyond 100 MB/s bus bandwidth.

• The real limitation to flash memory performance is not its bus speed but its core

interface: the movement of data between the flash device's internal storage array

and internal 2 KB data and cache registers.

6

• SSD organizations that exploit concurrency at both the system and device level

(e.g. RAID-like organizations and Micron-style superblocks) improve

performance significantly.

• These system- and device-level concurrency mechanisms are, to a significant

degree, orthogonal: that is, the performance increase due to one does not come at

the expense of the other, as each exploits a different facet of concurrency

exhibited within the PC workload.

• NAND flash interface provides drastically different read and write timing which

results in large performance disparities between reads and writes. Increasing the

level of concurrency in SSD systems amortizes write overhead and increases

write throughput significantly. However, asymmetry between reads and writes and

the scale factor between their performance persists.

3) We explore the potential for further improvements to SSD organizations by flash

oriented heuristics and policies. When distinctive differences between reading from and

writing to flash memory and the impact of system- and device-level concurrency

techniques are taken into account, there is potential for exploiting the performance

disparity between reads and writes. We study flash oriented queueing algorithms, access

reordering, and bus ordering algorithms to accommodate asymmetric reads and writes.

Specifically:

• Request scheduling heuristics: Most disk-scheduling algorithms attempt to reduce

seek time, since the majority of time spent in servicing an I/O request in

conventional hard disk drives is seek time. Unlike HDDs, flash memory solid-

7

state disks do not have any mechanical components and therefore have a

deterministic, uniform request service time. We show that; even with this limited

potential, one can improve SSD storage system performance significantly by

implementing flash-specific request-scheduling algorithms that exploit the flash

memory interface and its timing differences between read and write requests.

• I/O bus access policies: We show that for a typical SSD physical organization

(which provides concurrent access to different flash memory banks via the same

I/O channel or multiple independent channels to different flash banks, or by a

combination of the two), timing of I/O access requests and bus utilization is an

important factor in performance. By taking into account the differences between

read and write timing and using different I/O access policies, I/O bus utilization

can be improved considerably.

• Data burst size: With a significant level of request interleaving, I/O bus utilization

becomes critical, especially for read requests. By increasing the burst size in

transferring data from/to the flash memory array, the number of I/O access

requests can be reduced, thereby reducing I/O bus congestion.

1.3. Organization of Dissertation

The dissertation is organized as follows: Chapter 2 provides an overview of NAND flash

memory. Characteristics of NAND flash memory is summarized and compared against

other types of flash memory. Details of NAND flash memory solid-state disk

architectures, including flash memory array organization, NAND flash interface, and

flash specific algorithms, are covered in Chapter 3. Chapter 4 discusses related works for

8

the dissertation. Chapter 5 presents the methodology followed in the dissertation. Details

of the SSD simulator designed and parameters for the simulations performed are also

covered in chapter 5. Chapter 6 discusses the experimental results, mainly on the

performance of NAND flash memory solid-state disks. Chapter 7 provides the conclusion

to the dissertation.

9

Chapter 2: Overview of NAND Flash Memory

Flash memory is a type of electrically erasable programmable read only memory

(EEROM) invented by Dr. Fujio Masuoka in the 1980s while working at Toshiba. Main

characteristics of flash memory, which differentiate it from other types of EEPROM, are

its ability to program in large blocks and its low cost per bit. NAND type flash memory

was first introduced by Toshiba in the late 1980s, following NOR type flash memory by

Intel [63]. Although other types of flash memory have been developed, NAND and NOR

types are the two dominant ones in volume production. Starting from mid 1990s

development of battery operated portable electronic appliances, such as PDAs and mobile

phones, dramatically increased the popularity of flash memory and its market share.

Driven by personal computer market and portable communications systems, flash

memory will continue rise in popularity.

2.1. Non-Volatile Memory

Semiconductor memories can be grouped in two categories: volatile and non-volatile.

Content of volatile memory (e.g., Random Access Memory) can be changed fast, easy,

and unlimited number of times, but it is lost when the power is switched off. On the other

hand, non-volatile memory (e.g., Read Only Memory and flash memory) can retain its

content even when it is not powered. Early designs of non-volatile semiconductor

memory were fabricated with permanent data and did not provide the ability to modify

data content. Current designs can be erased and re-programmed a number of times

although at a comparatively slow speed compared to RAM [12].

10

The very first non-volatile ROM was the mask-programmed ROM which was

programmed during fabrication and could not be changed. Then in 1956, PROM was

invented. PROM allowed engineers to program its content by using silicon or metal

fuses. These fuses could be blown by a programmer to change the state of a memory cell

from 0 to 1 exactly once. In the early 1970s EPROM was invented, which can be erased

by exposure to ultraviolet light and programmed by applying high voltage. EPROM uses

one transistor memory cell, thus it is a high density and low cost non-volatile memory.

For example, early PC designs employed EPROM as their BIOS chip. In the 1980s

EEPROM (Electrically erasable programmable ROM) introduced electrical erase

capacity at byte granularity. Although a single byte could not be rewritten an unlimited

number of times as in RAM, EEPROM provides good endurance - typically over 1

million program/erase cycle. However, EEPROM uses two transistors per memory cell

and cell size cannot be easily scaled, therefore it is expensive and its density is much

lower. Usually EEPROM has been used for storing parameters, user data, and

configuration settings of a device. Flash memory provides a good compromise between

EPROM and EEPROM. Its single transistor per cell architecture provides low cost per bit

and high density comparable to EPROM. At the same time its ability to erase and

program in large blocks provides flexibility comparable to EEPROM. Due to these

characteristics, flash memory can be used both as code and user data storage and it has

been successful in delivering to increasing demand for permanent storage driven by

personal computer market and portable communications systems [12]. Figure 2.1

provides a comparison of various non-volatile memories.

11

Since the introduction of flash memory, many different flash technologies have

been proposed. Among these, 4 types of flash memory have been adopted by industry:

NOR type, divided bit line NOR (DINOR) type, NAND type, and AND type flash

memory. Figure 2.2 shows a historical development of various flash memory

technologies. Out of these four types of flash memory, NOR and NAND flash have been

dominant in volume production and the most widely used among industry - NOR and

NAND flash can be considered as the industry standard. DINOR type flash memory was

introduced by Mitsubishi and AND type was introduced by Hitachi [12, 11]. NOR flash is

mostly utilized as code and parameter storage in embedded systems due to is high speed

random access, and ability to program at byte level. NAND flash is usually used for data

storage in memory cards due to its high speed programming and high speed serial access

[12]. Most recently, NAND flash solid-state disks (SSDs) are becoming popular as hard

disk drive (HDD) replacements in the mobile personal computer market.

12

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

ROM

EPROM1T / cell Programmable and
electrically erasable

Cost

Flexibility

FLASH Programmable and
erasable in system

EEPROM

1T / cell

2T / cell Byte rewrite
capability

Not electrically programmable

Figure 2.1: Comparison of non-volatile memories. Flash memory provides a good
compromise between EPROM and EEPROM and can be used both as code and user data
storage. Figure adopted from [12, 5].

2.2. Flash Memory Cell

Flash memory cell is a single transistor cell using a dual gate MOS device. A floating

gate exists between the control gate and silicon substrate. Floating gate is completely

isolated by dielectrics, therefore can trap electrons and keep its charge [5].

For programming memory cell, NOR flash uses channel-hot-electron (CHE)

injection while NAND flash uses Fowler-Nordheim (FN) tunneling. With the CHE

injection method, MOSFET is properly biased in drain and gate and a large current flows

into the cell. Due to this large current, electrons in the channel gain sufficient energy to

overcome the gate oxide barrier and get trapped in the floating gate. In FN tunneling,

only drain of MOS device is biased and less current is used for programming. Therefore

programming by FN tunneling takes longer than CHE injection but allows many cells to

13

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

8̀4

FLASH

MEMORY

Invention

SanDisk-type

8̀5 8̀6 8̀7 9̀1

NAND-

type

ACEE-

type

AND-type

9̀2

NOR-type

Split-gate-type
SST-type

9̀3

DINOR-type

SanDisk-type

NAND-type

AND-type

NOR-type

SST-type

DINOR-type

x

x

File

Storage

Code

Storage

Figure 2.2: History of flash memory technologies. NOR and NAND type have been
dominant flash memory types in volume production and the most widely used among industry.
Figure adopted from [56].

be programmed simultaneously. Once electrons are trapped in the floating gate, they

cannot escape high energy silicon dioxide barrier even after the device is powered off.

When a flash memory cell is programmed, it is considered logic “0” because when it is

read it cannot conduct a current due to increased threshold voltage by the trapped

charges in the floating gate [11, 63, 5].

In both NAND and NOR flash, cell erasure is performed by FN tunneling. With

negative biasing of the cell gate, a high electric field is formed across gate oxide helping

trapped electrons to overcome the high energy barrier and depart the floating gate. When

a flash memory cell is erased, it is considered storing logic “1” value [11, 63, 5].

2.3. NOR vs. NAND FLASH

In NOR flash memory, memory cells are connected in parallel with common ground

node. NOR type array organization as shown in Figure 2.4. Bitlines are formed by

memory cells sharing the same drain contact and wordlines are formed by flash cells

14

S D

FG

CG

10V

Substrate

5V0V

S D

FG

CG

18V

Substrate

0V0V

CHE Injection FN Tunneling

S D

FG

CG

-18V

Substrate

5V0V

FN Tunneling

(a) Program (b) Erase

Figure 2.3: Flash memory programming and erase mechanisms. (a) In CHE injection,
MOSFET is properly biased in drain and gate and electrons overcome the gate oxide barrier and
get trapped in the floating gate. in FN tunneling, only drain of the MOS device is biased and less
current is used. Once electrons are trapped in the floating gate, flash memory cell is programmed.
(b) To erase flash memory cell, a high electric field is formed across gate oxide. This electric
fields causes electrons to depart floating gate. Figure adopted from [78].

sharing gate contact. This array organization provides high speed direct access to a

memory cell and high noise immunity - 100% guaranteed good bits [12, 5]. On the other

hand, NAND flash memory employs a different array organization. In NAND flash,

several memory cells are connected in series between bit line and ground, thus increasing

the density compared to NOR flash - e.g., 4-5F2 NAND flash memory cell size vs. 9-10F2

memory cell size in NOR flash [63]. Actual sizes of two 64 MB flash memory dies are

shown in figure 2.5 for comparison. Larger NOR flash memory cell size is due to bit line

contact and ground contact for every two memory cells.

Although series connection of memory cells increases density in NAND flash, it

reduces the current for read operation. Reading a single memory cell requires reading

other cells in the same bit line, therefore NAND flash memory cannot provide fast

random access and is usually employed as a serial memory. Moreover, reduced current in

15

Bit line

Word line

Source

Bit line

Word line

Source

Bit line sel.

Bit line sel.

(a) NOR array (b) NAND array

Figure 2.4: NOR and NAND flash memory array organizations. (a) In NOR flash memory,
cells are connected in parallel. (b) In NAND flash, memory cells are connected in series resulting
in increased density. Figure adopted from [12].

read operation makes NAND flash memory much more sensitive to noise and

interference [12].

Fast random access time of NOR flash memory makes it ideal for code storage

since the execution of code requires branching from one memory location to another.

NOR flash memory can provide fully memory mapped random access interface with

dedicated address and data lines, which also makes it better suited for code execution [5,

63]. Moreover, NOR flash memory is very reliable and guarantees 100% good bits. This

eliminates the possibility of system faults and the need for error detection logic. On the

other hand, NAND flash memory is used for data storage due to its serial access

characteristics. Also NAND flash memory provides higher storage density at a lower cost

compared to NOR flash, which makes it better suited for data storage [5].

16

M-Systems

64 MBytes NAND

!
!

!

"! #$%!#&'()%*%+,&-!.%/012&34!567!8-9!5:5;<!7&89!=9=! >=?@7?A=B?AC?"D!

!"#$%&'(&)*+%&",-&.%,/*01(&.*/23,45*6&78&9/&:3;&

! "#$%&'()!*+,-$./')0!!
1/)23456/7!89!!
*%:)(;!<4!$=5!>?>10!

"#$%&'()!*+,-$./')0!
$=5!>3@!AB:)6!

;,&!
0(%E%+210(!
F-,G&!21E,%!
/1,)E1,)&3H!

!!!!!!!!!!!

!!!!!!!!! !

! !!!!!!!!!!! !

;&)-,EI!J! =>KJ!L&EE&2!E(1)!567! !

!

?'!:!CB:4D(E!

5:5;!,-!181,*1L*&!M2%/!=NOP!E%!Q=BOP!

567!,-!181,*1L*&!M2%/!=OP!E%!RBOP!

NCOP!OD.!5:5;?L1-&3!;,-S6).(,0!,-!1L%TE!1!E(,23!%M!E(&!-,G&!!
%M!&UT,81*&)E!NCOP!@E21E1!M*1-(!!

5:5;!,-!L&EE&2!02,'&3!

567!02%8,3&-!1!+%%3!-%*TE,%)!,)!*%$!'101',E,&-!M2%/!=OP!E%!COP!

Q=BOL,E-
V

BQNOL,E- BQNOL,E-

!
!

!

"! #$%!#&'()%*%+,&-!.%/012&34!567!8-9!5:5;<!7&89!=9=! >=?@7?A=B?AC?"D!

!"#$%&'(&)*+%&",-&.%,/*01(&.*/23,45*6&78&9/&:3;&

! "#$%&'()!*+,-$./')0!!
1/)23456/7!89!!
*%:)(;!<4!$=5!>?>10!

"#$%&'()!*+,-$./')0!
$=5!>3@!AB:)6!

;,&!
0(%E%+210(!
F-,G&!21E,%!
/1,)E1,)&3H!

!!!!!!!!!!!

!!!!!!!!! !

! !!!!!!!!!!! !

;&)-,EI!J! =>KJ!L&EE&2!E(1)!567! !

!

?'!:!CB:4D(E!

5:5;!,-!181,*1L*&!M2%/!=NOP!E%!Q=BOP!

567!,-!181,*1L*&!M2%/!=OP!E%!RBOP!

NCOP!OD.!5:5;?L1-&3!;,-S6).(,0!,-!1L%TE!1!E(,23!%M!E(&!-,G&!!
%M!&UT,81*&)E!NCOP!@E21E1!M*1-(!!

5:5;!,-!L&EE&2!02,'&3!

567!02%8,3&-!1!+%%3!-%*TE,%)!,)!*%$!'101',E,&-!M2%/!=OP!E%!COP!

Q=BOL,E-
V

BQNOL,E- BQNOL,E-

!
!

!

"! #$%!#&'()%*%+,&-!.%/012&34!567!8-9!5:5;<!7&89!=9=! >=?@7?A=B?AC?"D!

!"#$%&'(&)*+%&",-&.%,/*01(&.*/23,45*6&78&9/&:3;&

! "#$%&'()!*+,-$./')0!!
1/)23456/7!89!!
*%:)(;!<4!$=5!>?>10!

"#$%&'()!*+,-$./')0!
$=5!>3@!AB:)6!

;,&!
0(%E%+210(!
F-,G&!21E,%!
/1,)E1,)&3H!

!!!!!!!!!!!

!!!!!!!!! !

! !!!!!!!!!!! !

;&)-,EI!J! =>KJ!L&EE&2!E(1)!567! !

!

?'!:!CB:4D(E!

5:5;!,-!181,*1L*&!M2%/!=NOP!E%!Q=BOP!

567!,-!181,*1L*&!M2%/!=OP!E%!RBOP!

NCOP!OD.!5:5;?L1-&3!;,-S6).(,0!,-!1L%TE!1!E(,23!%M!E(&!-,G&!!
%M!&UT,81*&)E!NCOP!@E21E1!M*1-(!!

5:5;!,-!L&EE&2!02,'&3!

567!02%8,3&-!1!+%%3!-%*TE,%)!,)!*%$!'101',E,&-!M2%/!=OP!E%!COP!

Q=BOL,E-
V

BQNOL,E- BQNOL,E-

M-Systems

64 MBytes NOR

(2 x 32 MBytes)

Die photograph

(size ratio

maintained)

Figure 2.5: NAND and NOR flash density comparison. 64 MB NAND chip is about a third
of the size of a 64 MB NOr chip [msystems2003comparison].

Different programming mechanisms and array organizations of NAND and NOR

flash memory result in different performance characteristics. Random access (read) time

of NOR flash memory is significantly better than NAND - 60 ns compared to 10 µs.

NOR flash memory allows writing at byte or word granularity at around 10 µs per byte or

word. Although NAND flash memory write speed is much slower than NOR (200 µs per

byte), simultaneous programming of cells is allowed. When this ability to program cells

in parallel is accounted, NAND flash memory becomes much faster than NOR (200 µs

per sector equivalent to 0.4 µs per byte) [78].

Power consumption and endurance of NAND and NOR flash memories is also

different due to their programming mechanisms. Programming with CHE injection

requires 0.3 to 1 mA of current, whereas FN tunneling uses less than 1 nA per cell for

programming. NAND flash memory consumes less power during write operation even

though it programs multiple cells in parallel. Since FN tunneling is used both for erase

and program operations in NAND flash, its endurance is up to 10 times better compared

to NOR flash [11, 63]. Endurance of flash memory is measured in number of cycles a

memory cell can be erased and reprogrammed. Endurance cycles of 1,000,000 is typical

for NAND flash memory [63]. Table 2.1 provides a comparison of two flash memory

technologies.

2.4. Industry Trends

Flash memory is expected to keep its popularity in the digital consumer electronics

market. At the same time, NAND type flash memory is expanding into high density

storage media market as its bit cost is becoming comparable to the bit cost of

17

conventional storage media such as HDD. In 1994, 16 Mbit NAND flash memory was

available and today 64 GByte NAND flash solid-state disks are replacing hard disks in

high end portable computers. Moore’s law in memory suggests two fold increase in

density every one and a half years. While NOR flash memory scaling has been according

to Moore’s law, NAND flash density has been growing at a rate of two fold increase

18

NOR NAND

Access Random Serial

Read Performance 60 - 120 ns
15 - 30 ns in burst mode

10 - 50 µs
25 - 50 ns in page mode

Write Performance
10 µs/byte or word

200 µs/byte
200 µs/page in page mode

(0.4 µs/byte)

Cell Size (F2) 10 5

Execute in Place (XIP)
Capability

Yes No

Erase Speed Slow Fast

Erase Cycles 10 K - 100 K 100 K - 1M

Interface Full memory interface I/O interface

Capacity Low High

Cost per Bit High Low

Active Power High Low

Standby Power Low High

Reliability High Low
1-4 bit EDC/ECC required

System Integration Easy Hard

Table 2.1: Comparison of NAND and NOR flash [78, 76, 65].

every year - Hwang’s law [39, 74]. Figure 2.6 shows the historical trend of NAND flash

scaling. This scaling of technology has reduced memory cell size more than 50 times in

10 years [41]. Major factors helping this aggressive scaling of NAND flash memory are:

30% lithographic shrinkage with each generation; new floating gate structure and device

isolation, which scaled the cell area down by 50% in each generation; and increase in the

number of memory cells in a string from 16 to 32, which reduced cell overhead by 15%

[74]. Latest developments in NAND and NOR flash memory market by major

manufacturers are listed in Table 2.2. By 2013, NAND flash memory technology is

expected to move beyond 30 nm [6].

Despite this impressive growth, flash memory is also facing its technological

challenges in scaling. More severe floating gate interference, lower coupling ratio, and

less tolerant charge loss will limit NAND flash capacity to scale. Maintaining narrow

erase cell threshold voltage, scaling drain program voltage, and gate length scaling are

some of the technical challenges for NOR flash [74].

19

D
es

ig
n
 R

u
le

 [
u
m

]

0.01

0.001

0.1

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

1

C
el

l
S

iz
e

(u
m

2
)

10

1

0.1

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

Figure 2.6: NAND flash scaling. Historical trend of NAND flash memory technology and cell
size reduction [39, 74]

As flash memory is facing these limitations, another way to continue scaling of

cell size per bit is offered by multilevel cell (MLC) concept. In a single level cell (SLC),

bit 0 is stored if electrons are trapped within the floating gate and bit 1 is stored

otherwise. In MLC memory cells, the amount of electrons trapped in the floating gate are

precisely controlled. This results in a set of threshold voltages for the memory cell. When

the memory cell is read, various threshold voltages cause current value to change within

predetermined levels. Thus a MLC memory cell designed with 2n different levels can

20

April 2006 90 nm, 512 Mbit NOR flash memory chips are available from Intel [49]

December 2006 Intel introduces 65 nm, 1 Gbit NOR flash memory chips [54]

March 2007 STMicroelectronics is offering 110 nm 32 Mbit NOR flash memory in
automotive grade [75]

October 2007 Samsung develops 30 nm, 64 Gb NAND flash memory. 16 of these
memory chips can be combined to achieve 128 GB memory card [27]

December 2007 Hynix will begin mass production of 48 nm, 16 Gb NAND flash memory
chips in early 2008 [22]

February 2008 Toshiba and SanDisk co-developed 43 nm 16 Gb NAND flash memory
chips (NAND strings of 64 cells aligned in parallel, resulting in 120 mm2
chip area) [61]

May 2008 Intel and Micron introduced 34 nm 32 Gbit NAND flash chip. Each chips
is 172 mm2 and 16 of them can be combined for 64 GB data storage. [51]

December 2008 Toshiba unveils 512 GB NAND flash solid state disk based on 43 nm
technology [73]

December 2008 Spansion ships 65 nm 1Gbit NOR flash memory [77]

January 2009 SanDisk and Toshiba expect to ship 32 nm NAND flash memory by the
end of 2009 [52].

Table 2.2: Recent NAND and NOR flash memory developments on the news.

store n bits [5]. Figure 2.7 shows the impact of the MLC concept, especially in increasing

flash memory density in recent years. Today 8Gbit MLC NAND flash memory is

commercially available as a single chip at 0.0093 µm2 per bit [74]. Figure 2.8 shows

various SLC and MLC NAND flash memory chips commercially available from different

vendors [78]. Although MLC has the potential to further increase density by using 4 or

more bits per memory cell, it increases complexity and introduces new challenges to flash

memory design. In order to precisely control the amount of electrons trapped in the

floating gate, programming accuracy should be very high. Also reading a memory cell

will require high precision current sensors and error correction circuitry. These additional

circuitry and the requirement for high precision slows down programming and reading

speeds (up to 3 - 4x) compared to SLC flash memory [5]. Moreover, endurance of MLC

flash is not as good as SLC flash memory. Typically the number of endurance cycles for

MLC flash with 2 bits per cell is 10 times less than SLC flash memory and further goes

down with increasing number of bits per cell [28].

21

Fig. 7. A 2-Gbit NAND Flash memory using 90 nm technology. Volume production is in 2003.

Fig. 8. NAND Flash memory technology roadmap.

Fig. 9. High-density memory production roadmap.

Flash memory technology, ArF will be used for lithography,

while KrF is for the 90-nm technology. The pure tungsten is

being considered to reduce the resistance of the word line.

For the cutting-edge multilevel cell (MLC), the threshold

voltage (Vth) uniformity must be ensured.

Fig. 10. High-density memory growth will surpass the prediction
from Moore’s law.

III. NEW MEMORY GROWTH MODEL IN THE ERA OF

NANOTECHNOLOGY

Based on the discussions in Section II, the overall memory

production roadmap is shown in Fig. 9. Even though the

HWANG: NANOTECHNOLOGY ENABLES A NEW MEMORY GROWTH MODEL 1769

Authorized licensed use limited to: University of Maryland College Park. Downloaded on October 18, 2008 at 09:59 from IEEE Xplore. Restrictions apply.

Figure 2.7: High density memory growth. Figure adopted from [39].

Flash memory scaling and density increase provides new applications and new

directions in the consumer electronics market. For example, scaling of NOR flash enables

the design of mobile DDR interfaced memory. Smaller memory cells make it possible to

manufacture 1 Gbit or more die size with DDR interface speed, allowing chipsets with

single memory controller and common execution bus (DRAM and flash memory

operating at the same frequency). This high performance memory architecture can be

used in the next generation of mobile phones and devices, which can support newer data

transmission standards such as 3G [74]. Another popular item in the consumer electronics

market is NAND flash solid-state disk (SSD). As NAND flash scales and its cost per bit

decreases, SSD’s are becoming a high performance, low power alternative to

conventional hard disks (HDD). Today, consumers can buy 64 GB SSD in high end

portable computers by paying an additional $400-500. Also NAND flash solid-state disks

are in almost all netbooks, which are sold with 4 to 8 GB storage for under $500.

22

9

!"#$%&'$()(*

+,-.

/01..2

!"#$%&'$()(*

+,-.

/!0..2

3"#$4&'$()(*

+,-.

/!1..2

%5.67-8 9:-;< =>6?;#5

3"#$@75A$(BC4

+0-.

/2,..2

%5;D7-

E.58F6G$%F.;H>-A7HI>J$E-6;8?I6K$E-HLK$%5;D7-$%F.;H>-A7HI>J6K$=>6?;#5

/1"#$!#MH$()(*

+,-.

/13..2

=>6?;#5

Multi-level Cell Storage Cost

Advantage

Samsung

4 Gbit SLC NAND

70 nm

156 mm2

9

!"#$%&'$()(*

+,-.

/01..2

!"#$%&'$()(*

+,-.

/!0..2

3"#$4&'$()(*

+,-.

/!1..2

%5.67-8 9:-;< =>6?;#5

3"#$@75A$(BC4

+0-.

/2,..2

%5;D7-

E.58F6G$%F.;H>-A7HI>J$E-6;8?I6K$E-HLK$%5;D7-$%F.;H>-A7HI>J6K$=>6?;#5

/1"#$!#MH$()(*

+,-.

/13..2

=>6?;#5

Multi-level Cell Storage Cost

Advantage

4 Gbit SLC NAND

70 nm

145 mm2

Hynix

9

!"#$%&'$()(*

+,-.

/01..2

!"#$%&'$()(*

+,-.

/!0..2

3"#$4&'$()(*

+,-.

/!1..2

%5.67-8 9:-;< =>6?;#5

3"#$@75A$(BC4

+0-.

/2,..2

%5;D7-

E.58F6G$%F.;H>-A7HI>J$E-6;8?I6K$E-HLK$%5;D7-$%F.;H>-A7HI>J6K$=>6?;#5

/1"#$!#MH$()(*

+,-.

/13..2

=>6?;#5

Multi-level Cell Storage Cost

Advantage

8 Gbit MLC NAND

70 nm

146 mm2

Toshiba

9

!"#$%&'$()(*

+,-.

/01..2

!"#$%&'$()(*

+,-.

/!0..2

3"#$4&'$()(*

+,-.

/!1..2

%5.67-8 9:-;< =>6?;#5

3"#$@75A$(BC4

+0-.

/2,..2

%5;D7-

E.58F6G$%F.;H>-A7HI>J$E-6;8?I6K$E-HLK$%5;D7-$%F.;H>-A7HI>J6K$=>6?;#5

/1"#$!#MH$()(*

+,-.

/13..2

=>6?;#5

Multi-level Cell Storage Cost

Advantage

16 Gbit MLC 4-b/c NAND

70 nm

168 mm2

Toshiba

Figure 2.8: SLC and MLC NAND flash chips. Figure adopted from [78].

Chapter 3: NAND Flash Solid-State Disks

As NAND flash memory cost per bit declines, its capacity and density increase and

endurance improves, NAND flash solid-state disks (SSD) are becoming a viable data

storage solution for portable computer systems. Their high performance, low power and

shock resistance provide an alternative to hard disk drives (HDD).

3.1. SSD vs. HDD: Cost, Performance and Power Comparison

As mentioned in chapter 2, NAND flash memory capacity has been doubling every year

as Hwang’s rule suggests. Migration to lower processing nodes and development of

multi-level (MLC) cell technology have been driving its bit cost lower while improving

its endurance and write performance. Therefore solid-state disks are becoming an

attractive replacement for conventional hard disks.

Many manufacturer’s are currently offering SSD as an optional upgrade for HDD

on high end notebooks for a premium - $400-500 for 64 GB SSD. Although this price is

still considerably expensive for a consumer market where the average notebook price is

below $800, in a couple of years NAND flash SSD prices are expected to be the same as

high end HDDs, as shown in figure 3.1. With this decrease on cost; by 2012, 83 million

SSDs are expected to be sold - 35% notebook attachment rate [28]. In the meantime,

MLC technology enables high density SSDs. Currently 64 GB SLC solid-state disks and

128 GB MLC solid-state disks are available. Toshiba recently announced its 512 GB

NAND flash solid-state disk [73]. High cost and low density have long been considered

as two barriers against straightforward adoption of SSD’s. Once these barriers are

23

lowered, solid-state disks performance, reliability and low power consumption generates

a great value proposition compared to conventional hard disks.

There are number of reviews available online each of which compares the

performance of an SSD against an HDD using various applications as benchmarks. For

example; a sample 64 GB SSD with SATA 3 Gb/s interface performs 9 times faster in

loading applications (e.g., loading office work, outlook, internet explorer, adobe

photoshop) compared to various 7K and 10K RPM hard disks [28]. Another popular

benchmark is startup time for Windows Vista. In this benchmark, performance of a solid-

state disk is reported to be 3 times better than conventional magnetic disks [28]. In order

to better understand the performance difference between conventional hard disks and

solid-state disks, we need to take a closer look into how an I/O request is serviced in both

systems.

Typical characteristics of I/O traffic in personal computers can be described as

bursty, localized in areas of the disk and partitioned 50:50 between reads and writes.

Average I/O request size is 7-9 KB and I/O traffic load is estimated to be around 2.4

24

Figure 1-1: Past and projected costs of magnetic and flash memory storage (courtesy
Samsung Corporation).

will need to be developed in order to fully realize the potential of these devices.

The rest of this thesis is organized as follows. In the next chapter, we describe

NAND flash memory and the techniques that are used to package it into flash disks.

In Chapter 3, we benchmark two commercially-available flash disks from major man-

ufacturers and compare their performance to standard magnetic disks. In Chapter 4,

we examine how flash disks affect the performance and utility of standard B-tree

index structures, and in Chapter 5, we measure the affect of flash disks on join al-

gorithm performance. In Chapter 6, we demonstrate that some of the write-related

drawbacks of flash disks can be overcome using a log-structured storage manager, al-

though doing so incurs a significant (3x) impact on read performance. In Chapter 7,

we provide an overall analysis of our results on flash disks, and in Chapter 8, we

investigate techniques that harness the hardware parallelism inherent in flash disks

to improve performance. Finally, we discuss related work in Chapter 9 and conclude

in Chapter 10.

6

Figure 3.1: SSD and magnetic storage cost projection. Figure adopted from [62].

Mbits per second [38]. We can consider an 8 KB request as a benchmark point and

estimate the average request service for a read and a write request. The conventional hard

disk drive used for this example is 3.5” Deskstar 7K500 from Hitachi - 500 GB, 7200

RPM. For this HDD; command overhead is 0.3 ms, average seek time is 8.2 msec, write

head switch time is 1 msec, average media transfer rate is 48 MB/sec and ATA 133

interface is supported [36]. Given these parameters, the average time for a random 8 KB

read with Deskstar 7K500 is

 0.3 + 8.2 + 4.2 + 0.16 + 0.004 = 12.864 msec

and for a random 8 KB write is

0.3 + 9.2 + 4.2 + 0.16 + 0.004 = 13.864 msec

 As NAND flash memory, we used 16 Gb Micron NAND flash chip. 16 of these

chips can be put together to form a 32 GB solid-state disk. For this SSD, read access time

is 25 µs and the media transfer rate is 19 MB/s [60]. Given these parameters, the average

time for a random 8 KB read with Micron SSD is

 0.25 µs + 411.2 µs = 0.411 msec

and for a random 8 KB write is

800 µs + 102.8 µs = 0.903 msec

The significant amount of time spent on hard disk drives are due to mechanical

components - seek time and rotational latency. NAND flash memory has an inherent

performance advantage over HDD since there are no mechanical components in solid-

state disks. Figure 3.2 shows the mechanical and electrical components of an HDD and

an SSD. On the other hand, hard disks are considerably better in media transfer rate

which can benefit sequential I/O requests. Also I/O traffic generated in personal

computers is localized in areas of the disk, which minimizes disk seek time. Hard disk

25

drives also utilize scheduling algorithms which minimize seek times and access times.

However, solid-state disk performance is still considerably better than hard disks since

they have no mechanical component - essentially zero seek time.

The lack of mechanical components in solid-state disks not only permit better

performance, it also results in significantly less power consumption. For example Hitachi

Deskstar 7K500 consumes 11-13 W while reading or writing. Its idle average power is 9

W, while it consumes 0.7 W in sleep mode [35]. On the other hand a 64 GB 2.5”

Samsung SSD consumes 1 W (200 mA typical active current operating at 5V) in active

mode and 0.1 W in sleep mode [66]. Due to its low power consumption, one of the first

proposals to use solid-state disks in storage systems was as a non-volatile cache for hard

disks. When flash memory cost was high and density was low, hybrid hard disks were

proposed for mobile consumer devices. In these hybrid designs, NAND flash memory

was used as a high capacity (higher capacity than DRAM based disk buffers) standby

buffer for caching and prefetching data, especially when the hard disk was spun down in

26

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Rotating Disks vs. SSDs
Main take-aways

Forget everything you knew about
rotating disks. SSDs are different

SSDs are complex software systems

One size doesn’t fit all

Magnet structure of

voice coil motor

Spindle & Motor

Disk

Actuator

Flash

Memory Arrays

Load / Unload

Mechanism

(a) HDD (b) SSD

Figure 3.2: HDD vs SSD. Mechanical and electronic components of an HDD and an SSD.

sleep mode. This way the hard disk idle times were extended, thus saving power

[bisson_2006]. Figure 3.3 shows a typical hybrid disk drive organization and its power

specifications.

3.2. Endurance: Reality or Myth?

Hard disk drives has always been prone to endurance or reliability problems due to wear

and tear of their mechanical components. Hard disk drive manufacturers have

implemented various techniques to increase the life span of the rotating media and its

components. For example head load and unload zones protects disk during idle times,

dynamic bearing motors help reduce vibrations and increase operational shock ratings.

Today’s hard disk drives typically report three to five years of service life, which is

typically defined as the average time period before the probability of mechanical failures

substantially increase.

For solid-state disks, reliability and endurance is a different concept. Due to lack

of mechanical components solid-state disks are much more reliable and more resistant to

shocks compared to hard disk drives. On the other hand, one of the main concerns with

27

Hard Disk
DRAM Cache

Flash NVM

Hybrid Hard Disk Controller

Read/Write

when Active
Read/Write

when Spun-down

Read / Write

Idle

Stand-by

Capacity

Notebook

Drive

Flash

NVM

2 W 0.17 W

1.8 W 2.5 mW

0.2 W 2.5 mW

60 GB 256 MB

Figure 3.3: Hybrid Hard Disk Organization. An example hybrid hard disk organization with
power specifications. Figure adopted from [8]

flash memory is its endurance. A flash memory cell has a lifetime, it can be erased and

reprogrammed a limited number of times, after which it can no longer hold a charge.

Consumers fear that once they buy a solid-state disk, it will only last a couple of months -

a misconception that has slowed down the adoption of NAND flash solid-state disks.

Endurance of flash memory is measured in the number of cycles - the number of

write updates on a memory location. Typical NAND flash endurance is 100,000 to

1,000,000 cycles for SLC type and 10,000 to 100,000 for MLC type. For example,

assume we have a 64 GB NAND flash memory with an endurance rating of 100,000

cycles. If we are updating the same 64 MB disk block with a sustained write speed of 64

MB per second, then the lifetime of this solid-state disk would only be 28 hours.

Fortunately, flash solid-state disks employ highly optimized wear leveling techniques,

which ensure that write updates are written to different physical locations within the disk

and each memory cell wears out evenly. When wear leveling techniques are considered, a

64 GB solid-state disk with 100,000 endurance cycles can sustain a 64 MB per second

28

SSD

Capacity

Write

GB / Day

33

Years

66

Years

112

Years

71

Years

4.8 GB 12.4 GB 20 GB

141

Years

283

Years

183

Years

365

Years

731

Years
256 GB

128 GB

64 GB

Professional

Student

Personal

Writes

(GB / Day)

5 Year

Writes

12.4 22.6 TB

5.3 9.6 TB

4.4 8 TB

Figure 3.4: SSD Endurance. LDE ratings of a typical SSD based on Bapco mobile user ratings.
Figure adopted from [28, 4].

write load for more than 3 years. Moreover if 1,000,000 endurance cycles are taken into

account, this will increase to more than 30 years. One metric used by the industry to

specify the endurance rating of a solid-state disk is longterm data endurance (LDE). LDE

is defined as the total number of writes allowed in SSD’s lifespan [4]. For example, a 32

GB SLC solid-state disk from SanDisk has an LDE spec of 400 TB, and a 64 GB MLC

model with 100 TB LDE. If Bapco (Business Applications Performance Corporation)

mobile user ratings for a professional is considered, 400 TB LDE corresponds to more

than 17 years [4]. A 17 years lifespan for a solid-state disk is much more than a user

expected lifespan of a data storage system. With these specifications, one can assume that

this limit on the number of writes for NAND flash solid-state disks is theoretical and

should not be a concern in the takeover of hard disks. As said by Jim Elliott VP of

Marketing from Samsung: “Do you need a million mile auto warranty?” [28].

3.3. SSD Organization

In conventional hard disks, data is stored in disk platters and accessed through read and

write heads. Surface number or head number identifies a platter. Each platter has multiple

tracks and each track has a number of blocks depending on its zone. Tracks with the same

track number in each platter form a cylinder. Access granularity is a sector (block) which

has 512 bytes and the location of a block on disk is specified using PBA (Physical Block

Address). PBA is formed by a combination of cylinder number, head number, and sector

number.

Solid-state disks use a memory array structure different than hard disk drives.

NAND flash memory is organized into blocks where each block consists of a fixed

29

number of pages. Each page stores data and corresponding metadata and ECC

information. A single page is the smallest read and write unit. Data can be read from and

written into this memory array via an 8-bit bus. This 8-bit interface is used both for data,

address information, and for issuing commands. Flash memory technology does not

allow overwriting of data (in-place update of data is not allowed) since a write operation

can only change bits from 1 to 0. To change a memory cell’s value from 0 to 1, one has to

erase a group of cells first by setting all of them to 1. Also a memory location can be

erased a limited number of times, therefore special attention is required to ensure that

memory cells are erased uniformly. Despite these differences in storing and accessing

data, solid-state disks still assume a block device interface. From host’s file system and

virtual memory perspective, there is no difference accessing a HDD or a SSD.

Figure 3.5 shows a 32 GB NAND flash solid-state disk architecture from

Samsung [64]. Depending on the capacity of the disk, several flash memory arrays are

banged together with dedicated or shared I/O bus. An 8 bit I/O bus is an industry wide

standard to keep memory chip pin counts the same across different manufacturers. Once

30

Ctrl

IDE

ATA

SCSI

Host

x16

S
R

A
M

MPU

ECC

D
at

a
B

u
ff

er

x32

Flash Translation

Layer

Data

&

Ctrl

x32

F
la

sh
 C

o
n
tr

o
ll

er

x16

x8

x8

x16

x8

x8

Flash

Array

Flash

Array

Flash

Array
Flash

Array

Host I/F

Layer
NAND I/F

Layer

Figure 3.5: Solid-state Disk Organization. Organization of a conventional 32 GB NAND flash
SSD. Figure adapted from [64].

several flash memory arrays are organized to achieve desired capacity and bandwidth,

they are accessed through NAND interface layer. This layer consists of a flash controller

which implements internal read, write and erase commands and controls timing of

address, data, and command lines. NAND interface does not specify dedicated lines for

address, data, and command signals as an 8 bit I/O bus is shared for all - chip pin count is

limited to reduce cost.

NAND flash solid-state disks assume a block device interface. Currently used

interfaces are Fiber Channel (FC), parallel SCSI (Small Computer System Interface),

parallel ATA (Advanced Technology Attachment), serial ATA (SATA), and serial attached

SCSI (SAS). User’s systems (traditionally called host) communicates to the block device

through one of these protocols. The host interface layer is responsible for the decoding

host system commands and transferring them to a flash translation layer (FTL). FTL layer

converts requests’ logical block address into physical page address in the flash memory

and initiates read/write commands in the NAND interface layer. Address translation is

one of the many activities of FTL later. Although flash memory lacks the mechanical

complexities of a conventional hard disk, it has its own peculiarities. Since flash memory

does not support the in-place update of data, every write request for a specific logical

block address results in data to be written to a different physical address with every

update. Therefore, logical to physical address mapping in flash memory is much more

complicated and requires a dynamically updated address table. Moreover, FTL also

implements wear leveling algorithms. Wear leveling ensures that memory cells in an

array are equally used - homogeneous distribution of erase cycles. As mentioned before,

31

wear leveling is very important in ensuring a long lifespan for solid-state disks. In

addition to wear leveling, FTL also implements other features of flash memory such as

effective block management, erase unit reclamation, and internal data movements. Also,

since there are multiple flash arrays, multiple I/O commands can be processed in parallel

for improved performance. FTL layer is responsible in extracting maximum performance

by using various types of parallelisms while keeping power consumption and cost at a

minimum. One would consider FTL layer as the differentiating factor between different

SSD manufacturers as it bundles proprietary firmware.

3.3.1. Flash Memory Array

NAND flash memory is organized into blocks where each block consists of a fixed

number of pages. Each page stores data and corresponding metadata and ECC

information. A single page is the smallest read and write unit. Earlier versions of flash

memory had page sizes of 512 Bytes and block sizes of 16 KBytes (32 pages). Currently

a typical page size is 2 KBytes (4 sectors of 512 Bytes each), and a typical block size is

128 KBytes (64 pages). The number of blocks and pages vary with the size of the flash

memory chip. Earlier flash devices with 512 Bytes page sizes are usually referred to as

small-block NAND flash devices and devices with 2 KBytes page sizes are referred to as

large-block. In addition to storage cells for data and metadata information, each memory

die includes a command register, an address register, a data register, and a cache register.

Figure 3.6 shows NAND flash memory array organization for a sample 1 Gbit flash

memory from Micron [59]. Larger density flash arrays are usually manufactured by

combining several lower density flash arrays in a single die - multiple planes in a die. For

32

example, 2 Gbit Micron flash memory is two 1 Gbit arrays on a single die (2 planes in a

die). Furthermore, two dies can be stacked together to form a 4 Gbit flash memory. These

two dies can operate independently or together, depending on the model and

configuration. Figure 3.6 also shows 16 Gbit flash devices from Samsung and Toshiba,

where multiple planes are visible. Samsung’s 16 Gbit NAND flash is MCL type and

33

I/
O

 C
o
n
tr

o
l

I/O

Column

R
o

w

Data Reg

Cache Reg

Control

Logic

Cmd Reg

Status Reg

Addr Reg

CE#
W#

R#

Flash Memory Bank

Data Reg

Cache Reg

2K bytes

1 Block

1 Page = 2 K bytes

1 Blk = 64 Pages

1024 Blocks per Device (1 Gb)

Flash

Array

Fig. 7. A 2-Gbit NAND Flash memory using 90 nm technology. Volume production is in 2003.

Fig. 8. NAND Flash memory technology roadmap.

Fig. 9. High-density memory production roadmap.

Flash memory technology, ArF will be used for lithography,

while KrF is for the 90-nm technology. The pure tungsten is

being considered to reduce the resistance of the word line.

For the cutting-edge multilevel cell (MLC), the threshold

voltage (Vth) uniformity must be ensured.

Fig. 10. High-density memory growth will surpass the prediction
from Moore’s law.

III. NEW MEMORY GROWTH MODEL IN THE ERA OF

NANOTECHNOLOGY

Based on the discussions in Section II, the overall memory

production roadmap is shown in Fig. 9. Even though the

HWANG: NANOTECHNOLOGY ENABLES A NEW MEMORY GROWTH MODEL 1769

Authorized licensed use limited to: University of Maryland College Park. Downloaded on October 18, 2008 at 09:59 from IEEE Xplore. Restrictions apply.

(a) 1 Gbit Flash Memory

(b) 2 Gbit Flash Memory

1/18/09 10:00 AMEETimes.com - 16-Gbit MLC NAND flash weighs in

Page 1 of 4http://www.eetimes.com/showArticle.jhtml?articleID=201200825

For a full archive of articles and related

On-Demand seminars, click here

 Your ad here. Buy Media Now

EE Times:

16-Gbit MLC NAND flash weighs in

Young Choi, Semiconductor Insights

EE Times
(07/30/2007 9:00 AM EDT)

To meet increasing demand for more digital storage,
leading flash memory manufacturers are touting their
latest single-chip 16-Gbit MLC NAND flash devices.
Earlier this year, Toshiba announced a 16-Gbit MLC NAND flash
manufactured in the 56-nm process node. Samsung, meanwhile, introduced
a 16-Gbit MLC NAND flash using a 51-nm process, a half a process node
ahead of Toshiba's.

Developing MLC NAND flash memories
within the 50-nm range process node
requires overcoming many technical
challenges, from both a process and
circuit design perspective. Some of the
issues that must be addressed are the
proper layout design of bitlines and surrounding dummy patterns; the
placement of P-well bias; efficient self-boosting circuitry for row decoder and
wordline switches; efficient and reliable high-voltage pump circuitry; and
efficient read, programming, erase and verify algorithms to guarantee reliable
operations with reduced charges stored in smaller flash memory cells.

Semiconductor Insights has analyzed the latest 16-Gbit MLC NAND flash
devices from both Toshiba and Samsung. Initial results showed that both
devices achieved impressive die area and Mbit/mm ratings for storage with
some architectural changes from previous designs. More details of the new
designs will be disclosed after further analyses of the architecture and
circuits, process and device characteristics, and waveform analysis to show
the innovations Samsung and Toshiba have made.

Samsung 16-Gbit NAND
In its latest 16-Gbit MLC NAND flash device, Samsung has simplified the
floor plan and architecture from the previous-generation 65-nm 8-Gbit MLC
NAND flash device. There are two row decoder areas, which split the
memory array into four 4-Gbit arrays. Page buffers are now all consolidated
in one side of the chip, as opposed to having two halves on either side of the
memory array in the previous-generation product.

Die photograph of Samsung's 51-nm 16-Gbit MLC NAND flash

device.

Samsung still has the bonding pads on both sides of the chip, but the 16-
Gbit device has pads on both edges in the wordline direction, apparently to
improve power distribution. The previous generation has pads in the bitline
direction.

 Your ad here. Buy Media Now

INDUSTRY SUPPLIERS

Solid State Drives for high performance, endurance & reliability of
laptop applications - Toshiba NAND

Get a better disk drive alternative with embedded high-capacity,
on-board memory - Toshiba NAND

Meet your electronic design challenges with our range of solution
providers - Industry Suppliers

More Industry Suppliers »

 Related Products

• 1.5A step down regulator
supports green home/office
appliances

• 3-mm infrared emitter
delivers 65-mW/sr radiant
intensity

• Optimized AV codecs for
streamlined multimedia
product development

• Image sensor boasts better
sensitivity for webcams,
surveillance, automotive and
toys

• Phyworks shifts transceivers
design to CMOS

Marketplace

Download ADI’s
VisualDSP++ Development
Software
Use VisualDSP++ software for
ADI processors in a wide range

FEATURED
TOPIC

ADDITIONAL
TOPICS

Embedded Forum:
Solve your design
challenges today

Get expert advice
on your embedded
design at the

Ready for a change? Open | Close

CAREER CENTER

1/18/09 10:00 AMEETimes.com - 16-Gbit MLC NAND flash weighs in

Page 2 of 4http://www.eetimes.com/showArticle.jhtml?articleID=201200825

direction.

Toshiba 16-Gbit NAND
Toshiba's latest device has the same overall architecture and floor plan as its
previous-generation 70-nm 8-Gbit MLC NAND flash. The page buffer size
has been increased to 4 kbytes from 2 kbytes. The chip has two 8-Gbit flash
memory arrays divided by row decoders.

Die photograph of Toshiba's 56-nm 16-Gbit MLC NAND flash device.

As with the preceding device, all bonding pads are in one side of the chip.
Toshiba appears to have a different architecture in its 8-Gbit manufactured in
the same 56-nm process node. According to an "IEEE Journal of Solid-State
Circuits" paper published in January, the 8-Gbit design appeared to have 4
kbytes of page buffers located between two 4-Gbit flash memory arrays. In
16-Gbit design, however, the page buffers are along the side where the
bonding pads are, and the row decoders are between two 8-Gbit arrays. By
placing row decoders, page buffers and all bonding pads on one side, the

latest Toshiba 16-Gbit device achieved efficient floor plan with only 173mm2

of chip size. Toshiba apparently has overcome challenges with internal power
distribution and stability by putting all power pads on one side of the chip.

By migrating their production to 5x-nm process node, both Samsung and

Toshiba have achieved 40 percent improvement of Mbit/mm2 with only a 20
percent increase in chip size from their previous 8-Gbit designs. Samsung's
design appears to have achieved about a 5 percent smaller chip size due to
its smaller feature-size advantage over Toshiba.

(Click on image to enlarge)

Road map to more bits per cell
While flash makers continue to develop more advanced flash technology
beyond 40 nm and 30 nm, increasing bit density by enhancing MLC
technology to 3 bits per cell is being pursued at the 5x-nm process node.
Toshiba and SanDisk are reportedly developing 3-bit-per-cell technology at
their 56-nm process node to develop a 24-Gbit flash memory device. The 3-
bit MLC technology will also produce 48-Gbit MLC NAND flash memories in
the 40-nm generation.

Precise placement of eight unique threshold voltages to the flash memory
cells and performing error correction would be challenges for developing 3-bit
technology. The 4-bit technology is expected to emerge at the 40-nm
process node. MLC technology for 3 bits per cell and 4 bits per cell is
expected to be critical for companies to remain competitive in 2009 through
2011.

Other challenges
Availability of single-chip 16-Gbit MLC NAND flash memory devices is
expected to stimulate the market for applications such as solid-state disk and
hybrid hard drive. Samsung has announced a 64-Gbyte SSD using the latest
51-nm 8-Gbit SLC flash devices (equivalent to 16-Gbit MLC). Intel, for its
part, has its Turbo Memory support for Windows Vista. SSD's faster boot
times and application startup times, and its enhanced reliability and battery
life, should spur the adoption of SSDs and HHDs in the notebook market.

ADI processors in a wide range
of applications. Register Today!

Advertise With Us

Variability Aware Modeling and
Characterization in Standard
Cell in 45 nm CMOS with
Stress Enhancement
Technique

The basics of phase change
memory (PCM) technology

10 Tips for Creating an
Exceptional Electronics White
Paper

All White Papers »

Embedded Forum

Get advice on
COM Express
design at the
Embedded Forum

Whitepaper on
industrial
multicore
performance

Discussion: new
generation of
solution for mid-
size VPN
appliances

 Sponsored Products

 Site Features

Calendar Events
Conference Coverage
Forums
Career Center
Multimedia

Column Archive
Special Reports
Subscriptions
 Print | Digital

 RSS

Samsung

16 Gbit

(4x4 Gbit)

Toshiba

16 Gbit

(2x8 Gbit)

(c) 16 Gbit Flash Memory

Figure 3.6: Flash Memory Array. (a) NAND flash memory organization. A typical 1 Gb flash
memory array consists of 1024 blocks. Each block contains 64 pages of 2 KB each. Figure
adapted from [59]. (b) Sample 2 Gbit NAND flash memory in production in 2003 using 90 nm
technology [39]. (c) Die photograph of Samsung’s 51 nm and Toshiba’s 56 nm 16 Gbit NAND
flash memory chips [20].

manufactured using 51 nm technology. 16 Gbit is divided into 4 4-Gbit arrays. Page

buffers are all in one side of the device but bonding pads are located in both sides for

better power distribution. Toshiba’s 16 Gbit NAND flash is also MLC type but

manufactured using 56 nm technology. It uses two 8-Gbit memory arrays. One difference

with this device is that data and cache registers are 4 KB instead of the more common 2

KBytes [20]. This suggests that each of two 8-Gbit arrays is indeed a two plane memory

array operating in synch - 2 KBytes data and cache registers from both planes are

combined and operate as one.

3.3.2. NAND Flash Interface

NAND flash memory supports 3 operations: read, write (program), and erase. 8 bit I/O

bus is used for the interface without any dedicated address and command lines. As

mentioned before, the smallest access unit for read and write is a page and erase

operation is applied to an entire block.

To read a page, one issues a read command to the command register and writes

the block number and the page number within the block into the address register.

Complete page data (2 KBytes) will be accessed in tR time and will be loaded into the

data register. The typical value for tR is 25 µs. Afterwards data can be read from data

register via 8 bit I/O bus by repeatedly pulsing RE (Read Enable) signal at the maximum

tRC rate. Earlier solid-state disks could pulse RE at a rate of 20 MHz. Currently, a 33 or

50 MHz rate is common. In addition to a read command, NAND flash interface also

supports random read and read cache mode operations. Random read can be used when

only a sector is required from a page. When a page is accessed and loaded into the data

34

register, a specific sector (512 Bytes) within the page can be addressed and transferred

via I/O bus. If sequential pages need to be accessed, the read command can be used in

cache mode to increase the data transfer rate. In this mode, when the first page is loaded

into the data register, it will be transferred from the data register to the cache register.

Typically, copying data from the data register to the cache register takes 3 µs. While data

is being read out from the cache register by pulsing RE, subsequent page can be accessed

and loaded into the data register. Depending on the manufacturer, read in cache mode can

have restrictions. One common limitation is that sequential pages have to be within a

block - crossing block boundaries is not permitted. Figure 3.7a-b shows sample timing of

read and read cache mode operations.

Similar to a read command, a write or program command has to be issued at the

page level, and pages within a block have to be written in sequential order. To program a

page, one issues a write command to the command register, writes a block number and

page number into the address register, and loads data into the data register. The data will

then be programmed into the target page in tW. The typical value for tW is 200 µs. To

program more than a page, write command can be used in cache mode, which is similar

to read in cache mode command. In write cache mode, data is first loaded into the cache

register and then transferred from the cache register to the data register. While page is

programmed using data from the data register, data for the subsequent page can be loaded

into the cache register via 8 bit I/O bus. One of the limitations of page programming is

that, pages within a block must be programmed consecutively from the first page of the

block to the last page of the block. Figure 3.7c-d shows sample timing of write and write

35

36

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd Addr

5 cycles
0.2 us

25 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array Data is read out

Read 2 KB
(1 Page)

Rd0

DO0

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed
while data for
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Cmd

5 cycles
0.2 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Page is
programmed

200 us

Write 2 KB
(1 Page)

Addr DI0

Pr0

Cmd

3 cycles
0.12 us

I/O [7:0]

R/W

Block is erased,
device is busy

2 ms

Erase 128 KB
(1 Block)

Addr

Erase0

(a) Read

(b) Read

Cache Mode

(c) Write /

Program

(d) Write /

Program

Cache Mode

(e) Erase

Figure 3.7: NAND Flash Interface. Timing diagram of read and write commands. 25 µs, 200 µs,
40 ns and 2 ms is used as typical values for tR, tW, tRC and tE successively

cache mode operations. Timing of a read request is heavily dependent on I/O bus speed,

while timing of write requests is determined by how quickly a page can be programmed.

Write operation in flash memory can only change bit values from 1 to 0. The only

way to change bit values from 0 to 1 is by erasing. Unlike read and write commands,

erase command can only be performed at block level. Once issued, all bit values in all

pages within a block are set to 1. To erase a block, one issues an erase command to the

command register and loads the block number into the address register. Flash memory

will then set its status to busy for tE while the erase operation is performed and verified.

The typical value for tE is 2 ms. Figure 3.7e shows sample timing of an erase operation.

3.3.3. LBA-PBA Mapping

One of the limitations of flash memory is that memory cell bit values can only be

changed from 0 to 1 by erasing blocks of memory. A typical block size used in current

solid-state disks is 128 KB and a sector size for a block device is 512 bytes. Therefore, if

a sector within a block needs to be updated, a sequence of operations must be performed.

First, the entire 128 KB block is read out to RAM, which takes 5 to 6 ms. Second, the

block will be erased to be ready for the update, which takes 2 ms. Then the sector within

the block will be updated in RAM and the entire block will be written back to flash

memory, which takes almost 13 ms. Given that the average write request size for a typical

personal computer disk workload is 7-9 KB [38], this long sequence of events will be

repeated with almost every write request. More important, some blocks of flash memory

will be erased more often due to frequent localized I/O requests, which will cause flash

memory to wear unevenly.

37

In order to address this performance and wear problem, flash memory solid-state

disks do not support the in-place update of data. Rather, every write request for a specific

logical address results in data to be written to a different physical address. Therefore,

NAND flash memory uses dynamically updated address tables and employs various

mapping techniques to match a logical block address requested by the host system to a

physical page or block within flash memory. These mapping techniques are implemented

at FTL layer and much more complicated than logical to physical address mapping in

conventional hard disk drives. Block mapping, page mapping, virtual-physical address

mapping, LBA-PBA mapping are all commonly used terms to address these sophisticated

mapping algorithms and data structures.

Most of the typical address mapping algorithms use two map tables. A direct map

table will provide the physical location of data using its logical address. An inverse map

table will store with each block of data its logical index and is used to generate the direct

map table.

An inverse map table is distributed and stored in the flash memory with original

data using header fields, preamble fields or ECC/CRC fields. Typical sector size for most

disk drives is 512 Bytes. In addition to 512 Bytes of data, each sector also stores header

information, preamble fields, ECC, and CRC fields. In flash memory solid-state disks

each 2 KB page actually consists of 2 KB of data and 64 bytes of reserved space for ECC

and metadata information. The logical index for a page can be included into the metadata

information. Also in some flash memory implementations, one page in each block -

typically the first page or the last page - may be reserved for logical index data. When

38

flash memory is powered up, the FTL layer will read through flash memory and use

logical index data for each page or block to construct a direct map table.

A direct map table can be stored fully or partially in SRAM. Storing a direct map

table fully in RAM would be the ideal case since it will be accessed for each read and

write request and fast look-up is essential for performance. On the other hand, SRAM is

one of the most expensive components of flash memory and its size is the deciding factor

in the cost of a solid-state disk. Depending on performance and cost requirements, direct

address mapping is implemented at block granularity or at page granularity or a

combination of both.

When block mapping is implemented at block granularity, the logical address of a

request is divided into two parts: virtual block number and sector offset within the block.

Direct map table is then queried using a virtual block number and mapped to a physical

block number. Combination of a physical block number and a sector offset is used to

access data for a read request. In the case of a write request, all sectors of the physical

block are read, requested sector is updated and data is written back into a new, free block.

Afterwards the virtual block number in the direct map table is updated with the new

physical block number and the old physical block is marked as invalid. When mapping is

implemented at block granularity, only virtual to physical block addresses need to be

stored in a direct map table. In a typical 32 GB solid-state disk, assuming the page size is

2 KB and the block size is 64 pages, there are 262144 blocks. This would require 18 bits

to store a physical block address. Assuming direct map table is an array which stores

physical address of logical block i at its ith location, the size of the table would be less

39

than 1 MB. The cost of storing this direct map table in an SRAM would not be high. On

the other hand, performance would suffer because every write request involves reading

valid sectors from memory, updating a sector and programming an entire block. Figure

40

Page0
1
2
3

Sectors 0-3

Block 0 Block 1

Block 2 Block 3

Free

Free Free

Valid
Free
Invalid

0

1

2

3

0

Direct Map Table

Logical-Physical

Block #

Page0
1
2
3

Sectors 0-3

Block 0

0

1

2

3

0

4 KB write request

to sectors 20-27

1

Virtual block # 1

Sector offset 4
2

Physical block # 0

Sector offset 4
3

Current

Working

Free Block

Read old data

into temp space

4

Update

sectors 20-27

in temp space

6

Block 3Block 00

1

2

3

3

Write new data to block 3

Update map table

Mark block 0 invalid

Set block 2 as working free block

5

Page0
1
2
3

Sectors 0-3

Block 0 Block 1

Block 2 Block 3

Free

Free Free

Direct Map Table

Logical-Physical

Page #

Current

Working

Free Block

0

1

2

3
4

5

6

7

12

13

14

15

0

1

2

3

Page0
1
2
3

Sectors 0-3

Block 0

4 KB write request

to sectors 20-27

1

Virtual page # 5

Sector offset 0
2

Physical page # 1

Sector offset 0
3

Mark old

pages invalid

6

Update map table
5

0

1

2

3
4

5

6

7

12

13

14

15

0

1

2

3

Block 3

Write new data

into working free block

starting from first

available page

4

0

1

2

3
4

5

6

7

0

12

13

3

(a) Block address mapping

(b) Page address mapping

Figure 3.8: Address Mapping. (a) 4 KB write request with address mapping at block granularity.
(b) 4KB write request with address mapping at page granularity. (Page sizes of 2 KB - 4 sectors -
and block sizes of 4 pages is assumed)

3.8a shows a sequence of events for a sample write request when address mapping is

implemented at block granularity.

 When block mapping is implemented at page granularity, the logical address of a

request is divided into a virtual page number and a sector offset within the page. Upon

receiving a read or write request, the direct map table is queried to map the virtual page

number to the physical page number. If the request is a write request, a free page is

allocated from a working free block. New data is written into this free page while the old

page is marked invalid and the direct map table is updated. Typically 2 KB is the standard

page size and an average I/O request size is 7-9 KB [38]. This provides a good alignment

between I/O requests and page boundaries, which results in better performance. On the

other hand, mapping at page granularity would require 48 MB SRAM to store a direct

map table for a typical 32 GB solid-state disk.

Although address mapping at page granularity delivers performance, SRAM costs

can be too high, especially when solid-state disk densities are increasing beyond 64 GB.

Therefore,a hybrid mapping technique is usually implemented. The typical personal

computer I/O traffic is highly localized. There are hot spots in the disk accessed by

frequent small writes and cold spots which are accessed infrequently by larger requests.

Instead of implementing a direct map table as a static array, dynamic data structures can

be used for increased flexibility. When a request pattern is detected as hot data, address

mapping is implemented at page granularity. For other infrequent cold data, mapping is

kept at block level. In some implementations, address mapping may be stored partially in

flash memory itself. Address mapping algorithms and techniques for flash memory are an

41

active research area. There are also several patents filed, which are adopted as standard

by industry. A comprehensive survey by Gal and Toledo provides details of various

mapping algorithms and techniques used in flash memory [31].

3.3.4. Block Cleaning

Over time as write requests are serviced and new free physical pages are allocated for

these write requests, the number of pages with invalid data increases. To service future

write requests, blocks with these invalid pages need to be cleaned via the erase operation.

This is a block cleaning process and is managed by the FTL layer and flash controller.

Block cleaning may also be referred to as block reclamation or garbage collection.

Block cleaning is a long latency operation, which can have significant

implications on the performance of a solid-state disk. When a block is claimed for

cleaning, all valid user data must be moved before the block is erased. Block erasure is a

long but fixed latency operation - typically 1.5 to 3 ms. However, copying valid used data

to another location is dependent on the number of valid pages and the location of the

target block. If valid user pages can be moved to another free block within the same flash

memory chip or plane, fast internal data move operations may be used. Otherwise, valid

data has to be read by the flash controller via 8-bit I/O bus and written to another flash

memory array. With internal move operation, a page will be read into the cache register

and then moved into the data register. While data from the data register is written to a

different location, the next page will be read into the cache register. For example, assume

a block is claimed for cleaning and half of the pages within the block have valid user data

(32 pages out of 64 possible). If the valid user data can be moved to a different block

42

within the same memory bank or within the same die in a memory bank, the internal data

move operation will take 1 page read (read first page), 31 interleaved page read and write

operations and 1 page write (write last page). Assuming 25 µs for page read, 200 µs for

page write and 3 µs for cache-to-date register transfer, it will take 6.521 ms to move valid

data. This will add to the already long latency of the block erase operation. If copying of

the valid data cannot be performed within the same memory bank or die, then data has to

be read and written via 8-bit I/O interface, which will take even longer than 6.521 ms.

Firmware implemented at FTL or flash controller layer decides the timing of the

block cleaning process, which blocks to claim for cleaning and where to move the valid

user data in the reclaimed blocks. This is a run-time resource allocation problem with

many constraints and several block cleaning algorithms have been suggested in the

literature. Baek et. al. provides a comprehensive analysis of block cleaning, a detailed

model for cost of block cleaning and an approach of clustering user data into hot and cold

to reduce this cost [2, 3].

3.3.5. Wear Leveling

As mentioned in section 3.2., one of the main concerns with flash memory has been its

endurance. Wear leveling techniques have been critical in overcoming this concern. Wear

leveling is also a constraint in the block cleaning process - in deciding which block to

claim for cleaning.

The main goal of wear leveling is to make sure that frequent localized write

requests do not result in some blocks being erased more often, which will cause flash

memory to wear unevenly. The ideal is all blocks are equally used - homogeneous

43

distribution of erase cycles among blocks. It is important to note that wear leveling and

block cleaning place contrary restrictions on block management. Block cleaning requires

some form of hot and cold data clustering so that frequent localized write requests may

be separated from infrequent updates to reduce the cost of cleaning [2, 3]. But such

clustering of data also results in frequent erasure for blocks storing frequently updated

data, resulting in a non-homogeneous distribution of erase cycles. An efficient wear

leveling algorithm for large scale flash memory systems is presented by Chang [17].

44

Chapter 4: Related Work

Prior research on flash memory systems has mostly been on the design of various FTL

algorithms and the development of hybrid memory systems. There has been limited

publications on the internals of solid-state disks and their performance characteristics. In

this chapter, we will first discuss testing methodologies and simulation techniques used in

prior research on flash memory systems. Second, we will discuss previous studies on the

performance of flash memory systems and the interplay between memory architecture

and performance. The rest of the chapter will be on hybrid memory systems and flash

memory data structures and algorithms, such as page mapping, block cleaning, and wear

leveling algorithms.

4.1. Flash Memory Simulations

Very little has been published on the internals of solid-state disk drives; less has been

published on the performance resulting from various design options. The majority of

studies have either been on the development of algorithms and data structures for various

FTL functionality (such as address mapping, block cleaning, wear leveling) or the

development of hybrid memory systems. In a hybrid setting, flash memory is often

utilized as a cache for hard disk drives to reduce overall power consumption of I/O

systems. There have been 2 different testing methodologies used in these studies.

One methodology is employing an embedded system or a prototype system with

commodity flash memory attached to it. Baek et. al. uses an embedded system with an

XScale PXA CPU, SDRAM, and NAND flash memory running Linux kernel and YAFFS

to manage flash memory. In their simulations they compare modified YAFFS against

45

native YAFFS [2, 3]. Bisson and Brandt use a small amount of flash memory (NVCache)

in a hybrid disk drive. They evaluate benefits of their hybrid disk drive by

interconnectiong flash memory and hard disk drive over USB 2.0 and using a modified

Linux kernel. By implementing NVCache in Linux Kernel, I/O requests are intercepted

and redirected to flash memory [8, 9]. In his thesis Myers analyzed the use of NAND

flash memory in relational databases and used two 32 GB commodity solid-state disks.

Both disks are attached to a system using ext2 file system running with Linux kernel with

4 GM RAM [62]. Birrell et. al. uses a testing environment where commodity USB flash

memory drives are attached to a Win32 file system. A USB analyzer is used to measure

read and write latencies [7]. Dumitru uses a similar approach in testing read and write

performance of commodity flash solid-state disks and compares them against commodity

hard disk drives [26]. Gray and Fitzgerald use I/O benchmark tools SQLIO.exe and

DiskSpd.exe in testing random read and write performance of a beta NAND flash 32 GB

solid-state disk. These bechmark tools are used in generating 1, 2 or 4 outstanding I/O

requests with variable block sizes [34]. In a similar study, Kim and Ahn use a real

hardware prototype system with MLC NAND flash memory and test read/write

performance using a series of benchmark tools such as PCMark, IOMeter, and Postmark

[44]. Park et. al. uses a third party benchmark tools to compare performance of

commodity HDDs and SSDs. Both disk drives are attached to a Samsung notebook [69].

Yoon et. al. uses a prototype system of their Chameleon Hybrid SSD architecture. This

prototype system includes 4 flash memory modules attached to a development board

together with an ARM7TDMI test-chip running at 20 MHz, a Xilinx Virte II FPGA chip

46

(implements FTL), and 64 KB SRAM. PCMark benchmark tool is used for testing [80].

In a more detailed study, Parthey and Baumgartl rely on black-box testing of 19 different

commodity flash memory drives. The drives are connected via USB 2.0 card reader to an

AMD64 Athlon computer running Linux [70]. Although testing commodity flash memory

drives provides valuable information on the performance of real systems, the amount of

information available is often times very limited. Without the knowledge of the internal

workings of the item tested it is hard to identify design parameters and their impact on

overall performance of the I/O system. On the other hand more information can be

obtained by simulations.

Simulating an I/O system is flexible, detailed, convenient, and provides intuition.

However there has not been any publicly available simulators for flash memory systems.

In their study on I/O performance optimization techniques for hybrid hard disk drives,

Kim et. al. utilized a hybrid disk simulator, SimHybrid. SimHybrid consists of a hybrid

hard disk controller, DRAM device model, a disk device model and SimFlash which is a

flash memory simulator. SimFlash models a 1GB NAND flash memory [48]. SimFlash’s

default flash memory of 1 GB does not scale to the capacity of solid-state disk drives and

there is no information on the availability of it. In analyzing use of flash memory file

cache for low power web servers, Kgil and Mudge also use a 1 GB flash memory model

and integrate it as a page cache into M5, full system architectural simulator [43]. Other

studies which focus entirely on flash memory use a series of simulators for performance

verification [15, 16, 81, 17, 13, 25, 47, 18, 19]. There is no information on the

implementation details of these simulators or on their availability. This suggests that these

47

simulators are only limited to testing and the verification of specific data structures and

algorithms proposed in their respective studies. Therefore, we intend to develop a NAND

flash memory simulator to be used in studying any solid-state disk storage system

architecture, all while providing the illusion of representing a hard disk drive to the host

system.

We have modeled our flash memory code and integrated it into DiskSim v2.0.

DiskSim is an efficient and accurate disk system simulator and can be easily ported into

any full-system simulator [32]. Our modified version of DiskSim can simulate a

generalized NAND flash SSD by implementing flash specific read, program, erase

commands, block cleaning, LBN-PBN mapping. Our default model simulates a 32 GB

NAND flash SSD and can easily be extended beyond 32 GB capacity. More details of our

NAND flash solid-state disk simulator is available in chapter 5. In a parallel effort,

another extension of the DiskSim simulator for SSDs has been made available from

Microsoft Research [71]. This SSD extension also provides an idealized NAND flash

SSD model and provides limited support [1]. Our flash memory SSD simulator is based

on DiskSim v.2.0 and Microsoft Research's SSD Extension is based on DiskSim v4.0.

Other similarities or differences between our flash memory simulator and this SSD

extension for DiskSim is not available to our knowledge.

4.2. Flash Memory Architectures and Performance

What has received relatively little attention is the interplay between SSD organization

and performance, including write performance. As previous studies have shown [23, 1],

the relationship between memory-system organization and its performance is both

48

complex and very significant. Very little has been published on the internals of solid-state

disk drives; less has been published on the performance resulting from various design

options. Min and Nam described basics of flash memory and its technological trends in

[58]. They also outlined various enhancements in the performance of flash memory such

as write request interleaving and need for higher bus bandwidth. Request interleaving can

be implemented within a chip or across multiple chips and will also benefit read and

erase latency. Higher bus bandwidth is another technique which is already being

employed by OneNAND bus architecture - 16-bit 108 MBps bus instead of a typical 8-bit

33 MBps [45]. A third technique highlighted in their study is the utilization of a dedicated

communication path between host interface and flash interface which frees up system

bandwidth. Birrell et. al. investigated write performance of flash disks and identified

increased latency for non-sequential writes by running micro-benchmarks for commodity

USB flash drives [7]. This increased latency of random writes (non-sequential write

requests) is due to the difference between how disk space is addressed linearly by logical

block address and how data is actually laid out in pages and blocks in flash memory. In a

similar study Gray and Fitzgerald tested 32 GB Flash SSD from Samsung and reported

average request time of 37 msec for 8 KB non-sequential writes [34]. Their study states

benchmark test results but does not explain any of their findings. [26] provides a

comparison of Flash SSD’s from various vendors and suggests techniques such as write

caching to improve performance. OS write caching, flash specific file systems, drive

write caching, and block remapping are some of the proposed techniques, although

evaluations of these proposed solutions are not available. Kim and Ahn implemented a

49

RAM buffer (similar to write buffers in hard disks) to improve latency of random writes

in flash memory [44]. This write buffer is placed between the host buffer cache and the

flash translation layer. They have also implemented three buffer management algorithms

on a 1 GB NAND flash memory prototype on a target board with an ARM940T

processor, 32 MB SDRAM, and a USB 2.0 interface. Although their prototype

implements a USB flash memory instead of a larger capacity solid-state disk drive. Park

et. al. provides details on the existing hardware of NAND solid-state disks and their

multi-chip architecture. One of the important aspects of this architecture is the flash

controller which can support 2 I/O channels and up to 4-way interleaving. Request

interleaving has been an effective way in hiding request latencies. Within flash memory

systems, it can be used to support parallel write requests for improved performance. Their

study also provides a concise discussion of software architectures in NAND solid-state

disks [69]. Another way to improve request latencies, especially with write requests, is

using a bank assignment policy to utilize the multi-chip architecture. A static assignment

policy is striping, which assigns write request to bank number N = LBA(mod number of

banks). This is almost identical to RAID-0. For user workloads with heavy locality, this

static bank assignment policy will result in an un-even distribution. Adaptive bank

scheduling policies are proposed to provide an even distribution of write request to boost

performance [14, 13].

One of the more recent and detailed studies on the performance of solid-state

disks is [1]. Agrawal et. al. provides a detailed discussion on design tradeoffs for NAND

flash SSDs by performing simulations using Microsoft Research's SSD extension to

50

DiskSim. Their work analyzes different SSD organizations using synthetic workloads and

enterprise traces, and concludes that serial interface to flash memory is a bottleneck for

performance. By employing parallelism within a flash memory package and interleaving

requests to a flash memory die, the overall system bandwidth is doubled. Although this

study is the most similar to ours, there are major differences on the methodology and

areas of investigation. One of their conclusions is that SSD performance is highly

workload sensitive; performance differs substantially if write requests are sequential or

random (their synthetic traces are largely sequential; their enterprise traces are largely

random; the performance improvements shown for the synthetic traces are far more

significant than those shown for the real-world traces). Additionally, the workloads used

in their study are read oriented, with roughly a 2:1 read-to-write ratio, which helps to hide

the problem of slow writes in an SSD. However, in PC applications (user-driven

workloads), there tends to be a much higher proportion of writes: in our workloads, we

see a 50:50 ratio, which would tend to expose flash’s write problem. User driven

workloads are not biased towards sequential or random requests but provide a mix of

random and sequential writes at a given time interval. Agrawal’s study outlines core

limitations of flash memory within the boundaries of a flash memory device/package;

limitations such as logical to physical mapping granularity, limited serial interface, block

erasure, cleaning frequency, and wear leveling. Our study extends their work by focusing

on exploiting concurrency in SSD organizations at both the system and device level (e.g.

RAID-like organizations and Micron-style superblocks). These system- and device-level

concurrency mechanisms are, to a significant degree, orthogonal: that is, the performance

51

increase due to one does not come at the expense of the other, as each exploits a different

facet of concurrency available within SSD organizations.

4.3. Hybrid Memory Systems

One of the main attractions of flash memory is its low power consumption. There have

been several proposals to use flash memory in various parts of the memory and/or storage

system to reduce overall power consumption. Bisson and Brandt integrated flash memory

into hard disk drives [8, 9]. Flash memory in these hybrid disks are referred to as

NVCache. When there is NVCache, I/O scheduler can redirect some I/O requests (for

example long latency write requests) to flash memory to reduce overall request latency.

This will also reduce power consumption as hard disk drives can be spun down for longer

periods of time and expensive spin-up operations can be avoided. One limitation with

using NVCache in hybrid disks is the additional cost of flash memory. Due to very low

cost margins in disk drives, even adding a couple hundred MB flash memory into storage

systems has a big impact on cost and may limit use and benefits of NVCache. Another

area where flash memory can improve performance of conventional hard disks is in

system boot time or application start time. For frequently used applications or

applications which generate a significant amount of random I/O requests (which are

troublesome for hard disks with long seek latency), data can be stored in flash memory or

NVCache for better performance. This is often referred to as data pinning into flash

memory. Host OS decides on which data to pin or provides an interface to the user for

selecting applications to be pinned. If capacity allows, even the entire OS code and data

can be pinned to flash memory for fast boot times. Kim et. al. provides a discussion and

52

evaluation of I/O optimization techniques for hybrid hard disk based systems [48]. In a

similar study Chen et. al. also uses flash memory as a buffer for data prefetching and

write caching [18]. The main goal of their algorithms on prefetching and caching data is

to reduce power consumption of I/O systems by effectively extending disk idle periods.

In [47], hard disk and flash memory is combined for an energy efficient mobile storage

system. This hybrid system consumes 30-40% less power.

Instead of using flash memory as a caching mechanism in hybrid disk drives, Kgil

and Mudge utilize it as a file cache in main memory [43]. Their proposal replaces 1 GB

DRAM main memory with 128 MB DRAM and 1 GB Flash Memory combination. This

FlashCache architecture is especially fitting for web servers. Typical web server

workloads are not computationally intensive and they are heavily read biased. This

requires use of large amounts of DRAM in web servers to mitigate I/O latency and

bandwidth. However this significantly increased power consumption of the system even

when it is idle. By replacing portions of DRAM with flash memory as a secondary file

cache, power consumption of web server can be significantly reduced. The read heavy

nature of web server workloads help in hiding write latency problems of flash memory

and allows read performance to be effective.

4.4. Flash Memory Data Structures and Algorithms

Compared to hard disk drives, flash memory provides a simpler read/write interface, one

without the complexities of mechanical parts. On the other hand, flash memory has its

own peculiarities of not allowing in-place data updates, logical-physical address

mapping, block erasing and wear leveling. To use flash memory as a storage device, one

53

needs to hide these peculiarities from the host system since the file system and virtual

memory systems assume a block device interface when accessing the storage system. For

this purpose, Flash SSDs implement a software layer called Flash Translation Layer and

provide an illusion of HDD to host systems. Most studies on flash memory have been on

the efficient implementation of these various flash translation layer functionality.

Park et. al. provides an overview of hardware architecture for a flash memory

controller and summarizes basic functionality implemented at flash translation layer [69].

As mentioned in this study logical to physical address mapping can be performed at page

level or block level. When implemented at page level write requests can be performed at

page programming latency. However a large map table is required. If address mapping is

implemented at block level, the size of the table is considerably reduced at the cost of

increased write latency. In typical SSD architectures, hybrid mapping is performed,

which is a combination of page and block mapping. In hybrid mapping, address space is

typically divided into regions and either page or block mapping is implemented within a

region. A very detailed understanding of their page mapping, block mapping and hybrid

mapping schemes are available in [68].

Similar to hybrid mapping, a log block scheme is proposed in [46]. In this scheme

some blocks are marked as log blocks and are mapped at page-level. Small, frequent

writes are forwarded into log blocks but a majority of user data is kept in data blocks.

Blocks which are addressed at block level are called data blocks. By keeping number of

log blocks limited, address table size can be kept small. Log blocks can be converted into

data blocks by a merge operation.

54

A comparison of mapping at different levels is provided by [21]. As highlighted in

this study, additional data copy operations in block mapping imposes high cost. On the

other hand, block mapping requires only limited space to store mapping information. An

example given in this study compares mapping table sizes for 128 MB flash memory. As

shown in table 4.1, block mapping requires the smallest SRAM to store mapping

information. Chung et. al. also explains how this mapping information is managed using

either map block method or per block method.

Another clustering based hybrid mapping technique is proposed by Chang and

Kuo [15]. Based on user access patterns on a 20 GB hard disk, address space is divided

into physical clusters. Physical clusters are stored in main memory in a tree based data

structure and logical to physical address mapping is performed using a hash-based

approach. This hash-based approach can be configured for performance [50]. For a 16

GB flash memory, their approach required 2.95 MB for mapping information. Mapping

table would be 256 MB if page level mapping was used and 8 MB if block level mapping

was used [16].

55

Bytes for Addressing Total Map Table Size

Page mapping 3 Bytes 3B * 8192 * 32 = 768 KB

Block mapping 2 Bytes 2B * 8192 = 16 KB

Hybrid mapping (2 + 1) Bytes 2B * 8192 + 1B * 32 * 8192 = 272 KB

Table 4.1: Mapping Granularity. Table size to store mapping information for a sample 128 MB
flash memory. Page size of 1 sector and block sizes of 32 pages is assumed. Flash memory
consists of 8192 blocks. Table adopted from [21].

Another constraint with logical and physical address mapping is time to construct

a mapping table when the device is powered up. With USB drives this was not a big

issue, however as flash memory size increases to 16 GB, 32 GB or to 256 GB with solid-

state disks, scanning pages to generate a mapping table at start-up time is not an easy

task. Birrell et. al. proposes an address mapping technique which optimizes time to build

the data structures and the mapping table [7]. Their approach uses mapping at page

granularity for better write speed and can reconstruct mapping tables within a couple of

seconds. Moreover their study explains in great detail all components of a mapping table.

They divide mapping data into information stored in the flash memory itself and data

held in RAM by the flash controller. They assume page sizes of 2KB and block sizes of

64 pages. For the 512 MByte flash memory modeled in their study, there are 4K blocks

and 256K pages. The main mapping table is called an LBA table which is a 256K entry

array. When indexed by logical address, LBA table maps logical disk address to flash

page address. Each array element uses 22 bits; 18 bits for the flash page address and 4

bytes to indicate whether each of the 4 sectors within a page is valid or not. In addition to

256K entry LBA table, a smaller 4K entry table is used to keep block usage information.

Indexed by block number, each entry contains the number of valid pages within each

block. A 4K bit vector holds the free block list - which is a pool of free blocks ready to be

re-used. These arrays are stored in volatile RAM and are managed by flash controller.

When the device is powered up they have to be re-constructed from information stored in

the flash memory itself. In order to perform fast data re-construction, the last page of

each block is reserved to hold summary information. The first 63 pages can still hold user

56

data. Also 64 bytes reserved for each page is used to store metadata information.

Typically logical block address is stored in metadata together with error correction code.

In their proposed re-construction algorithm, Birrell et. al. stores additional information in

these 64 bytes, which allows them to scan all the physical blocks and pages quickly

during power-up. When the device is powered up for the very first time their algorithm

takes around 16 sec to re-construct mapping information. Once the necessary data

structures are built and metadata information is updated, the re-construction can be

performed within couple seconds in successive power-ups [7].

A discussion of flash memory mapping algorithms and data structures is available

in [29]. Open problems with logical to physical mapping is also presented in this study.

Logical to physical address mapping is required in flash memory because in-place

update of data is not supported. Once a page is written, subsequent writes to the same

page cannot proceed because bit values cannot be changed from 0 to 1. Erasing is the

only way to change bit values from 0 to 1 in flash memory and can only be performed at

block level. Block erasing is also a long latency operation. It is considered as a

performance bottleneck and it is important to optimize its efficiency. Baek et. al. provides

an understanding of cost of block cleaning [2, 3]. When a block is claimed for cleaning,

all valid user data within this block has to be moved into another free location. Once all

valid user data is moved, the block can be erased and added to the free block list. Block

erasure is a fixed latency operation. However copying valid user data to another location

is dependent on the number of pages with valid user data and the location of the target

block. If valid user data can be moved to another free block within the same flash

57

memory chip or plane, fast internal data move operations can be used. To model cost of

cleaning, Baek et. al. defines three key parameters [2, 3]:

Utilization (u): Percentage of valid pages in flash memory - indicates percentage

of valid pages that need to be copied when a block is erased.

Invalidity (i): Percentage of invalid pages in flash memory - indicates percentage

of blocks that are candidates for block cleaning

Uniformity (p): Percentage of blocks which are uniform in flash memory. A block

is defined as uniform if it does not contain valid and invalid pages simultaneously.

Given these parameters cost of block cleaning is:

cleaningcost = B * ((1-p) + i * p) * et + P * (1-p) * (u / (u+1)) * (rt + wt)

where:

u: utilization (0 ≤ u ≤ 1)

i: invalidity (0 ≤ i ≤ 1-u)

p: uniformity (0 ≤ p ≤ 1)

B: Number of blocks in flash memory

P: Number of pages in flash memory

rt: Page read latency

wt: Page program latency

et: block erase latency

Their study also discusses the implications of these three parameters and finds

that utilization and uniformity have a bigger impact that invalidity. Moreover, cost of

block cleaning increases dramatically when uniformity is low. Uniformity is also used as

"block cleaning efficiency" to determine the cost of cleaning a single block. Block

58

cleaning efficiency is defined (slightly different than uniformity) as the ratio of invalid

pages to the total pages in a block during block cleaning [1]. Baek et. al. also proposes a

page allocation algorithm which increases uniformity to reduce block cleaning costs. The

main idea behind their page allocation technique is the ability to distinguish between hot

and cold data. This distinction between user requests is common in flash memory

community. Hot data is referred to as user data that is modified frequently and cold data

is referred to as user data that is modified infrequently. If one can classify hot data, write

requests to hot data may be allocated to the same block. Since hot data will be modified

frequently, pages within this block will eventually become invalid - a uniform block.

Their study proposes an algorithm in identifying hot and cold data and shows that

performance may be improved by reducing the number of erase operations and data copy

operations during block cleaning [2, 3].

A similar approach of clustering user data into hot and cold is also proposed by

[19]. Their study provides an understanding of three stages of the block cleaning process.

These three stages are identification of candidate blocks for cleaning, copying of valid

pages into free space, and erasing blocks. Performance of the cleaning process is

determined by when to clean, which blocks to choose as candidates, and where to copy

valid data. Chiang et. al. provides details on policies on each one of these cleaning stages

and proposes a new cleaning policy named Cost Age Time (CAT) [19]. Their CAT

cleaning policy resulted in 50-60% fewer erase operations as they use a fine-grained

system to cluster hot and cold data. Wu and Zwaenepoel also look into block cleaning

cost in flash memory for their eNVy storage system [79]. Their study uses a hybrid

59

cleaning policy, which combines a greedy cleaning policy with locality gathering. Greedy

cleaning policy chooses a block with the most number of invalid pages. Locality

gathering is the same approach of clustering data into hot and cold regions.

Block cleaning policies not only consider cleaning efficiency and latency, but also

wear leveling. As mentioned before, each flash memory cell has a lifetime. Each block in

flash memory can be erased for a limited number of times, after which memory cells can

no longer hold charge. Although endurance of flash memory increased to 100K or 1M

cycles with recent improvements, and solid-state disks can sustain write loads for years

with their current capacity, wear leveling algorithms have always been an integral part of

block cleaning policies. The main goal of wear leveling is making sure that frequent and

localized write requests do not result in some blocks to be erased more often, which will

cause flash memory to wear unevenly. The desire is for all blocks to be equally used -

homogeneous distribution of erase cycles among blocks. This will ensure a long life span

of solid-state disks. However, wear leveling and block cleaning place contrary restrictions

on the management of blocks. As explained, efficient block cleaning requires some form

of clustering in page allocation so that frequent localized write requests to hot data can be

separated from infrequently updated cold data. But such clustering of data also results in

frequent erasures for blocks storing hot data, resulting in non-homogeneous distribution

of erase cycles. Therefore, block cleaning policies usually not only take into account

cleaning efficiency and erase latency, but also consider wear leveling.

An efficient wear leveling algorithm is presented in [81]. The main goal of this

algorithm is to ensure that cold data is not stored in a block for very long periods of time.

60

Block management is performed in a pre-determined time frame, which is called as

resetting interval. In a similar study, Chang proposes a wear leveling algorithm for large

scale flash memory systems, called dual-pool algorithm [17]. Dual-pool algorithm

ensures that blocks are not overly worn by storing infrequently updated data. Once a

block participates in wear leveling, it has to wait for some time before being considered

for wear leveling again. In order to achieve these, blocks are partitioned into two sets: a

hot pool and a cold pool. Cold data is stored in blocks from the cold pool and hot data is

stored using blocks from the hot pool. Hot and cold pools are resized adaptively as cold

data is slowly moved away from the blocks with low erase cycles to more worn out

blocks.

Flash memory solid-state disks emulate a block device interface. A different

approach is using a file system specific for flash memory and letting system software

manage flash storage [30, 42, 55, 53]. These file systems usually employ a log-structured

approach [72]. A survey on flash specific file systems and related patents can be found in

[31]. This survey also discusses various sophisticated data structures and algorithms

designed to overcome the limitations of flash memory (block mapping, erase-unit

reclamation and wear leveling).

61

Chapter 5: Methodology

One of the contributions of this dissertation is the development of a solid-state disk

simulator which can be used to measure the performance of various NAND flash memory

architectures. For accurate timing of disk requests our NAND flash SSD simulator is

designed as an extension of DiskSim v2.0. Disk traces collected from portable computers

and PCs running real user workloads are used to drive this flash simulator.

5.1. DiskSim Disk Simulator

DiskSim is an efficient, accurate disk system simulator from Carnegie Mellon University

and has been extensively used in various research projects studying storage subsystem

architectures [32]. It was originally developed at the University of Michigan and written

in C. DiskSim not only simulates hard disk drives, but also includes modules for

secondary components of the storage system such as device drivers, buses, disk

controllers, request schedulers, and disk cache components. DiskSim may be used as a

trace-driven simulator or can internally generate synthetic workloads. Accuracy of

DiskSim v2.0 has been extensively validated against various hard disk drives from

different manufacturers, such as Cheetah and Barracuda disk drives from Seagate,

Ultrastar 18 ES from IBM, Atlas III, and 10K from Quantum. DiskSim can simulate disk

array data organizations and can be integrated into full system simulators. DiskSim only

models the performance behavior of disk systems; data is not actually read or written for

I/O requests. Additionally, disk power models are available as extensions of DiskSim

through other studies [gurumurthi2003drpm-}]. Figure 5.1 shows the storage system

components modeled in DiskSim v2.0.

62

5.2. NAND Flash Solid-State Disk Simulator

This dissertation uses a solid-state disk simulator, which is designed as an extension of

DiskSim v2.0. This simulator models a generalized NAND flash solid-state disk by

implementing flash specific read, program, erase commands, block cleaning, and logical-

to-physical address mapping, all while providing the illusion of an HDD.

NAND flash interface commands supported by the simulator are page read, page

read in cache mode, program page, program page in cache mode, and erase block.

Logical-to-physical address mapping is performed at the granularity of a page.

For a 32 GB SSD, this requires the address mapping table to have 16777216 entries.

Logical-to-physical address map table is modeled as an int array of size 16777216, which

corresponds to 64 MB in table size. Map table is queried by the logical page address and

stores the physical page address information and page status information (free/valid/

dirty). Implementation details of the address mapping table is shown in figure 5.2.

The flash simulator maintains a pool of free blocks and allocates pages in a

consecutive order from current working free block when a write request is received. In

63

Device

Driver

Queue

Scheduler

Bus

Controller

Queue

Scheduler

Cache

Queue

Scheduler

B
u
ff

er

Disk

Platters

TracksR/W Heads
Bus Cache

Disk

Figure 5.1: DiskSim storage system simulator components. DiskSim implements most
components of a storage system; device driver, controller, disk controller with their cache, queue
and scheduler components, disk platters and read/write heads.

order to process write requests, the flash simulator must have at least one free block

available at all times. Otherwise, block cleaning operation is triggered to erase blocks

with invalid pages and add to the list of free blocks. Simulator searches for blocks with

the smallest erase latency during block cleaning since block reclamation causes all read

and write requests to the device to be stalled in queue. For quick search of blocks eligible

for cleaning, the simulator also maintains a list of blocks which include only invalid

pages. Blocks with only invalid pages are the blocks with the smallest erase latency. The

number of free blocks that trigger garbage collection may be configured within the

simulator. Three data structures are used to maintain blocks within the simulator. An int

array of 262144 entries (1 MB table size) is used to store block status information. An int

array is used as a free block pool with a default size of 16384, which represents 2 GB free

disk space. A separate table is used to store disk utilization information which is accessed

during garbage collection. This table has 65 entries and stores the number of blocks with i

64

Logical-to-Physical Address Table

Physical Page Address - Bits 0-27 (mask 0x0fffffff)

A recently erased page is free but
does not hold any valid user data

Free
Not ValidBit 31

reserved
for sign

Bit 28 - Logical Page Valid

Bit 29 - Physical Page Free

Bit 30 - Physical Page Valid

i=0

i=16777215

i=16777214

i=16777213

Not Free
Valid

Not Free
Not Valid

After a write,
page holds
valid user data

If user data is updated with a new
write request, page is marked invalid

Figure 5.2: Logical-to-physical address mapping. Logical-to-physical address mapping is
performed at the granularity of a page. Map table stores physical page address information and
page status information.

valid pages at location i. Implementation details of these data structures are shown in

Figure 5.3.

A specific wear leveling algorithm is not implemented. However, write requests

are forwarded to the least used physical locations within the address space of the storage

system, providing simple wear leveling without overly complicating the performance

models used. Figure 5.4 illustrates solid-state disk components modeled in our simulator.

DiskSim is a highly-configurable storage system simulator. Our NAND flash

solid-state disk simulator thrives on this property and extends it further. Today’s typical

solid-state disks are organized as multiple chips connected in different ways using

various number of buses. These multiple chips can operate independently or can be

65

Block Status Table

Valid Page
Count

Bit 31
reserved
for sign

Bit 28 - Holds Invalid Pages

Bit 29 - Holds Free Pages

Bit 30 - Uniform Block

i=0

i=262143

i=262142

i=262141

08

Free Page
Count

16

Invalid Page
Count

List Head List Tail

Free Block List

Free Block
Page Count

Disk Utilization Table

i=0 Number of uniform blocks
with all invalid pages

i=65 Number of uniform blocks
with all valid pages

i=x
Number of non-uniform
blocks with x number of
valid pages

16384

Figure 5.3: Block management. Block status table, free block list and disk utilization table is
used to maintain blocks within the simulator

linked together in a Micron-style superblock. The size of flash memory chips can be

changed while keeping the storage system capacity constant. Our flash simulator can

simulate these various solid-state disk architectures while providing the illusion of a

single HDD to host system.

5.3. Disk I/O Traces

In this dissertation, we have used our own disk traces to measure the performance of

NAND flash solid-state disks. These traces are collected from portable computers and

PCs running real user workloads. The workloads represent typical multi-tasking user

activity, which includes browsing files and folders, emailing, text editing and compiling,

surfing the web, listening to music and playing movies, editing pictures, and running

office applications.

Our workloads consist of not only I/O traffic generated by user applications, but

also read and write requests generated by system and admin processes. System processes

are important as they generate I/O traffic comparable to the traffic generated explicitly by

the user application. For example, half of the sectors read from the disk are requested by

66

Device

Driver

Queue

Scheduler

Bus

Controller

Queue

Scheduler

Cache

Bus

In
te

rc
o
n
n
ec

t

N
et

w
o
rk

Flash

Memory

Arrays

F
la

sh
 C

o
n
tr

o
ll

er

LBA-PBA

Table

Free Block

Table

Figure 5.4: Flash SSD simulator components.

the host system. File system cache update constitutes 40% of sectors written to disk. A

snapshot of processes running during typical multi-tasking user activity is provided in

Table 5.1.

We have collected our workloads by monitoring file system activity and filtering

disk requests. We have used fs_usage, which is a general BSD command, to monitor file

system. System calls reported by fs_usage include both activity by host system processes

and user initiated I/O requests. Data reported by fs_usage includes a timestamp, file

system call type, file descriptor, byte count requested by the call, disk block address, file

offset, process name, and time spent in system call. A sample output of fs_usage

command is shown in figure 5.5.

Not all file system activity reported by fs_usage generates a read or write request

to the hard disk drive. Therefore, we have filtered out file system calls which generate an

I/O request. Any system call which initiates an I/O request has to provide a block address

(tagged as D=0x) and request size (tagged as B=0x). A sample output of our filtering

process is shown in figure 5.6. After filtering out I/O requests, we have sorted them in

time and generated an ascii trace file. Final format of our traces is in default ascii trace

format, where each request is defined by 5 parameters: request arrival time, device

number, block number, request size, and request flags [32]. A sample trace in ascii format

is shown in figure 5.7.

The characteristics of our traces are in-line with expected I/O traffic for personal

computer workloads reported by Hsu and Smith [38]. The average I/O per second in our

traces range from 1.6 Mbps to 3.5 Mbps, similar to 2.37 Mbps reported in [38]. Our

67

68

User Applications

Adobe Reader - Pdf viewing

Safari - Internet Browsing

Finder - Folder browsing and editing

iTunes - Listening to music

Word & Excel - Office Application

Preview - Picture viewing

Quicktime Player - Watching movie

Terminal

srm - File deleting

User Support
Applications

AppleSpell - Checking spelling

iCal - Calendar and Alarm Scheduler

ATSServer - System font manager

mdimport - File indexing

Dock - Application quick launch

WindowServer - Manage application windows

Virtual Memory
kernel_task - Virtual memory manager

dynamic_pager - Handling swap files

File System Cache update - Flush file system cache to disk

Root Processes

configd - System and network configuration daemon

automount - Auto mount and unmount network file systems

diskarbitration - Mounting disk and file systems

coreaudiod - Daemon used for core audio purposes

syslogd - System log utility

securityd - Access to keychain items

mDNSResponder - Provides network services announcement

Table 5.1: Processes running during typical multi-tasking user activity.

69

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

07:42:51.364 fsync! F=11! 0.019459 W mds

07:42:51.365 pwrite F=11 B=0x20 O=0x00000000! 0.000023 mds

07:42:51.365 WrData[async] D=0x05dfc9b8 B=0x1000 /dev/disk0s10! 0.000221 W mds

07:42:51.365 fsync F=11! 0.000297 W mds

07:42:53.555 PgIn[async] D=0x06b28640 B=0x1000 /dev/disk0s10!0.019178 W WindowServer

07:42:53.555 PAGE_IN A=0x904d1000 B=0x1000! 0.019364 W WindowServer

07:42:53.566 PgIn[async] D=0x06b28630 B=0x2000 /dev/disk0s10!0.010042 W WindowServer

07:42:53.566 PAGE_IN A=0x904cf000 B=0x2000! 0.010158 W WindowServer

07:42:53.566 PAGE_IN A=0x904d0000 B=0x0! 0.000013 WindowServer

07:42:53.594 PAGE_IN A=0x93a00000 B=0x0! 0.000098 Camino

07:42:53.594 PAGE_IN A=0x938ed000 B=0x0! 0.000021 Camino

07:42:55.942 write F=8 B=0x1! 0.000032 Camino

07:42:55.944 read F=7 B=0x1! 0.000011 Camino

07:42:55.944 write F=8 B=0x1! 0.000007 Camino

.....

07:42:59.164 stat [2] /usr/share/icu/icudt32b>>>>> ! 0.000029 Camino

07:42:59.164 stat [2] icudt32b ! 0.000021 Camino

07:42:59.164 stat [2] /usr/share/icu/icudt32b_word.brk! 0.000017 Camino

07:42:59.164 stat [2] icudt32b ! 0.000017 Camino

07:42:59.180 PgIn[async] D=0x05c54288 B=0x1000 /dev/disk0s10!0.016331 W Camino

07:42:59.180 PAGE_IN A=0x0310e000 B=0x1000! 0.016445 W Camino

07:42:59.181 PgIn[async] D=0x05c54290 B=0x1000 /dev/disk0s10!0.000214 W Camino

07:42:59.181 PAGE_IN A=0x0310f000 B=0x1000! 0.000306 W Camino

07:42:59.181 RdData[async] D=0x05c54298 B=0x1000 /dev/disk0s10! 0.000306 W Camino

07:42:59.181 PAGE_IN A=0x03110000 B=0x0! 0.000148 W Camino

07:42:59.181 PgIn[async] D=0x05c542b0 B=0x1000 /dev/disk0s10!0.000274 W Camino

07:42:59.181 PAGE_IN A=0x03113000 B=0x1000! 0.000322 W Camino

07:42:59.181 PgIn[async] D=0x05c542b8 B=0x1000 /dev/disk0s10!0.000190 W Camino

07:42:59.182 PAGE_IN A=0x03114000 B=0x1000! 0.000247 W Camino

07:42:59.182 RdData[async] D=0x05c542c0 B=0x1000 /dev/disk0s10! 0.000329 W Camino

07:42:59.182 PAGE_IN A=0x03115000 B=0x0! 0.000153 W Camino

07:42:59.182 PgIn[async] D=0x05c542a0 B=0x2000 /dev/disk0s10!0.000235 W Camino

07:42:59.182 PAGE_IN A=0x03111000 B=0x2000! 0.000300 W Camino

07:43:00.189 getattrlist /Users/cdirik/Library/Application Support/Camino/cookies.txt!0.000091 Camino

.....

07:43:05.336 WrData[async] D=0x03d5f378 B=0x1000 /dev/disk0s10

07:43:05.337 PgIn[async] D=0x06e16528 B=0x1000 /dev/disk0s10!! 0.000716 W Camino

07:43:05.337 PAGE_IN A=0x04d88000 B=0x1000! 0.000846 W Camino

07:43:05.338 WrData[async] D=0x03d60488 B=0x2000 /dev/disk0s10! 0.001634 W update

07:43:05.344 getattrlist /.vol/234881033/5024290! 0.000113 ATSServer

07:43:05.344 open F=10 /.vol/234881033/10598/Trebuchet MS/..namedfork/rsrc!0.000057 ATSServer

07:43:05.344 fstat F=10! 0.000009 ATSServer

07:43:05.345 WrData D=0x00004916 B=0x20000 /dev/disk0s10!0.002422 W update

07:43:05.347 WrData D=0x00004a16 B=0x20000 /dev/disk0s10!0.002217 W update

07:43:05.350 WrData D=0x00004b16 B=0x14200 /dev/disk0s10!0.001534 W update

.....

07:45:25.201 RdData[async] D=0x06e18e40 B=0x6000 /dev/disk0s10! 0.072507 W WindowServer

07:45:25.235 RdData[async] D=0x0651fa28 B=0x1000 /dev/disk0s10! 0.032838 W WindowServer

07:45:25.235 RdData[async] D=0x0651fa30 B=0x2000 /dev/disk0s10! 0.033122 W WindowServer

07:45:25.236 WrData D=0x00003120 B=0x200 /dev/disk0s10! 0.016644 W mds

07:45:25.237 open F=4 /System/Library/Frameworks/Message.framework/Versions/B/Message! 0.000070 Mail

07:45:25.237 fstat F=4! 0.000009 Mail

07:45:25.290 RdData[async] D=0x06dfd468 B=0x1000 /dev/disk0s10! 0.052882 W Mail

07:45:25.290 pread F=4 B=0x1000 O=0x00000000! 0.053019 W Mail

07:45:25.291 close F=4! 0.000021 Mail

Timestamp

Process initiating system call

Flush file system cache

(system process) to disk

starting from address

0x00004916

Internet browsering process

(user process) is reading 8

sectors starting from block

address 0x05c542b8

System call type

Email client is

reading from disk

Figure 5.5: Fs_usage. Sample output of file system activity reported by fs_usage

70

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

07:42:51.364 WrData[async] D=0x06022158 B=0x4000 /dev/disk0s10! 0.000362 W mds

07:42:51.365 WrData[async] D=0x05dfc9b8 B=0x1000 /dev/disk0s10! 0.000221 W mds

07:42:53.555 PgIn[async] D=0x06b28640 B=0x1000 /dev/disk0s10! 0.019178 W WindowServer

07:42:53.566 PgIn[async] D=0x06b28630 B=0x2000 /dev/disk0s10! 0.010042 W WindowServer

07:42:59.180 PgIn[async] D=0x05c54288 B=0x1000 /dev/disk0s10! 0.016331 W Camino

07:42:59.181 PgIn[async] D=0x05c54290 B=0x1000 /dev/disk0s10! 0.000214 W Camino

07:42:59.181 RdData[async] D=0x05c54298 B=0x1000 /dev/disk0s10! 0.000306 W Camino

07:42:59.181 PgIn[async] D=0x05c542b0 B=0x1000 /dev/disk0s10! 0.000274 W Camino

07:42:59.181 PgIn[async] D=0x05c542b8 B=0x1000 /dev/disk0s10! 0.000190 W Camino

07:42:59.182 RdData[async] D=0x05c542c0 B=0x1000 /dev/disk0s10! 0.000329 W Camino

07:42:59.182 PgIn[async] D=0x05c542a0 B=0x2000 /dev/disk0s10! 0.000235 W Camino

07:43:00.204 WrData[async] D=0x052a45e0 B=0x1e000 /dev/disk0s10! 0.002081 W mds

07:43:00.209 RdData[async] D=0x052a45e0 B=0x1000 /dev/disk0s10! 0.000846 W mdimport

.....

07:43:05.336 WrData[async] D=0x03d5f378 B=0x1000 /dev/disk0s10! 0.030643 W update

07:43:05.337 PgIn[async] D=0x06e16528 B=0x1000 /dev/disk0s10! 0.000716 W Camino

07:43:05.338 WrData[async] D=0x03d60488 B=0x2000 /dev/disk0s10! 0.001634 W update

07:43:05.345 WrData D=0x00004916 B=0x20000 /dev/disk0s10! 0.002422 W update

07:43:05.347 WrData D=0x00004a16 B=0x20000 /dev/disk0s10! 0.002217 W update

07:43:05.350 WrData D=0x00004b16 B=0x14200 /dev/disk0s10! 0.001534 W update

07:43:05.456 WrData D=0x00003120 B=0x200 /dev/disk0s10!! 0.000222 W update

07:43:05.462 WrMeta[async] D=0x0000231a B=0x200 /dev/disk0s10! 0.001262 W update

07:43:05.462 WrMeta[async] D=0x00002d70 B=0x1000 /dev/disk0s10! 0.001380 W update

07:43:05.463 WrMeta[async] D=0x00002dd8 B=0x1000 /dev/disk0s10! 0.001522 W update

07:43:05.463 WrMeta[async] D=0x000030e8 B=0x1000 /dev/disk0s10! 0.001683 W update

07:43:05.463 WrMeta[async] D=0x0000a120 B=0x2000 /dev/disk0s10! 0.001850 W update

07:43:05.463 WrMeta[async] D=0x0000a140 B=0x2000 /dev/disk0s10! 0.001991 W update

07:43:05.463 WrMeta[async] D=0x0000a150 B=0x2000 /dev/disk0s10! 0.002110 W update

.....

07:45:11.639 WrData[async] D=0x052b0720 B=0x20000 /dev/disk0s10! 0.002279 W Camino

07:45:18.960 WrData[async] D=0x052b0820 B=0x1000 /dev/disk0s10! 0.000264 W Camino

07:45:20.645 WrData[async] D=0x052b0828 B=0x1e000 /dev/disk0s10! 0.002035 W mds

07:45:20.647 RdData[async] D=0x052b0828 B=0x1000 /dev/disk0s10! 0.000797 W mdimport

07:45:25.118 RdData[async] D=0x065209a8 B=0xd000 /dev/disk0s10! 0.023201 W Dock

07:45:25.124 RdData[async] D=0x0651fa20 B=0x1000 /dev/disk0s10! 0.026276 W WindowServer

07:45:25.129 WrData[async] D=0x068c2d50 B=0x1000 /dev/disk0s10! 0.000442 W mds

07:45:25.131 WrData D=0x000059e3 B=0x18200 /dev/disk0s10! 0.001813 W mds

07:45:25.201 RdData[async] D=0x06e18e40 B=0x6000 /dev/disk0s10! 0.072507 W WindowServer

07:45:25.235 RdData[async] D=0x0651fa28 B=0x1000 /dev/disk0s10! 0.032838 W WindowServer

07:45:25.235 RdData[async] D=0x0651fa30 B=0x2000 /dev/disk0s10! 0.033122 W WindowServer

07:45:25.236 WrData D=0x00003120 B=0x200 /dev/disk0s10 !! 0.016644 W mds

07:45:25.290 RdData[async] D=0x06dfd468 B=0x1000 /dev/disk0s10! 0.052882 W Mail

07:45:25.322 RdData[async] D=0x06b33998 B=0x1000 /dev/disk0s10! 0.030256 W Mail

.....

07:47:26.964 WrMeta[async] D=0x00045190 B=0x2000 /dev/disk0s10! 0.017434 W mds

07:47:26.965 WrMeta[async] D=0x0005a630 B=0x2000 /dev/disk0s10! 0.017592 W mds

07:47:26.965 WrMeta[async] D=0x0007d7b0 B=0x2000 /dev/disk0s10! 0.017801 W mds

07:47:26.965 WrMeta[async] D=0x0007d7d0 B=0x2000 /dev/disk0s10! 0.017983 W mds

07:47:26.016 RdData[async] D=0x068c6978 B=0x10000 /dev/disk0s10! 0.068082 W mds

07:47:26.057 PgIn[async] D=0x0582da78 B=0x1a000 /dev/disk0s10! 0.093692 W iTunes

07:47:26.057 PgIn[async] D=0x0582db60 B=0x1000 /dev/disk0s10! 0.000247 W iTunes

07:47:26.058 PgIn[async] D=0x0582db48 B=0x1000 /dev/disk0s10! 0.000181 W iTunes

07:47:26.058 PgIn[async] D=0x0582db50 B=0x2000 /dev/disk0s10! 0.000201 W iTunes

07:47:26.110 PgIn[async] D=0x05836470 B=0x3000 /dev/disk0s10! 0.051374 W iTunes

07:47:26.156 PgIn[async] D=0x05836238 B=0x1f000 /dev/disk0s10! 0.046598 W iTunes

07:47:26.165 PgIn[async] D=0x05836488 B=0x1000 /dev/disk0s10! 0.008531 W iTunes

Timestamp R / W Address Size

Search engine process

System process managing

application windows

Internet browser

(user process)

File indexing

(system process)

Flush file system cache

into disk (system

process)

Email client (user process)

Music player

(user process)

Figure 5.6: Disk I/O Requests. Sample output of file system activity. I/O requests are filtered.

71

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

51364.000000 0 100802904 32 0

51364.000000 0 83372296 64 0

51365.000000 0 98552248 8 0

53555.000000 0 112363072 8 1

53566.000000 0 112363056 16 1

59180.000000 0 96813704 8 1

59181.000000 0 96813712 8 1

59181.000000 0 96813720 8 1

59181.000000 0 96813744 8 1

59181.000000 0 96813752 8 1

59182.000000 0 96813728 16 1

59182.000000 0 96813760 8 1

60204.000000 0 86656480 240 0

60209.000000 0 86656480 8 1

62196.000000 0 86657544 8 0

62199.000000 0 86657552 8 0

62228.000000 0 86657744 152 0

62824.000000 0 86656808 8 0

62914.000000 0 86657288 256 0

64055.000000 0 112261320 8 1

64127.000000 0 89896664 16 1

.....

65467.000000 0 68240 16 0

65468.000000 0 238256 16 0

65468.000000 0 261568 16 0

65468.000000 0 278848 16 0

65468.000000 0 284784 16 0

65468.000000 0 285056 16 0

65469.000000 0 285520 16 0

65469.000000 0 286032 16 0

65469.000000 0 326464 16 0

65469.000000 0 370224 16 0

65471.000000 0 403264 16 0

65472.000000 0 405280 16 0

65472.000000 0 409952 16 0

65472.000000 0 410336 16 0

65472.000000 0 417424 16 0

65473.000000 0 432432 16 0

65473.000000 0 453648 16 0

65473.000000 0 454512 16 0

65474.000000 0 454560 16 0

65475.000000 0 456640 16 0

65720.000000 0 100921464 8 1

65721.000000 0 100921472 8 1

65721.000000 0 100921480 8 1

65721.000000 0 100921488 8 1

65721.000000 0 100921496 16 1

65722.000000 0 100921512 8 1

65722.000000 0 100921520 32 1

65723.000000 0 100921552 8 1

65724.000000 0 100921560 64 1

65724.000000 0 100921624 8 1

65727.000000 0 100921632 128 1

Timestamp

Disk number Request size

Block # R / W

Localized Read

Request

Bursty write

traffic

Small intermixed

read and write

traffic

Bursty read

traffic

Figure 5.7: Input Trace. Sample ascii input trace showing characteristics of user activity.

personal computer workloads generate 4.6 to 21.35 I/O requests per second with an

average request size of 26 KB. Although this average request size is much higher than the

7-9 KB expected by [38], it is weighted by a small number of large files; approximately

half of the requests generated in our traces are 4-8 KB. We observed that the average

request size in our personal workloads is skewed by the occasional very large write

requests (of size 64 KB and higher). We have also confirmed that I/O traffic in our

workloads is bursty, localized and balanced - I/O requests arrive in groups, frequently

access localized areas of the disk, and are partitioned roughly 50:50 between reads and

writes. Figure 5.8-14 summarize the properties of each trace and shows three different 4-

minute snapshots, representing different mixes of reads and writes. Request size

distribution and read:write ratio for each trace is also shown.

5.4. Simulation Parameters

In this dissertation, we have modeled a 32 GB ATA 133 MB/s NAND flash SSD. We

modeled today’s typical SSD which usually support multiple channels and multiple flash

memory banks. We have simulated various configurations of flash memory banks on a

shared bus or multiple independent channels to different flash banks or a combination of

the two. Some of the configurations we have simulated are shown in figure 5.15. In each

configuration modeled, the size of flash memory banks can change while the entire

storage capacity is kept constant at 32 GB. For example, if 4 memory banks are

connected via a single shared bus, figure 5.15b, then each bank is 8 GB in size. If a

configuration with 2 independent I/O channels and 4 banks per channel is used, figure

5.15c, then each memory bank is 4 GB (system capacity is 8 x 4 GB).

72

73

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 19 KB

Request

Size (KB)

Write Read

66
%

Figure 5.8: Trace 1 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 60:40

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 34 KB

Request

Size (KB)

Write Read

56
%

Figure 5.9: Trace 2 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 53:47

74

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 20 KB

Request

Size (KB)

Write Read

52
%

Figure 5.10: Trace 3 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 43:57

75

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 27 KB

Request

Size (KB)

Write Read

Figure 5.11: Trace 4 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 52:48

76

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 23 KB

Request

Size (KB)

Write

Read

52
%

Figure 5.12: Trace 5 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 45:55

77

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 39 KB

Request

Size (KB)

Write

Read

Figure 5.13: Trace 6 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 53:47

78

0

8

16

24

32

0 1 2 3 4

0%

10%

20%

30%

40%

50%

[0
, 2

)

[2
, 4

)

[4
, 8

)

[8
, 1

6)

[1
6,

 3
2)

[3
2,

 6
4)

[6
4,

 1
28

)

[1
28

+]

0

8

16

24

32

0 1 2 3 4

0

8

16

24

32

0 1 2 3 4

L
B

A
 (

G
B

)

(a)
Time

(min)

Read Write

(b) (c)

Avg. Req. Size = 54 KB

Request

Size (KB)

Write

Read

Figure 5.14: Trace 7 Characteristics. (a) 3 4-minute snapshots from trace 1 confirm bursty,
localized traffic. (b) Request size distribution show that median and mean request size are
different. (c) Read:write ratio for trace 1 is 34:66

79

In our models, we have used the following timing parameters for our flash

memory model: page access time of 25 µs, page program time of 200 µs and block erase

time of 1.5 ms. Our flash memory model is a large block flash memory with page sizes of

2 KBytes and block sizes of 64 pages. Logical to physical address mapping is performed

at the granularity of a page. The speed at which data can be read from the flash memory

banks to the external flash controller also varies throughout our simulations. We have

modeled 8-, 16- and 32-bit wide I/O busses with speeds of 25, 50 and 100 MHz.

To simulate a realistic flash management model, we have assumed modular

striping for write requests. If we have a total of x memory banks, the Nth write request is

assigned to bank number N(mod x). We have maintained a pool of free blocks for each

bank and have allocated pages from current working free blocks when a write request is

received. Modular striping also provides simple yet effective wear leveling, as each

memory bank handles an equal amount of write traffic.

80

81

Disk Parameters

Disk capacity 32 GB

Host I/F ATA 133 MB/s

Configuration

I/O channels 1, 2, 4

Memory banks per channel 1, 2, 4

Page size 2 KB

Block size 128 KB

Memory bank density 2, 4, 8, 16, 32 GB

LBN-PBN mapping Page mapping

Timing parameters

Page read 25 µs

Page write 200 µs

Block erase 1.5 ms

I/O transfer rate 25, 50, 100 MHz

Table 5.2: Simulation parameters. Base configuration for flash memory storage system.

Chapter 6: Experimental Results

In this dissertation, we explore the system-level organization choices for NAND flash

memory solid-state disks - we study a full design space of system-level organizations,

varying number of busses, speeds and widths of busses, and the degree of concurrent

access allowed on each bus. To compare with system-level details, we also investigate

device-level design trade-offs, including pin bandwidth and I/O width. We present

scheduling heuristics and I/O access policies of NAND flash SSD storage systems, which

exploit the distinctive differences between reading from and writing to flash memory.

6.1. Banking and Request Interleaving

One way to increase the performance of flash memory disks has been utilizing request

parallelism among memory banks in the flash array where each bank can read/write/erase

independently. As we have mentioned before, writing (programming) a page into flash

memory is significantly longer than reading a page from flash. In a typical user workload,

read and write requests come in batches - sequential reads and writes. One way to hide

write latency in flash memory would be interleaving sequential writes by assigning write

requests to individual flash memory banks. Since flash memory allocates a newly erased

page for a write request, choosing an empty page for each write becomes a run-time

decision of resource allocation. When sequential write requests arrive, one can assign free

pages for these writes from different banks. This way sequential writes are dispatched to

multiple independent banks in parallel, and page write times are interleaved. Figure 6.1

shows a flash array organization with 4-way banking and a timing diagram for 4

sequential write requests of 2 KB each.

82

On the other hand, sequential read requests do not benefit from multiple banks as

much as write requests. Only the bank which holds the requested physical page can serve

a read. However once write requests are serviced faster, read requests will wait less time

in queue and read performance will also increase.

In order to understand the performance impact of banking and request

interleaving, we have simulated sample configurations where 1, 2, 4 or 8 flash memory

banks are attached to a single I/O bus and configured to read/write/erase independently.

Modular striping is implemented as write policy - if we have a total of x memory banks,

the Nth write request is assigned to bank number N(mod x). Average disk-request

response time is reported, as a sum of physical access time (time to read/write data from/

to flash array) and queue wait time. Figures 6.2-4 show the effect of increasing the degree

of banking on average disk-request response time for various user workloads.

As summarized in table 6.1, one sees significant improvements in both read and

write request times (75-90%) when the level of banking is increased from 1 to 2. Request

times can be further improved by 30-50% by increasing the level of interleaving from 2

83

F
la

sh
 C

o
n

tr
o

ll
er

Data Reg

Cache Reg

Data Reg

Cache Reg

Data Reg
Cache Reg

Data Reg
Cache Reg

1 Blk

(64 Pages)

2K bytes

Independent

Banks 2048 cycles
81.92 us

I/O [7:0]

200 us

To Bank 0

To Bank 2

To Bank 1

To Bank 3

Cmd & Addr

Flash

Array

DI0 Pr0

DI1 Pr1

DI2 Pr2

DI3 Pr3

Flash

Array

Flash

Array

Write
4 x 2 KB

Figure 6.1: Request interleaving. 4-way banking and timing diagram of 4 subsequent write
requests of 2 KB each. 8 bit I/O bus is shared by independent banks.

to 4. However, from 4- to 8-way banking, reads and writes start to show different

performance characteristics. While request times continue to improve for writes; read-

request performance begins to flatten, moving from 4- to 8-way banking. This is

explained by an increase in the physical access times at high levels of banking due to bus

contention - especially for low bandwidth 8-bit 25 MHz bus configuration. The more

banks per channel, the larger degree of bus utilization, to the point of traffic congestion.

As shown in figure 3.7 in chapter 3, read request timing mostly consists of time spent in

reading data from flash memory via I/O bus. It is more sensitive to degradation in the I/O

channel than writes because any congestion in the I/O bus will impact reads more than

writes. For a typical 4K read request, 90% of the physical access is reading data from

flash memory through I/O interface. On the other hand, for a typical 4K write request

only 40% of the physical access is transferring data into flash memory and requires I/O

bus. Delays in acquiring the I/O bus in a shared bus configuration will have a large

impact on the read request timing. In our simulations with 8-way banking and low I/O

84

All requests 1-way 2-way 4-way 8-way

25 MHz I/O 30.56 6.85 4.92 4.68

Reads

25 MHz I/O 15.55 3.01 2.41 2.38

Writes

25 MHz I/O 45.13 10.53 7.31 6.91

Table 6.1: 1-, 2-, 4-, and 8-way banking. Average request service times in milliseconds using a
shared 8-bit 25 MHz I/O bus.

85

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o

n
se

 T
im

e
(m

s)

0

2

4

6

8
Access Queue

0

2

4

6

8

R
es

p
o

n
se

 T
im

e
(m

s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o

n
se

 T
im

e
(m

s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o

n
se

 T
im

e
(m

s)

0

2

4

6

8

23
.9

19
.8
18

.5 18 30
.1

25
.5
24

.6
24

.5

18
.2

14
.3
13

.2
13

.1 26
.3

22
.2
20

.8
20

.5

39
.4

33
.1
30

.9
30

.5
40

.2
33

.2
31

.6
31

.4

66
.3

64
.5
63

.9
63

.6
19

.3 18 17
.6

17
.5

12
.4 8.4 8.1 8.1 10

.3
30

.6
25

.8
24

.4
24

.1

1-way 2-way 4-way 8-way

25 MHz I/O
50 MHz I/O

100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

Figure 6.2: Single Shared I/O bus, 1-, 2-, 4-, and 8-way banking. Average request service time
in milliseconds using a shared 8-bit I/O bus for various user workloads is shown. Request times
improve significantly moving from 1-way to 2-way banking or from 2-way to 4-way banking.

86

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

6.9 5 4.5 4.3 18 11
.6

10
.6

10
.5

11 6.4 5.4 5.4 15
.1

11
.2 9.8 9.6

27
.1

21
.6
19

.7
19

.4
23

.9
16

.6
15

.1 15

13
.2

10
.9
10

.4
10

.4
4.4 4.1 4.1

6.5

15
.6

11
.2

10
.1 9.9

1-way 2-way 4-way 8-way

25 MHz I/O
50 MHz I/O

100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

5.4 5.4

Figure 6.3: Reads with single shared I/O bus, 1-, 2-, 4-, and 8-way banking. Average read
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is
shown. Request times improve significantly moving from 1-way to 2-way banking or from 2-way
to 4-way banking. Performance does not improve much with 8-way banking due to the increase in
the physical access times.

87

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

49
.4
41

.8
39

.5
38

.6
43

.6
41

.1
40

.4
40

.2

23
.8
20

.3
19

.2
19 38

.7
34

.4
32

.9
32

.5

49
.3

42
.3
39

.8
39

.4
58

.3
51

.8
49

.9
49

.5

93
.7

92
.1
91

.4
91

.1
16

.6
13

.5

14
.1

45
.1

40 38
.3

37
.9

1-way 2-way 4-way 8-way

25 MHz I/O
50 MHz I/O

100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

12
.3

11
.8

26
.9

26
.1
25

.9
25

.7

Figure 6.4: Writes with single shared I/O bus, 1-, 2-, 4-, and 8-way banking. Average write
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is
shown. Request times improve significantly moving from 1-way to 2-way banking or from 2-way
to 4-way banking. Performance continues to improve when 8-way banking is used. Moreover,
write request times show very high variation depending on the workload even with a high degree
of banking.

bus bandwidth, we have observed 1.3 milliseconds spent in average on bus arbitration for

each request. This corresponds to more than 50% of average read request service time. A

good example is comparing user trace 1 and user trace 7, as trace 1 is read oriented and

trace 7 is write heavy. With trace 1, moving from 4-way to 8-way banking performance

improved 4-18% depending on the speed of I/O bus. On the other hand, trace 7

performance improvement was 15-30% from 4-way to 8-way banking. Read performance

only improved 2-15% for both traces.

Performance of read requests is critical because the overall system performance

tracks the disk’s average read response time [40]. Therefore, one does not gain much by

increasing the level of interleaving from 4 to 8 in a single channel configuration.

Attaching more banks to a single channel increases the electrical load and may limit the

maximum clock rate of the I/O bus. More load draws more power. When combined with

increased access time due to bus contention, more power is drawn for a longer time.

These factors increase the cost of 8-way banking and a 5-20% performance improvement

may not be enough to justify the cost increase.

Another good example would be comparing 2-way and 4-way banking and

analyzing performance improvements with cost and power considerations. If only write

requests are taken into account, moving from 2-way banking with high speed 100-200

MHz I/O bus to 4-way banking with a slower 25 MHz I/O bus will always see

performance improvements. Increasing the load on the I/O channel, but slowing the clock

rate may result in similar cost and power consumption. However, if we only focus on

88

reads, the same will result in 100% or more performance degradation. Then, one needs to

consider workload characteristics - is expected usage read oriented or write heavy?

Additional observations regarding read and write performance are: Write request

timing show very high variation depending on the workload even with a high degree of

banking. Asymmetry in read and write timing results in 2-3x scale difference between

their performances. Load dependent variation in request times and significant difference

time difference between reads and writes indicate that there is room for further

improvements by employing various request scheduling techniques and run-time resource

allocation policies.

If better performance is aimed by using higher degree of interleaving (higher than

8-way), more I/O channels may be used to access memory array to support increased

concurrency. We have simulated configurations with multiple independent flash memory

banks per channel in combination with multiple independent channels. Various flash

memory organization simulated are shown in figure 6.5.

As summarized in table 6.2 and shown in figures 6.6-11, using multiple I/O

channels to connect the same number of memory banks only improves performance when

I/O bandwidth is low. With a moderate speed I/O channel (50 MHz), increasing the

89

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

kH
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

(a) Single channel (b) Dedicated channel for each bank (c) Multiple shared channels

Figure 6.5: Flash SSD Organizations. (a) Single I/O bus is shared - 1, 2, or 4 banks; (b)
dedicated I/O bus; 1, 2, or 4 buses and single bank per bus; (c) multiple shared I/O channels - 2 or
4 channels with 2 or 4 banks per channel.

number of I/O channels while keeping the same level of concurrency only results in a

maximum of 5% performance improvement. This very small increase in performance will

be costly. Adding more channels will increase the cost of a system as well as its power

consumption. For typical user workloads, NAND flash memory interface is the limiting

factor rather than the total system bandwidth. When I/O channels are added, they are idle

most of the time. On the other hand, system behavior might be different when server

workloads are used - where one would expect sustained read or write traffic over longer

periods of time.

90

I/O Rate Number of I/O channels x Number of banks per channel

All
requests 1 x 1 1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

25 MHz 30.56 6.85 6.41 4.92 3.44 3.35 4.68 3.11 2.8 2.83

50 MHz 25.8 5.64 5.57 2.86 2.81 2.8 2.38 2.29 2.27 2.13

Reads

25 MHz 15.55 3.01 2.59 2.41 1.85 1.75 2.38 1.75 1.63 1.59

50 MHz 11.19 1.52 1.47 0.84 0.8 0.79 0.73 0.69 0.67 0.62

Writes

25 MHz 45.13 10.53 10.08 7.31 4.97 4.89 6.91 4.41 3.93 4.01

50 MHz 39.98 9.58 9.51 4.79 4.74 4.72 3.97 3.82 3.8 3.58

Table 6.2: Request time of Flash SSD Organizations. Average request service time in
milliseconds using a shared 8-bit I/O bus.

91

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

Access Queue
25 MHz I/O

50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

23
.9

19
.8
18

.5 18

1 x 1

(a) Trace 1

30
.1

25
.5
24

.6
24

.5

(b) Trace 2

(c) Trace 3

(d) Trace 4

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

18
.2

14
.3
13

.2
13

.1

26
.3

22
.2
20

.8
20

.5

Figure 6.6: 1-, 2-, 4-, and 8-way banking with multiple bus configurations. Average request
service time in milliseconds using a shared 8-bit I/O bus for user workloads 1-4 is shown. Using
multiple I/O channels to connect the same number of memory banks only improve performance
when I/O bandwidth is low - 8 bit 25 MHz I/O channel.

92

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

Access Queue25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

1 x 1

(a) Trace 5

(b) Trace 6

(c) Trace 7

(d) Aggregate

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

39
.4

33
.1
30

.9
30

.5

40
.2

33
.2
31

.6
31

.4

66
.3

64
.5
63

.9
63

.6
19

.3 18 17
.6

17
.5

12
.4 8.4 8.1 8.1 10

.3

30
.6

25
.8
24

.4
24

.1

10
.1

9.2

18
.8

17
.9
17

.6
17

.5
9 8.3 8.1 8.1 8.8 8.3 8.1 8.1

Figure 6.7: 1-, 2-, 4-, and 8-way banking with multiple bus configurations. Average request
service time in milliseconds using a shared 8-bit I/O bus for user workloads 5-7 is shown. Using
multiple I/O channels to connect the same number of memory banks only improve performance
when I/O bandwidth is low - 8 bit 25 MHz I/O channel.

93

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

23
.9

19
.8
18

.5 18

1 x 1

(a) Trace 1

30
.1

25
.5
24

.6
24

.5

(b) Trace 2

(c) Trace 3

(d) Trace 4

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

18
.2

14
.3
13

.2
13

.1

26
.3

22
.2
20

.8
20

.5

Figure 6.8: Reads with 1-, 2-, 4-, and 8-way banking and multiple bus configurations.
Average read request service time in milliseconds using a shared 8-bit I/O bus for user workloads
1-4 is shown. Using multiple I/O channels to connect the same number of memory banks only
improve read performance when I/O bandwidth is low - 8 bit 25 MHz I/O channel. Reads benefit
when a faster I/O bus is used.

94

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

23
.9

19
.8
18

.5 18

1 x 1

(a) Trace 5

30
.1

25
.5
24

.6
24

.5

(b) Trace 6

(c) Trace 7

(d) Aggregate

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

18
.2

14
.3
13

.2
13

.1

26
.3

22
.2
20

.8
20

.5

Figure 6.9: Reads with 1-, 2-, 4-, and 8-way banking and multiple bus configurations.
Average read request service time in milliseconds using a shared 8-bit I/O bus for user workloads
5-7 is shown. Using multiple I/O channels to connect the same number of memory banks only
improve read performance when I/O bandwidth is low - 8 bit 25 MHz I/O channel. Reads benefit
when a faster I/O bus is used.

95

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus
23

.9
19

.8
18

.5 18

1 x 1

(a) Trace 1

30
.1

25
.5
24

.6
24

.5

(b) Trace 2

(c) Trace 3

(d) Trace 4

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

18
.2

14
.3
13

.2
13

.1

26
.3

22
.2
20

.8
20

.5

Figure 6.10: Writes with 1-, 2-, 4-, and 8-way banking and multiple bus configurations.
Average write request service time in milliseconds using a shared 8-bit I/O bus for user
workloads 1-4 is shown. Write performance is more dependent on the total number of memory
banks and does not change much with the number of I/O channels used to connect to memory
banks.

96

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

23
.9

19
.8
18

.5 18

1 x 1

(a) Trace 5

30
.1

25
.5
24

.6
24

.5

(b) Trace 6

(c) Trace 7

(d) Aggregate

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

18
.2

14
.3
13

.2
13

.1

26
.3

22
.2
20

.8
20

.5

Figure 6.11: Writes with 1-, 2-, 4-, and 8-way banking and multiple bus configurations.
Average write request service time in milliseconds using a shared 8-bit I/O bus for user
workloads 5-7 is shown. Write performance is more dependent on the total number of memory
banks and does not change much with the number of I/O channels used to connect to memory
banks.

As mentioned, increasing the number if I/O channels only benefit when

bandwidth is low (8-bit, 25 MHz I/O bus). Although more I/O channels will cost more

and draw more power, 35% overall performance improvement might justify it in this

case. On the other hand, one could get close to 50% improved performance if instead a

higher bandwidth bus is utilized. This demonstrates another design choice where cost and

power consumption should be weighted in. Several factors such as technology,

manufacturing costs, pin count, and operating voltage will have an impact. When

performance/cost is the deciding factor, design with one more I/O channel and 35% better

performance may be better or worse than a design with a higher bandwidth I/O bus and

50% better performance.

6.2. Superblocks

Another way to hide write latency in flash memory and to improve both read and write

performance is ganging blocks across individual flash memory banks to create

superblocks [57]. In this array organization, individual flash memory banks are combined

by shared chip-enable, command signals, and I/O signals. Sharing of command signals

enables merging physical blocks across flash arrays to create designated superblocks.

This effectively increases the size of available data and cache registers and enables a

superblock to process a higher volume of data in one step. Figure 6.12 shows a sample

flash array organization with 4-way superblocks and timing diagram for an 8 KB write

request.

One advantage of superblocks would be lower pin count due to shared chip-

enable, command signals, and I/O signals. Also there is no need for a bus arbitration logic

97

since all memory banks operate in lock step. One the other hand, flash controller

complexity will increase to manage blocks across flash memory banks, as each bank must

be checked independently (for example, compare figures 5 & 6 in [57]. Another

limitation with superblocks is the fact that blocks are linked together permanently, due to

the hardwiring of control and I/O pins. If any one of the blocks in a superblock becomes

bad, all blocks in that superblock are considered unusable, thus reducing available

storage.

In order to understand the performance impact of superblocks, we have simulated

sample configurations where 1, 2, 4 or 8 flash memory banks are configured to form 1-,

2-, 4- or 8-way superblocks and attached to a single I/O bus. Average disk-request

response time is reported, which is a sum of physical access time (time to read/write data

from/to flash array) and queue wait time. Figures 6.13-15 show the effect of increasing

the level of superblocking on average disk-request response time for various user

workloads.

As summarized in table 6.3, there are significant improvements in both read and

write request times (80%) when the level of superblocking is increased from 1 to 2.

Request times may be further improved up to 60% by increasing the level of

98

F
la

sh
 C

o
n

tr
o

ll
er

Data Reg

Cache Reg

Data Reg

Cache Reg

1 Superblock

(4x64 Pages)

8K bytes

Data Reg

Cache Reg

Data Reg

Cache Reg

8 KB Data and Cache Reg

Banks are ganged and operate synchronous

Flash

Array

Flash

Array

Flash

Array

Flash

Array

8192 cycles
327.68 us

I/O [7:0]

200 us

To Bank 0, 1, 2, 3

Cmd & Addr

DI0-3 Pr0-3 Write
8 KB

Figure 6.12: Superblocks. 4-way superblocks and timing diagram of an 8 KB write request. I/O
bus used in example is 8-bit wide and clocked at 25 MHz.

superblocking from 2 to 4. However, from 4- to 8-way superblocks, reads and writes start

to show different performance characteristics. While request times continue to improve

for reads; write-request performance improves even more, moving from 4- to 8-way

banking. This is due to the fact that programming in flash memory takes several times

longer than reading and superblocking directly attacks this programming latency

problem.

At the same time, performance of superblocking is dependent on the speed of I/O

bus. When I/O bandwidth is low, moving from 4-way to 8-way superblocks hardly

improves the performance. But when I/O bandwidth is high, performance improvements

are 50-60%. In order to achieve better performance at high levels of superblocking, one

also has to increase the bandwidth of the system. Cost and power consumption of higher

99

All requests 1-way 2-way 4-way 8-way

25 MHz I/O 30.56 6.45 4.95 4.91

100 MHz I/O 24.39 4.43 1.49 0.76

Reads

25 MHz I/O 15.55 2.53 2.09 2.07

100 MHz I/O 10.06 0.9 0.35 0.27

Writes

25 MHz I/O 45.13 10.25 7.73 7.68

100 MHz I/O 38.29 7.85 2.59 1.23

Table 6.3: 1-, 2-, 4-, and 8-way superblocks. Average request service time in milliseconds using
single shared 8-bit I/O bus.

100

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8
Access Queue

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

23
.9

19
.8
18

.5 18 30
.1

25
.5
24

.6
24

.5

18
.2

14
.3
13

.2
13

.1 26
.3

22
.2
20

.8
20

.5

39
.4

33
.1
30

.9
30

.5
40

.2
33

.2
31

.6
31

.4

66
.3

64
.5
63

.9
63

.6
17

.7 16 15
.3 15 12

.8
12

.7
30

.6
25

.8
24

.4
24

.1

1-way 2-way 4-way 8-way

25 MHz I/O
50 MHz I/O

100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

9.5

Figure 6.13: Single I/O bus, 1-, 2-, 4-, and 8-way superblocks. Average request service time in
milliseconds using a shared 8-bit I/O bus for various user workloads is shown. Request times
improve significantly when the level of superblocking is increased and I/O bandwidth is high.

101

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

6.9 5 4.5 4.3 18 11
.6

10
.6

10
.5

11 6.4 5.4 5.4 15
.1

11
.2 9.8 9.6

27
.1

21
.6
19

.7
19

.4
23

.9
16

.6
15

.1 15

13
.2

10
.9
10

.4
10

.4

6.1

15
.6

11
.2

10
.1 9.9

1-way 2-way 4-way 8-way

25 MHz I/O
50 MHz I/O

100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

5 4.9

Figure 6.14: Reads with single I/O bus, 1-, 2-, 4-, and 8-way superblocks. Average read
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is
shown. Request times improve significantly when the level of superblocking is increased and I/O
bandwidth is high.

102

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

49
.4
41

.8
39

.5
38

.6
43

.6
41

.1
40

.4
40

.2

23
.8
20

.3
19

.2
19 38

.7
34

.4
32

.9
32

.5

49
.3

42
.3
39

.8
39

.4
58

.3
51

.8
49

.9
49

.5

93
.7

92
.1
91

.4
91

.1
16

.6
13

.5

14
.1

45
.1

40 38
.3

37
.9

1-way 2-way 4-way 8-way

25 MHz I/O
50 MHz I/O

100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

12
.3

11
.8

26
.9

26
.1
25

.9
25

.7

Figure 6.15: Writes with single I/O bus, 1-, 2-, 4-, and 8-way superblocks. Average write
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is
shown. Request times improve significantly when the level of superblocking is increased and I/O
bandwidth is high.

bandwidth I/O channels should be added to the cost of higher controller complexity,

increasing the overall cost of superblocking.

High variation on write request performance (depending on the workload) and the

2-3x scale difference between read and write performance continue to be the case for

superblocks as well. These indicate that it is possible to further improve system

performance by employing various scheduling techniques and run-time resource

allocation policies. Also, as shown in figure 6.13, requests spend a significant portion of

time waiting in queue even with high levels of superblocking. One way to reduce queue

times may be combining superblocks with banking and request interleaving.

6.3. Concurrency: Banking vs. Superblocks

Superblocks and request interleaving are methods that exploit concurrency at device- and

system-level to significantly improve performance. These system- and device-level

concurrency mechanisms are, to a significant degree, orthogonal: that is, the performance

increase due to one does not come at the expense of the other, as each exploits a different

facet of concurrency exhibited within the PC workload. One can formulate concurrency

as “number of banks times superblocking within a bank”.

Banking and request interleaving exploits concurrency at system-level by treating

flash memory banks as individual flash devices. As shown in section 6.1; by

accommodating interleaved organizations, one can achieve significant levels of

concurrency in an SSD without changing its overall size and shape. If we consider the

anatomy of an I/O, banking and request interleaving improves performance by reducing

queueing times. If more banks are available in the system, more requests can be

103

dispatched to these banks and each request will wait less time in queue. Although

physical access times should not change by the level of banking in theory, there will be

additional overheads when multiple independent banks share a limited system bandwidth.

Superblocks enable simultaneous read or write of multiple pages within a flash

device or even across different flash dies [57]. By exploiting concurrency at the device

level, one can effectively double NAND flash memory read and write bandwidth. If we

consider anatomy of an I/O, superblocking improves performance by reducing physical

access times. As the level of superblocking increases, read and write request access times

improve.

The obvious question is which of these concurrency techniques is better? In order

to answer this question, we have simulated different SSD organizations at different levels

of concurrency. Variables in this space include bus organizations (widths, speeds, etc),

banking strategies, and superblocking methods. We have simulated concurrency levels of

2, 4, 8 and 16. Within each level, we exploited concurrency by banking, by

superblocking ,or by a combination of two. For example; concurrency of 4 can be

achieved by connecting 4 individual memory banks, or 1 memory bank using 4-way

superblocking, or connecting 2 individual memory banks, each of which use 2-way

superblocking. Single I/O bus at 25, 50, 100 and 200 MHz is used. Average disk-request

response time is reported, which is a sum of physical access time (time to read/write data

from/to flash array) and queue wait time.

104

As summarized in table 6.4 and shown in figures 6.16-21, increasing concurrency

by means of either superblocking or banking results in different performance depending

on the system bandwidth.

For low bandwidth systems (8 bit 25 MHz I/O bus) increasing concurrency

beyond 4 (4 banks, 2 banks with 2-way superblocking each, or one bank with 4-way

superblocking) does not result in any further performance gains. When the level of

concurrency is 4 or more, all configurations of banking and superblocks perform within

7% of each other. This proves that at 25 MBps the storage system is limited by I/O

105

I/O
Rate Concurrency = Number of Banks x Superblocks

All
Req. 2x1 1x2 4x1 2x2 1x4 8x1 2x4 4x2 1x8 8x2 4x4 2x8 1x16

25
MHz 6.85 6.45 4.92 4.56 4.95 4.68 4.37 4.29 4.91 4.27 4.48 4.39 4.89

100
MHz 5.34 4.43 2.67 1.77 1.49 2.16 1.24 0.84 0.76 1.13 0.72 0.66 0.67

Read

25
MHz 3.01 2.53 2.41 2.28 2.09 2.38 2.17 2.17 2.07 2.15 2.26 2.17 2.06

100
MHz 1.2 0.9 0.58 0.4 0.35 0.47 0.32 0.29 0.27 0.3 0.27 0.27 0.27

Write

25
MHz 10.5 10.3 7.31 6.75 7.73 6.91 6.48 6.31 7.68 6.31 6.61 6.5 7.66

100
MHz 9.31 7.85 4.68 3.09 2.59 3.79 2.13 1.37 1.23 1.92 1.16 1.04 1.07

Table 6.4: Request time of Flash SSD Organizations. Average request service time in
milliseconds using 8-bit I/O bus.

106

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

Access Queue
25 MHz I/O

50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

2

(a) Trace 1

(b) Trace 2

(c) Trace 3

(d) Trace 4
Concurrency = Number of Banks x Superblocking per Bank

4 8 16

2 x 1 1 x 2 4 x 1 2 x 2 1 x 4 8 x 1 4 x 2 2 x 4 1 x 8 8 x 2 4 x 4 2 x 8 1 x 16

Figure 6.16: 2, 4, 8, and 16 level concurrency. Average request service time in milliseconds
using a shared 8-bit I/O bus for user workloads 1-4 is shown. Concurrency is defined as “Number
of Banks x Level of Superblocking per Bank”. For low bandwidth systems, increasing
concurrency beyond 4 does not result in any further performance improvements.

107

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

Access Queue
25 MHz I/O

50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

2

(a) Trace 5

10
.1 9.5

(b) Trace 6

(c) Trace 7

(d) Aggregate
Concurrency = Number of Banks x Superblocking per Bank

4 8 16

19
.3

18 17
.6

17
.5

2 x 1 1 x 2 4 x 1 2 x 2 1 x 4 8 x 1 4 x 2 2 x 4 1 x 8 8 x 2 4 x 4 2 x 8 1 x 16

17
.7 16 15

.3
15 12

.4
8.4 8.1 8.1 12

.1
12

.8
10

.3
11

.1
11

.8
12

.7 9.7 12
.1

12
.1

12
.7

Figure 6.17: 2, 4, 8, and 16 level concurrency. Average request service time in milliseconds
using a shared 8-bit I/O bus for user workloads 5-7 is shown. Concurrency is defined as “Number
of Banks x Level of Superblocking per Bank”. For low bandwidth systems, increasing
concurrency beyond 4 does not result in any further performance improvements.

108

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

2

(a) Trace 1

2.5 2.2

(b) Trace 2

(c) Trace 3

(d) Trace 4
Concurrency = Number of Banks x Superblocking per Bank

4 8 16

2.9

2 x 1 1 x 2 4 x 1 2 x 2 1 x 4 8 x 1 4 x 2 2 x 4 1 x 8 8 x 2 4 x 4 2 x 8 1 x 16

2.2 2.2 2.1 2

3.2 2.6 2.7 2.5 2.2 2.7 2.3 2.2 2.1 2.2 2.4 2.2 2.1

Figure 6.18: Reads with 2, 4, 8, and 16 level concurrency. Average read request service time in
milliseconds using a shared 8-bit I/O bus for user workloads 1-4 is shown. Concurrency is
defined as “Number of Banks x Level of Superblocking per Bank”.

109

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

25
 M

H
z

I/O

50
 M

H
z

I/O

20
0

M
H

z
I/O

10
0

M
H

z
I/O

8 bit I/O bus

2

(a) Trace 5

(b) Trace 6

(c) Trace 7

(d) Aggregate
Concurrency = Number of Banks x Superblocking per Bank

4 8 16

2 x 1 1 x 2 4 x 1 2 x 2 1 x 4 8 x 1 4 x 2 2 x 4 1 x 8 8 x 2 4 x 4 2 x 8 1 x 16

3.5 2.8 2.4 2.5 2.2 2.5 2.2 2.2 2.1 2.2 2.3 2.2 2.1

3 2.5 2.4 2.3 2.1 2.4 2.2 2.2 2.1 2.2 2.3 2.2 2.1

6.5 6.1 5.4 5.3 5 5.4 5.1 5 4.9 4.9 5.2 5 4.92.7 2.62 2

4.4 3.6 4.1 3.7 3.3 4.1 3.7 3.6 3.2 3.8 3.7 3.5 3.22.1

Figure 6.19: Reads with 2, 4, 8, and 16 level concurrency. Average read request service time in
milliseconds using a shared 8-bit I/O bus for user workloads 5-7 is shown. Concurrency is
defined as “Number of Banks x Level of Superblocking per Bank”.

110

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

2

(a) Trace 1

(b) Trace 2

(c) Trace 3

(d) Trace 4
Concurrency = Number of Banks x Superblocking per Bank

4 8 16

2 x 1 1 x 2 4 x 1 2 x 2 1 x 4 8 x 1 4 x 2 2 x 4 1 x 8 8 x 2 4 x 4 2 x 8 1 x 16

11
.8

Figure 6.20: Writes with 2, 4, 8, and 16 level concurrency. Average write request service time
in milliseconds using a shared 8-bit I/O bus for user workloads 1-4 is shown. Concurrency is
defined as “Number of Banks x Level of Superblocking per Bank”.

111

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

25 MHz I/O
50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

2

(a) Trace 5

(b) Trace 6

(c) Trace 7

(d) Aggregate
Concurrency = Number of Banks x Superblocking per Bank

4 8 16

2 x 1 1 x 2 4 x 1 2 x 2 1 x 4 8 x 1 4 x 2 2 x 4 1 x 8 8 x 2 4 x 4 2 x 8 1 x 16

14
.1

12
.3

13
.2

27 26
.1

25
.9
25

.7
25 23

.3
22

.6

22
.2 16

.6
16

.5
17

.7
13

.5 15 16 17
.6

12
.7

16
.5

16
.5

17
.5

Figure 6.21: Writes with 2, 4, 8, and 16 level concurrency. Average write request service time
in milliseconds using a shared 8-bit I/O bus for user workloads 5-7 is shown. Concurrency is
defined as “Number of Banks x Level of Superblocking per Bank”.

bandwidth. However, if one has to operate at low bandwidth either for cost cutting or

power saving purposes, choosing a configuration heavily depends on the user workload.

If overall request time is used as the performance metric, often times a configuration

which uses a combination of banking and superblocking is ideal. For example; when the

concurrency level is 8, in all traces except user trace 7, 8-way banking and 8-way

superblocking perform slower than 2-way banking with 4 superblocks or 4-way banking

with 2 superblocks. If read and write performance is evaluated individually, reads favor

higher levels of superblocking. This is explained by the lesser probability of I/O bus

contention. Since all memory blocks in a superblock operate in synch, there is no

additional time spent in bus arbitration. Writes follow the same overall trend that

combining banking and superblocking is more effective than only banking or only

superblocking. This conclusion is counter intuitive. Superblocking especially improves

write throughput by exploiting concurrency at device level. Therefore one would expect

writes to benefit most from a configuration which uses a higher degree of superblocking.

This is explained by the nature of user requests. As shown in chapter 5, in a typical user

workload most writes are 4 or 8 Kbytes in size. With 2- and 4-way superblocking, data

and cache registers are 4 and 8 Kbytes in size as well, thus fitting the request size. An 8

Kbytes write request will not benefit as much from 8-way or 16-way superblocking as it

will underutilize data and cache registers. Such requests may be served faster when there

are two memory banks each of which employing 4-way superblocks rather than when

there is single memory bank with 8-way superblocking.

112

For high bandwidth systems (100 MBps and higher) increasing concurrency

always improves performance. Also within a fixed level of concurrency, configuration

with the highest degree of superblocking always performs better. This proves that the real

limitation to NAND flash memory performance is its core interface. Exploiting

concurrency at system level by banking and request living can workaround this limitation

to an extent. Best performance is achieved when NAND interface performance is

improved.

6.4. Media Transfer Rate

One of the factors limiting flash memory performance is considered to be its media

transfer rate. In current flash memory devices, 8-bit 33 MHz I/O buses are common. As

HDDs with 7200, 10K or 15K RPM are popular, and disk interface speeds are scaling up

with serial interface and fiber channel, NAND flash SSD’s performance is expected to be

limited by its media transfer rate.

Open NAND Flash Interface (ONFI) is an industry workgroup dedicated to

NAND flash memory integration into consumer electronic products by resolving

compatibility and interoperability of NAND devices from different vendors. ONFI is

made of more than 80 companies, including Hynix, Micron, Intel, Sony, Hitachi, and

Kingston [67]. One of the new features of ONFI 2.1 is 166 and 200 MBps interface speed

as an improvement over legacy NAND bus. Source synchronous DDR interface is used to

achieve speeds up to 133 MBps with ONFI 2.0 and 166 MBps and higher with ONFI 2.1.

The impact of NAND I/O bus speed may be best observed in the context of

sustainable read speed. Often times for storage systems, sustainable read and write

113

performance is considered as the performance metric. One of the popular file system

benchmarks used to measure Unix file system performance is Bonnie [10]. Bonnie

benchmark tests the performance of reading 100 Mbytes file. If we consider reading a file

of 100 Mbytes in flash, this will correspond to reading 51200 pages of 2 Kbyte each.

Considering read cache mode - as explained in chapter 3.3.2 - it will take 25 µs + 51200 *

3 µs + 2048 * 51200 * T(I/O bus). If 33 MBps I/O bus is used, the result is 3.3 seconds. If

133 MBps I/O bus is used, the result is 0.9 seconds, 73% faster. In both cases, more than

95% of the time is spent in data transfer through I/O bus.

In order to find the impact of the media transfer rate on performance, we have

simulated different SSD organizations with different I/O bus speeds. We have simulated

I/O rates of 25, 50, 100, 200 an 400 MBps with 2-, 4-, 8-way banking or superblocks.

Average disk-request response time is reported, which is a sum of physical access time

(time to read/write data from/to flash array) and queue wait time. Figures 6.22-24

illustrate average disk-request response time, average read time, and average write time

for various user workloads.

In all storage system configurations, performance does not improve significantly

beyond 100 MBps. This can be explained by the nature of user workloads. In a typical PC

user workload, read and write requests are random, 4 to 8 KB in size with a read to write

ration of approximately 50:50. With such workloads, random read and write performance

dominates rather than sustainable throughput. For example, reading and writing of a large

file such as 100 Mbytes file used in Bonnie benchmark is observed in less than 1% of the

time.

114

115

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8
Access Queue

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

23
.9

18
.5

17
.8

30
.1

24
.6
24

.4

18
.2

13
.2

13 26
.3

20
.8

20
.4

39
.4

30
.9

30
.3

40
.2

31
.6

31
.3

66
.3

63
.9

63
.5

19
.3

17
.7

17
.6

17
.5

12
.4

8.4 8.1 12
.8

10
.3

30
.6

24
.4

24

Si
ng

le

Ban
k

2-way 4-way
8-way

25 MHz I/O
50 MHz I/O
100 MHz I/O

200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

400 MHz I/O

10
.1

9.5

15
.3
14

.9
12

.7

Banking Superblocks

Figure 6.22: Media Xfer Rate. Average request service time in milliseconds using an 8-bit I/O
bus for changing bus speeds and various user workloads is shown. Performance does not improve
much beyond 100 MBps.

116

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

6.9 4.5 4.2 18 10
.6

10
.5

11 5.4 5.3 15
.1

9.8 9.6

27
.1

19
.7

19
.4

23
.9

15
.1

14
.9

13
.2

10
.4
10

.3
4.4 4.1 4.1 15

.6
10

.1
9.8

Si
ng

le

Ban
k

2-way 4-way
8-way

25 MHz I/O
50 MHz I/O
100 MHz I/O

200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

400 MHz I/O

6.5 6.1

Banking Superblocks

5.4 5 5.4 4.9

Figure 6.23: Reads - Media Xfer Rate. Average read request service time in milliseconds using
an 8-bit I/O bus for changing bus speeds and various user workloads is shown. Performance does
not improve much beyond 100 MBps.

117

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

49
.4
39

.5
38

.1
43

.6
40

.4
40

.1

23
.8

19
.1

18
.9 38

.7
32

.9
32

.3

49
.3

39
.9

39
.2

58
.3

49
.9

49
.4

93
.7

91
.4

90
.9

26
.9

15
.6

10
.1

9.8

Si
ng

le

Ban
k

2-way 4-way
8-way

25 MHz I/O
50 MHz I/O
100 MHz I/O
200 MHz I/O

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

8 bit I/O bus

400 MHz I/O

14
.1

13
.2

Banking Superblocks

11
.8

25
.9

25
.7

25 22
.6

22
.1

16
.6

17
.7

13
.5

17
.6

Figure 6.24: Writes - Media Xfer Rate. Average write request service time in milliseconds
using an 8-bit I/O bus for changing bus speeds and various user workloads is shown. Performance
does not improve much beyond 100 MBps.

For typical PC user workloads, the real limitation to NAND flash memory

performance is not its low media transfer rate but its core interface. The random nature of

workloads and small request sizes are the two main factors. If server workloads are

considered, the impact of the media transfer rate can be of great importance. Server

workloads often times read and write in large sizes. And sustainable throughput is one of

the key metrics in reporting server performance. It is possible to observe slightly different

results with different workload timings. If a workload is sped up by compressing inter-

arrival times, one may see performance improvements beyond 100 MBps. For typical

user workloads bus idle times dominate which in return underestimates performance

improvements due to increased bus speed. As discussed, source synchronous DDR

interface can be used to achieve speeds up to 200 MBps and possibly further. Moreover

there are new flash memory architectures proposed which can achieve speeds

considerably higher than 200 MBps by using ring style organizations. For example,

HLNAND is one company whose NAND flash memory architecture uses up to 255 flash

memory banks connected in a daisy-chain cascade. This architecture can run at speeds of

up to 800 MBps [37].

6.5. System Bandwidth and Concurrency

As we have showed previously, flash memory performance can be improved significantly

if request latency is reduced by dividing the flash array into independent banks and

utilizing concurrency. The flash controller can support these concurrent requests through

multiple flash memory banks via the same channel or through multiple independent

channels to different banks, or a combination of the two. This is equivalent to saying, “I

118

have 4 flash memory banks, how should I connect them? Should I use four 50 MHz 8-bit

I/O channels, should I gang them together for a 32-bit I/O channel? Should I use faster or

wider I/O? What should I do?”.

To answer these questions, we have simulated a sample configuration with 4 flash

memory banks and with various I/O channel configurations which provide total I/O

bandwidths ranging from 25 MBps to 1.6 GBps. Figure 6.25 shows sample organizations

used to connect 4 flash memory banks. While keeping the total number of memory banks

constant at 4, we have simulated I/O channel widths of 8, 16, and 32 bits with I/O bus

speeds of 25, 50, 100 MHz - the total I/O bandwidth ranging from 25 MBps (single 8-bit

I/O bus at 25 MHz) to 1.6 GBps (4 dedicated 32-bit I/O buses at 100 MHz each). Total I/

O bandwidth is calculated as “number of I/O channels x bus width x bus speed”. The

simulation results for various user workloads are shown in Figures 6.26-31. Average disk-

request response time, which is a sum of physical access time (time to read/write data

from/to flash array) and queue wait time, average read time, and average write time are

reported.

119

F
T

L

F
T

L

F
T

L

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

k

B
an

kH
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

H
o
st

H
o
st

 I
/F

F
la

sh

C
o
n
tr

o
ll

er

(a) Single shared channel (b) Dedicated I/O channel for each bank (c) Multiple shared channels

Single 32-bit I/O

4 x 8-bit I/O

2 x 16-bit I/O

Figure 6.25: Connecting 4 flash memory banks. Dedicated and shared I/O channels are used to
connect 4 flash memory banks. Bus widths of 8, 16 and 32 bits are used. Bus speeds change from
25 MHz to 100 MHz. (a) Single 32-bit wide I/O bus is shared; (b) 32-bit I/O is divided into 4 8-
bit dedicated I/O channels; (c) 32-bit I/O is divided into 2 16-bit channels and each channel is
shared by 2 memory banks.

120

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

Access Queue

25 MBps

(a) Trace 1

(b) Trace 2

(c) Trace 3

(d) Trace 4Number of Channels x Bus Width (bits) x Speed (MHz)

1
x

8
x

25

1
x

8
x

50

2
x

8
x

25

1
x

16
 x

 2
5

1
x

8
x

10
0

2
x

8
x

50

1
x

16
 x

 5
0

4
x

8
x

25

2
x

16
 x

 2
5

1
x

32
 x

 2
5

2
x

8
x

10
0

1
x

16
 x

 1
00

4
x

8
x

50

4
x

16
 x

 2
5

2
x

16
 x

 5
0

1
x

32
 x

 5
0

4
x

8
x

10
0

2
x

16
 x

 1
00

1
x

32
 x

 1
00

4
x

16
 x

 5
0

2
x

32
 x

 5
0

4
x

32
 x

 2
5

2
x

32
 x

 2
5

4
x

16
 x

 1
00

2
x

32
 x

 1
00

4
x

32
 x

 5
0

4
x

32
 x

 1
00

200 MBps 400 MBps 800 MBps100 MBps50 MBps

1.6 GBps

5.3

5.2

Figure 6.26: System bandwidth. Average request service time in milliseconds with changing
system bandwidth for user workloads 1-4 is shown. Overall performance does not change much
beyond 200 MBps.

121

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

Access Queue

25 MBps

(a) Trace 5

(b) Trace 6

(c) Trace 7

(d) AggregateNumber of Channels x Bus Width (bits) x Speed (MHz)

1
x

8
x

25

1
x

8
x

50

2
x

8
x

25

1
x

16
 x

 2
5

1
x

8
x

10
0

2
x

8
x

50

1
x

16
 x

 5
0

4
x

8
x

25

2
x

16
 x

 2
5

1
x

32
 x

 2
5

2
x

8
x

10
0

1
x

16
 x

 1
00

4
x

8
x

50

4
x

16
 x

 2
5

2
x

16
 x

 5
0

1
x

32
 x

 5
0

4
x

8
x

10
0

2
x

16
 x

 1
00

1
x

32
 x

 1
00

4
x

16
 x

 5
0

2
x

32
 x

 5
0

4
x

32
 x

 2
5

2
x

32
 x

 2
5

4
x

16
 x

 1
00

2
x

32
 x

 1
00

4
x

32
 x

 5
0

4
x

32
 x

 1
00

200 MBps 400 MBps 800 MBps100 MBps50 MBps

1.6 GBps

7.5

4.9

5

5.3 5.1

12
.4

Figure 6.27: System bandwidth. Average request service time in milliseconds with changing
system bandwidth for user workloads 5-7 is shown. Overall performance does not change much
beyond 200 MBps.

122

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

25 MBps

(a) Trace 1

(b) Trace 2

(c) Trace 3

(d) Trace 4Number of Channels x Bus Width (bits) x Speed (MHz)

1
x

8
x

25

1
x

8
x

50

2
x

8
x

25

1
x

16
 x

 2
5

1
x

8
x

10
0

2
x

8
x

50

1
x

16
 x

 5
0

4
x

8
x

25

2
x

16
 x

 2
5

1
x

32
 x

 2
5

2
x

8
x

10
0

1
x

16
 x

 1
00

4
x

8
x

50

4
x

16
 x

 2
5

2
x

16
 x

 5
0

1
x

32
 x

 5
0

4
x

8
x

10
0

2
x

16
 x

 1
00

1
x

32
 x

 1
00

4
x

16
 x

 5
0

2
x

32
 x

 5
0

4
x

32
 x

 2
5

2
x

32
 x

 2
5

4
x

16
 x

 1
00

2
x

32
 x

 1
00

4
x

32
 x

 5
0

4
x

32
 x

 1
00

200 MBps 400 MBps 800 MBps100 MBps50 MBps

1.6 GBps

2.7

2.2

2.1 2

Figure 6.28: Reads - System Bandwidth. Average read request service time in milliseconds with
changing system bandwidth for user workloads 1-4 is shown. Reads prefer faster I/O bus.

123

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

0

0.5

1.0

1.5

2.0

R
es

p
o
n

se
 T

im
e

(m
s)

25 MBps

(a) Trace 5

(b) Trace 6

(c) Trace 7

(d) AggregateNumber of Channels x Bus Width (bits) x Speed (MHz)

1
x

8
x

25

1
x

8
x

50

2
x

8
x

25

1
x

16
 x

 2
5

1
x

8
x

10
0

2
x

8
x

50

1
x

16
 x

 5
0

4
x

8
x

25

2
x

16
 x

 2
5

1
x

32
 x

 2
5

2
x

8
x

10
0

1
x

16
 x

 1
00

4
x

8
x

50

4
x

16
 x

 2
5

2
x

16
 x

 5
0

1
x

32
 x

 5
0

4
x

8
x

10
0

2
x

16
 x

 1
00

1
x

32
 x

 1
00

4
x

16
 x

 5
0

2
x

32
 x

 5
0

4
x

32
 x

 2
5

2
x

32
 x

 2
5

4
x

16
 x

 1
00

2
x

32
 x

 1
00

4
x

32
 x

 5
0

4
x

32
 x

 1
00

200 MBps 400 MBps 800 MBps100 MBps50 MBps

1.6 GBps

2.4

4.1

2.4

5.4 4.2 4

3.1 2.8

Figure 6.29: Reads - System Bandwidth. Average read request service time in milliseconds with
changing system bandwidth for user workloads 5-7 is shown. Reads prefer faster I/O bus.

124

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

25 MBps

(a) Trace 1

(b) Trace 2

(c) Trace 3

(d) Trace 4Number of Channels x Bus Width (bits) x Speed (MHz)

1
x

8
x

25

1
x

8
x

50

2
x

8
x

25

1
x

16
 x

 2
5

1
x

8
x

10
0

2
x

8
x

50

1
x

16
 x

 5
0

4
x

8
x

25

2
x

16
 x

 2
5

1
x

32
 x

 2
5

2
x

8
x

10
0

1
x

16
 x

 1
00

4
x

8
x

50

4
x

16
 x

 2
5

2
x

16
 x

 5
0

1
x

32
 x

 5
0

4
x

8
x

10
0

2
x

16
 x

 1
00

1
x

32
 x

 1
00

4
x

16
 x

 5
0

2
x

32
 x

 5
0

4
x

32
 x

 2
5

2
x

32
 x

 2
5

4
x

16
 x

 1
00

2
x

32
 x

 1
00

4
x

32
 x

 5
0

4
x

32
 x

 1
00

200 MBps 400 MBps 800 MBps100 MBps50 MBps

1.6 GBps

7.9

9.2

Figure 6.30: Writes - System Bandwidth. Average write request service time in milliseconds
with changing system bandwidth for user workloads 1-4 is shown. So long as the total number of
memory banks is constant, write performance does not change by connecting them differently.

125

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

4

8

12

16

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

25 MBps

(a) Trace 5

(b) Trace 6

(c) Trace 7

(d) AggregateNumber of Channels x Bus Width (bits) x Speed (MHz)

1
x

8
x

25

1
x

8
x

50

2
x

8
x

25

1
x

16
 x

 2
5

1
x

8
x

10
0

2
x

8
x

50

1
x

16
 x

 5
0

4
x

8
x

25

2
x

16
 x

 2
5

1
x

32
 x

 2
5

2
x

8
x

10
0

1
x

16
 x

 1
00

4
x

8
x

50

4
x

16
 x

 2
5

2
x

16
 x

 5
0

1
x

32
 x

 5
0

4
x

8
x

10
0

2
x

16
 x

 1
00

1
x

32
 x

 1
00

4
x

16
 x

 5
0

2
x

32
 x

 5
0

4
x

32
 x

 2
5

2
x

32
 x

 2
5

4
x

16
 x

 1
00

2
x

32
 x

 1
00

4
x

32
 x

 5
0

4
x

32
 x

 1
00

200 MBps 400 MBps 800 MBps100 MBps50 MBps

1.6 GBps

16
.6

9.8

Figure 6.31: Writes - System Bandwidth. Average write request service time in milliseconds
with changing system bandwidth for user workloads 5-7 is shown. So long as the total number of
memory banks is constant, write performance does not change by connecting them differently.

One of the first observations is that overall performance does not change much

beyond 200 MBps. In other words, if 4 flash memory banks are provided with the total

bandwidth of more than 200 MBps, it does not matter how these memory banks are

connected - single wide bus, dedicated bus, or multiple shared buses. This is expected as

explained earlier. For typical PC user workloads, the real limitation to NAND flash

memory performance is its core interface. As long as the system is provided with

sufficient bandwidth, the performance will not improve any further unless more flash

memory banks are added to the storage system.

For low bandwidth configurations - 25, 50 and 100 MBps - overall request service

time changes within 15-20% if memory banks are connected differently. For some

workloads, such as user trace 6, change in overall request times are even greater, 30-40%.

For example; rather than connecting 4 memory banks with 4 dedicated channels (4

channels x 8-bit x 25 MHz), one can achieve better performance if 4 I/O channels are

ganged together to form a single wide I/O bus (1 channel x 32 bit x 25 MHz) -

summarized in table 6.5. The cost of doing so may not be very high since the total

number of pins on the flash controller side will be the same and only the number of pins

126

No of Channels x Bus Width x Bus Speed All requests Reads Writes

4 x 8 x 25 (100 MBps) 3.35 1.75 4.89

1 x 32 x 25 (100 MBps) 2.67 0.58 4.68

Table 6.5: 50 and 100 MBps Total I/O Bandwidth. Average request service time in
milliseconds using a various interconnect configurations. Bus widths are in bits and bus speeds
are in MHz.

on flash memory banks need to be increased. Load on the bus will be higher, which can

slightly increase power consumption. Each memory bank now has to drive 32 pins rather

than 8 pins. However, cost due to pin count increase may be eliminated if memory banks

are tied together using superblocking as explained earlier. This way pin counts on each

flash memory bank may be kept constant at 8. Another possibility would be using a

narrower but faster bus - instead of using 32 bit bus at 25 MHz, using a 100 MHz 8-bit

bus. Of course a faster bus will consume more power, but the options are available to

choose between cost increase due to pin count and cost increase due to power

consumption.

For read requests performance improvements are even higher. For example; rather

than connecting 4 memory banks with 4 dedicated channels (4 channels x 8-bit x 25

MHz), one can cut read request times by 3 if 4 I/O channels are replaced by a single fast

narrow I/O bus. Keep in mind that if more than 4 memory banks share a single I/O bus,

read performance starts to deteriorate due to bus contention - as explained in section 6.1.

This provides a challenge for system designers. On the one hand, overall system

performance tracks average read response time and reads prefer faster channels. If the

total system bandwidth is constant as a design requirement, then it is better if memory

banks are connected using a shared, fast and narrow bus. But loading a single bus with

more than 4 banks has a negative impact on read performance.

Write performance is heavily dependent on the number of available memory

banks as explained earlier. As long as the total number of memory banks is constant,

write performance is not expected to improve by connecting them differently. Figures

127

6.30-31 show that write performance does not change since the total number of memory

banks is kept constant at 4.

6.6. Improving I/O Access

In chapter 6.1, we have showed that by increasing the level of banking and request

interleaving one can improve performance significantly. However, one of the

observations made was that as more banks are attached to a single I/O bus, read

performance does not improve as much as write performance. This was due to an increase

in the physical access times at high levels of banking. For low bandwidth shared I/O bus

configurations, as more banks are connected I/O bus utilization increases to the point of

traffic congestion. Delays in acquiring I/O bus in a shared bus configuration increases

physical access times. Since read request timing mostly consists of time spent in reading

data from flash memory via I/O bus; any congestion in the I/O bus impacts reads more

than writes.

To improve I/O bus utilization, we suggest two device level optimizations. The

optimizations target reducing delays in acquiring I/O bus for reads. As we mentioned

earlier, performance of read requests is critical since overall system performance tracks

the disk’s average read response time [40].

When the timing of read and write requests is analyzed, shown in figure 3.7 in

chapter 3, it is seen that data is transferred over I/O bus in bursts of 2 KB. This is due to

data/cache register sizes being the same as page size in flash memory. Typical page size is

2 KB, as well as the size of data and cache registers. Therefore flash controller can only

transfer data from/to a single flash memory bank in bursts of 2 KB. In a shared bus

128

configuration, flash memory bank has to acquire access to the bus for every 2 KB burst.

Of course this assumes that bus is released any time it is not needed, which is typical in

true resource sharing.

One way to reduce congestion in I/O bus is to reduce the number of bus access

requests. If data can be transferred from/to flash memory array in bursts of larger than 2

KB, then there will be less requests for bus access. Once I/O bus is acquired, more data

can be transferred before it is released. By increasing cache register size to more than 2

KB, one can increase data burst size. Figure 6.32 shows memory bank configurations

with 2 KB cache register size and 8 KB cache register size. Timing of a sample 8 KB

write request is also shown to display the change in I/O access. When cache size is 2 KB,

data is written into the cache register in chunks of 2 KB and access to I/O bus is

requested for each transfer - 4 I/O bus access requests for 8 KB write request. If the cache

register size is increased to 8 KB - 4 pages of 2 KB each - then all data for the sample

write request can be transferred in one burst. Access to I/O bus is requested only one

time. Note than programming time does not change because data has to be written into

flash memory one page at a time through the data register. The cache register only buffers

data in advance as its name suggests. Moreover, read request timing will not change

either. Even when the cache register size is increased, read requests will transfer data in

bursts of 2 KB as flash memory reads data one page at a time. For read requests it is

possible to buffer all pages of a request and transfer them over I/O bus in a single burst.

However, holding data in the cache register until all pages are read from the memory

129

array will have a negative impact on the performance of reads - and on the overall system

performance.

In order to gage the impact of increasing cache register size on performance, we

have simulated a shared bus configuration with 2, 4, and 8 memory banks and cache

register sizes of 2, 4, 8, and 16 KB. We have also increased the I/O bus speed from 25

MHz to 400 MHz for each configuration.

130

F
la

sh
 C

o
n
tr

o
ll

er

Data Reg

Cache Reg

Data Reg

Cache Reg

Data Reg
Cache Reg

Data Reg
Cache Reg

Independent

Banks

Flash

Array

Flash

Array

Flash

Array

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed while data for
subsequent page is transferred200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Cache Reg

Data Reg

1 Block

1 Page

64 Pages

Flash

Array

2 K bytes

1 Page
Cache Reg

Data Reg

1 Block

1 Page

64 Pages

2 K bytes

4 Pages

Cmd

5 cycles
0.2 us

3 us

8192 cycles
327.68 us

I/O [7:0]

R/W

Xfer from cache to
data register Page is programmed200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3 (d) Write

using 8 KB

cache register

(a) 2 KB Cache Register (b) 8 KB Cache Register

(c) Write

using 2 KB

cache register

Figure 6.32: Increasing Cache Register Size. Memory bank configuration with 2KB and 8KB
cache register sizes and timing of an 8 KB write request.

Increasing cache register and data burst size does not impact the performance for

high speed I/O bus configurations. At high I/O bus speeds, time spent on transferring data

over this channel is only a small portion. Most of the time spent for each access is

physical access time - reading data from flash memory or writing data into flash memory.

For low speed I/O bus configurations, increasing cache register size does improve

performance, especially for configurations when 8 memory banks share a single I/O bus.

Figures 6.33-35 show an average read, write request response time, and overall response

time for each configuration simulated. Depending on the workload, read performance

improves 10-15% with increased cache size. The best performance is achieved when the

cache register size is 4 KB. Since most of the requests in typical user workloads are 4 and

8 KB in size, a cache register matching typical request size provides the optimum design

point. Although performance of write requests degrade with increasing cache register

size, overall system performance will follow read request performance. The cost of

increasing the cache register size should not be high either because no change in the flash

interface is required.

Another optimization to improve I/O bus access is using different bus access

heuristics for reads and writes. In a typical shared resource configuration, each

component requests access for the resource when needed and releases it when it is not

needed. However, considering the timing of a read or write request for NAND flash

memory interface (figure 3.7 in chapter 3) ,data transfer is not continuous. Data is

transferred from/to flash memory in bursts of 2 KB. Anytime 2 KB data is transferred

from the cache register to the data register, access to I/O bus is not required and it can be

released if another memory bank requests it. Only after a short period of time, memory

bank releasing the bus will request it again. Figure 6.36a illustrates the timing of an 8 KB

131

132

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8
Access Queue

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

10
.1 10

.2
10

.3

19
.3

19
.2

19
.3
19

.5
12

.4
12

.5
12

.7
10

.3
10

.4
10

.8

8-bit 25 MHz I/O

2 KB
4 KB

8 KB
16 KB

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Register Size

2
B
an

ks

4
B
an

ks

8
B
an

ks

8-bit 50 MHz I/O

18 17
.9

8.4

Figure 6.33: Increasing Cache Register Size. Average request service time in milliseconds with
increasing cache register size.

133

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

6.5 6.4 6.5

4.4 4.3 4.4 4.1 4.1

8-bit 25 MHz I/O

2 KB
4 KB

8 KB
16 KB

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Register Size

2
B
an

ks

4
B
an

ks

8
B
an

ks

8-bit 50 MHz I/O

5.4 5.2 5.4 5.4 4.9 5.2

Figure 6.34: Reads with Increasing Cache Register Size. Average read request service time in
milliseconds with increasing cache register size. Best performance is achieved when cache
register size is 4 KB.

134

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

14
.1

14
.3

14
.4

27 26
.8

27
.3

8-bit 25 MHz I/O

2 KB
4 KB

8 KB
16 KB

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Register Size

2
B
an

ks

4
B
an

ks

8
B
an

ks

8-bit 50 MHz I/O

12
.3

11
.8

11
.9

12
.1

16
.6 16

.7
17 13

.5
13

.6
14

.2
26

.1

11
.9

Figure 6.35: Write with Increasing Cache Register Size. Average write request service time in
milliseconds with increasing cache register size.

135

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to
data register

Page is programmed
while data for
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Access to I/O bus is not needed for 3 us and bus
can be released if another memory bank asks for it.
However, at the end of 3 us, it has to be acquired
again.

Writes do not need I/O access as frequently as
reads. I/O bus access is required between
programming pages - 200us

(a) Release bus when it is not needed

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from
memory array

Xfer from data to
cache register

Subsequent page is
accessed while
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Hold I/O bus between data burst even if it is not needed

(b) Reads hold bus during entire data transfer

Figure 6.36: I/O Bus Access Timing. (a) Timing of read and write requests, access to I/O bus is
released when it is not needed. (b) Timing for read requests with hold bus during entire data
transfer access policy.

read request. If after page 0 is transferred, another memory bank requests I/O access, bus

will be released as it is not used while page 1 is copied from data to cache register. After

3 µs, access to I/O will be needed to transfer page 1. In a shared I/O bus configuration,

the timing of a read request may be interrupted several times. The same is true for writes.

However, as the timing of writes is dominated by page programming, access to I/O bus is

not required as frequently as reads. For read requests it is better to guarantee

uninterrupted I/O bus access during the entire data transfer.

We have simulated a shared bus configuration with 2, 4, and 8 memory banks and

with I/O bus speeds of 25 MHz to 400 MHz. For each configuration we have tested two

different I/O access policies. The yypical case simulates a true shared resource policy. I/O

bus is released whenever it is not needed. In our proposed policy, I/O bus is held during

the entire read data transfer time; and when servicing writes, I/O bus is released

whenever it is not needed. Figures 6.37-39 show average read, write request response

time and overall response time for each policy simulated.

For high speed I/O bus configurations the difference between two policies is

negligible. However for slow I/O buses - 25 MHz - read performance improves 5-10% on

average when the I/O access policy is “hold bus during entire read request”. Depending

on user workloads and the number of memory banks sharing I/O bus, read performance

can be improved up to 20% if read requests hold I/O bus during the entire data transfer.

Although average disk request times and average write request times show 2-5%

degradation, overall system performance will trace read request performance. The cost of

implementing this policy change will not be high since no changes to flash interface is

136

137

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8
Access Queue

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

10
.1

10
.3

19
.3

19
.3

12
.4

12
.5

10
.3

10
.4

8-bit 25 MHz I/O

Hold bus only during data xfer
Hold bus during entire read request

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

2
B
an

ks

4
B
an

ks

8
B
an

ks

8-bit 50 MHz I/O

18 18 8.4 8.4

Figure6.37: Hold I/O Bus for Reads. Average request service time in milliseconds when the I/O
bus access policy is “hold bus for entire transfer” for reads.

138

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

6.5 6.5

4.4 4.5 4.1 4.2 4.1 4.2

8-bit 25 MHz I/O

Hold bus only during data xfer
Hold bus during entire read request

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

2
B
an

ks

4
B
an

ks

8
B
an

ks

8-bit 50 MHz I/O

5.4 5.2 5.4 4.9

Figure6.38: Reads with Hold I/O Bus for Reads. Average read request service time in
milliseconds when the I/O bus access policy is “hold bus for entire transfer” for reads. Read
performance can be improved up to 20% if read requests hold I/O bus during data transfer.

139

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

14
.1

14
.6

26
.9

26
.9

16
.6

16
.7

13
.5

13
.5

8-bit 25 MHz I/O

Hold bus only during data xfer
Hold bus during entire read request

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

2
B
an

ks

4
B
an

ks

8
B
an

ks

8-bit 50 MHz I/O

13
.6

13
.6

11
.8 12

.1

26
.1

26
.1

11
.8

Figure6.39: Writes with Hold I/O Bus for Reads. Average write request service time in
milliseconds when the I/O bus access policy is “hold bus for entire transfer” for reads.

required.

6.7. Request Scheduling

One of the classic problems with disk drives have been command queuing and

scheduling. In a typical storage system, the host sends a batch of I/O requests to the disk

drive and waits for them to be serviced. One way to service these requests is using a first

come first serve policy (FCFS). However, if the disk drive is given flexibility to decide a

more efficient order to serve these requests, performance of the storage system can be

improved. This has been the rationale behind various queuing and request reordering

policies implemented in today’s conventional hard disk drives.

In conventional hard disks, majority of the time spent in serving an I/O request is

seek time - time to move read/write head from its current location to the target location.

Therefore, majority of disk scheduling algorithms are based on reducing seek time.

Among I/O requests in the queue, ones whose target location is closer to read/write heads

current location are served first. One of the most common disk algorithms based on this

principle is Shortest Seek Time First (SSTF). Since SSTF algorithm is a greedy

algorithm, it has a tendency of starvation. Another algorithm that is based on minimizing

seek time is LOOK (aka Elevator Seek, SCAN) algorithm. In this algorithm, read/write

head moves from one end of the disk to the other end and serves requests along the way.

Both of these algorithms were developed when seek time was the dominant component of

the total I/O request service time. Modern disk drives have improved significantly in their

seek times. Although seek time is still a big component of the total request service time,

physical access time is currently considered as the main component of servicing an I/O

140

request. Physical access time includes both seek time and rotational latency. Thus

scheduling algorithms based on shortest access time are common among modern disk

drives. Shortest Access Time First (SATF) is one such algorithm where the request with

the minimum access time is serviced first.

Different than conventional hard disk drives, flash memory solid-state disks do

not have any mechanical components as mentioned before. Therefore, there is no concept

of seek time or rotation latency for flash memory disks. For solid-state disks, one cannot

differentiate between different I/O requests in queue by comparing their address

information. Accessing any location within flash memory has the same cost of loading a

page. On the other hand, for flash solid-state disks the dominant factor in overall request

service time is time spent in NAND flash interface as mentioned before. Moreover, flash

interface timing is very different between reads and writes. There is a scale difference

between reading a page from the flash memory array, 25 µs, and writing a page to the

flash memory, 200 µs. We have also observed in all our previous results that; there is a

big difference between average read times and average write times. For NAND flash

solid-state disks, two factors are dominant in the overall request service time: request

type (read or write) and request size. If a request requires reading or writing several

pages, its service time will be proportional to the number of pages accessed.

In order to serve I/O requests more efficiently and improve solid-state disk

performance, we suggest 4 different request scheduling policies designed for flash

memory. All 4 of these request schedules are based on the fundamental idea of “servicing

the request which will take the shortest time first”.

141

Schedule 1 - Read Priority (RP): This request scheduling policy is based on two

facts. First; there is a big scale difference between read times and writes times for flash

memory. Typically reads will almost always take a shorter time to serve than writes - for

a typical 4K and 8K request. Second; overall system performance tracks disk’s average

read response time [40]. In this policy, read requests are always serviced before any

write request. In other words, reads have a higher priority over writes.

Schedule 2 - Shortest Request First, First Come First Serve on Ties (SRF - FCT):

This request scheduling policy is based on the fact that NAND flash interface is the

dominant factor in request response time. A request which reads or writes the least

number of pages (shortest request) will be serviced first. On the other hand, typical user

workloads consist of 4K or 8K requests. Request sizes do not show high variation.

Therefore, there will be plenty of requests in queue which are of identical size. In such tie

situations, FCFS policy is observed.

Schedule 3 - Shortest Request First, Read Priority on Ties (SRF - RPT): This

request scheduling policy is same as schedule 2 but uses read priority algorithm on ties. If

there are two requests of equal size but different types, reads have a higher priority over

writes.

Schedule 4 - Weighted Shortest Request First (WSRF): This scheduling policy is a

variation of schedule 2. In addition to request size, it also factors in the flash interface

timing difference between reads and writes. For flash memory, typical page read time is

25 µs and typical page program time is 200 µs. There is an 8x scale difference between

reads and writes. In this schedule, request sizes are weighted according to request type.

142

The sizes of write requests are multiplied by 8 and then compared. For example, between

8K read and 4K write request read request will be serviced first. A 4K write request will

be considered equivalent to a 32K read request.

In order to gage the performance impact of these request scheduling algorithms,

we have simulated these algorithms using a single bank flash memory configuration.

Although multiple bank configurations improve performance significantly, using a single

bank will generate long enough request queues, which will in turn make it easier to

measure the performance impact of these request scheduling algorithms. Also I/O bus

speed has a limited impact on read performance as explained earlier. Therefore, we have

also increased I/O bus speed from 25 MHz to 400 MHz to incorporate I/O bus speed as a

factor. Figures 6.40-42 show average read, write request response time and overall

response time for each policy simulated. We have assumed FCFS scheduling policy as

the baseline.

When reads are given priority over writes, their performance improves

significantly, by 60-80%. This performance improvement on reads only comes at a small

cost to writes - a write performance degradation of roughly 5%. Although overall request

time improves by 15-20%, user perceived performance will track bigger improvements

on read time. Another observation is that one can achieve read performance of 2 or 4

banks by using a single bank with read priority as a scheduling algorithm. In designs

where increasing the numbers memory banks is costly either due to increased pin count

or power consumption, implementing read priority at the driver level can be a cost

effective solution to providing similar read performance.

143

144

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

Access Queue

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

Bus Width (bits) x Bus Speed (ns)

FCFS
RP

SRF - FCT
SRF - RPT

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Scheduling Policy

8 x 40

WSRF

8 x 20 8 x 10 16 x 10 32 x 10

23
.9 30

.1
25

.5
24

.6
24

.5
24

.4

26
.3

39
.5

31
.1

33
.1

25
.3

30
.9

30
.5

30
.3

40
.2

33
.1

33
.2

26
.7

31
.6

31
.4

31
.3

25
.2

25
.1 25

66
.3

63
.4

64
.5

61
.6

63
.9

63
.6

63
.561 60

.7
60

.6
30

.6
25

.6
25

.8
24

.4
24

.1
24

Figure 6.40: Request Scheduling. Average request service time in milliseconds with different
request scheduling policies.

145

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e

(m
s)

0

1

2

3

4

Bus Width (bits) x Bus Speed (ns)

FCFS
RP

SRF - FCT
SRF - RPT

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Scheduling Policy

8 x 40

WSRF

8 x 20 8 x 10 16 x 10 32 x 10

6.9 18 11
.6

10
.6

10
.5

10
.5

27
.1

6.7 21
.6

4.3 19
.7

19
.4

19
.4

23
.9 5.5 16

.6
4.6 15

.1 15 14
.9

4
3.9

15
.6

4.8 11
.2

10
.1 9.9 9.8

5 4.5 4.3 4.2 4.3 4.2

11 6.4 5.4 5.4 5.3 15
.1 11

.2 9.8 9.6 9.66.9 5 4.5

4 4 8.8 5.2 4.8

13
.2 4.4 10

.9
10

.4
10

.4 10
.3

4.2 4.2 4.2

Figure 6.41: Reads - Request Scheduling. Average read request service time in milliseconds
with different request scheduling policies. Performance with WSRF scheduling algorithm is very
comparable to performance with RP.

146

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

12

24

36

48

0

12

24

36

48

R
es

p
o
n

se
 T

im
e

(m
s)

0

12

24

36

48

0

12

24

36

48

R
es

p
o
n

se
 T

im
e

(m
s)

0

12

24

36

48

0

12

24

36

48

R
es

p
o
n

se
 T

im
e

(m
s)

0

12

24

36

48

0

12

24

36

48

R
es

p
o
n

se
 T

im
e

(m
s)

Bus Width (bits) x Bus Speed (ns)

FCFS
RP
SRF - FCT

SRF - RPT

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Scheduling Policy

8 x 40

WSRF

8 x 20 8 x 10 16 x 10 32 x 10

49
.4

49
.3

53
.8

58
.3

63
.6

51
.8

53
.9

49
.9

49
.5

50
.6

51
.1 49

.4

47
.7

50
.6

50
.8

93
.7

93
.7

92
.1

92
.2

91
.4

91
.1

90
.9

91
.4 90

.9
91

.1

Figure 6.42: Writes - Request Scheduling for Writes. Average write request service time in
milliseconds with different request scheduling policies. Writes benefit from using some form of
the shortest request first algorithm.

When some form of shortest request first scheduling algorithm is used,

performance improvements can be even bigger. Average request time improves 50-60%

when the shortest requests are serviced first. Moreover, both reads and writes benefit

from using these scheduling policies. Although SRF-FCT and SRF-RPT algorithms do

not perform as well as RP if reads are considered, WSRF algorithm provides a great

balance between reads and writes. Its read performance is almost as good as RP, at the

same time it also improves writes significantly.

In addition to a single bank flash memory configuration, we have also simulated a

4 channel, 16 banks (4 banks per I/O channel) flash memory configuration. Due to higher

concurrency, queue times in this configuration were less than 1 ms and not one of these

scheduling algorithms had an impact. It is observed that, for any configuration and user

workload where queue times are less than 1-2 ms, scheduling policies become obsolete.

On the contrary, if server workloads are used rather than PC user workloads, one can

expect even higher improvements using these algorithms. Server workloads will be much

heavier than typical user workloads and will result in a longer queue length. Thus a

greater possibility of request re-ordering.

One of the side effects of any greedy request scheduling algorithm is that some I/

O requests may end up waiting in queue for an unduly long time. This is often referred to

as starvation. For the request scheduling algorithms we have proposed here, very large

write requests are prone to starvation.

Table 6.6 shows queue time distribution for user workload 1. This workload can

be considered as read heavy, as its read to write ratio is 60:40. It is slightly biased

147

towards reads as requests in user workloads generally are partitioned 50:50 between reads

and writes. If user workload 1 is run with a single bank, 8 bit, 25 MHz I/O configuration

with FCFS scheduling policy, the average queue time for any request is 22.39 ms and the

maximum queue length is 544 requests. If we exclude requests which did not experience

any queue time, 47.5% of the requests spent less than 1 ms in the queue. The maximum

time spent in queue is 1086.77 ms. 33 requests spent more than 1000 ms waiting in the

queue. One observation is that, when proposed scheduling algorithms are used number of

requests in [10, 100) and [100, 1000) buckets decreased considerably. Bucket [a, b)

represents the number of requests which spent larger than a, less than b time waiting in

the queue. On the other hand, the impacts of starvation can be observed as well. With any

shortest request first type algorithm, the maximum queue time is increased by 3 times.

148

Queue Statistics FCFS RP SRF-FCT SRF-RPT WSRF

Avg. Queue Time (ms) 22.39 19.49 7.29 7.15 7.13

Max. Queue Length 544 541 120 120 118

Queue Time Distribution

(0, 1) 24709 25342 29504 29960 29571

[1, 10) 13016 13380 14626 14054 14620

[10, 100) 9491 9116 6393 6332 6334

[100, 1000) 4731 3875 1001 966 954

[1000, Max] 33 179 104 118 121

Max. Queue Time (ms) 1086.77 1219.58 3322.02 3322.02 3333.36

Table 6.6: User Workload 1 (Read Biased) Queue Statistics. Queue wait time distribution for
user workload 1 (read biased workload).

Also the number of requests in the [1000, Max] bucket also increased substantially. For

example, there were only 33 requests which spent between [1000, 1086.77] ms waiting in

the queue with FCFS. However, there are 121 requests which spent between [1000,

3333,36] ms in the queue with WSRF. It is important to note that these 121 requests only

represent 0.12% of all requests in the workload and they are almost always are write

requests.

Let’s look at queue time distribution for a different workload. Table 6.7 shows

queue time distribution for user workload 7. This workload can be considered as write

heavy, as its read to write ratio is 35:65. When FCFS scheduling policy is used, the

maximum queue time is 1320.86 ms and there are 18 requests which spent between

[1000, 1320.86] ms in the queue. However, if the scheduling policy is changed, the

149

Queue Statistics FCFS RP SRF-FCT SRF-RPT WSRF

Avg. Queue Time (ms) 61.66 58.71 18.31 18.31 18.31

Max. Queue Length 110 110 82 82 82

Queue Time Distribution

(0, 1) 3678 3716 4669 4657 4676

[1, 10) 4547 4554 4662 4621 4658

[10, 100) 3518 3621 5090 5083 5088

[100, 1000) 3514 3374 774 778 773

[1000, Max] 18 7 7 7 7

Max. Queue Time (ms) 1320.86 1309.28 1237.68 1237.31 1237.31

Table 6.7: User Workload 7 (Write Biased) Queue Statistics. Queue wait time distribution for
user workload 7 (write biased workload).

maximum queue time decreases and there are less requests whose queue time is larger

than 1000 ms. Our simulations did not observe starvation in a write heavy workload.

With our scheduling algorithms, some kind of aging algorithm may be put in

place to prevent possible starvation. If a request spends more than a pre-determined time

in queue, it’s priority may be increased and it may be moved to the front of the queue. As

mentioned mostly writes are prone to possible starvation. From an end user perspective, a

write request waiting in the queue for an extended period of time is not of much

importance. Already all modern disk drives implement read hit on write requests while

they are waiting in the queue. Unless there is a sudden power loss these write requests

will not be lost and it does not matter from a caching perspective if these writes are

indeed written to physical media or waiting on the queue. And user perceived

performance is dependent on read requests. As long as the possibility of starvation on a

read request is near zero, time limits on aging can be relaxed as much as possible. Or may

be not implemented at all. When flash memory is used in a USB drive, the possibility of

sudden power loss is a reality and the amount of disk cache is very limited or does not

exists at all for cost reasons. However, flash memory solid-state disks operate within the

host system and sudden power loss is not much of a concern. They are equipped with a

disk cache component much like conventional hard disk drives.

In addition to these various scheduling algorithms, we have also implemented

modular striping as default write scheduling algorithm in our simulations. If there are a

total of x memory banks, the Nth write request is assigned to bank number N(mod x) by

default. Flash memory has a relatively long write (program) latency but flash memory

150

array also consists of multiple banks. Since we allocate a newly erased page for each

write request, choosing a memory bank for each write and an empty page within that

bank becomes a run-time decision of resource allocation. By distributing sequential

writes among flash memory banks, we can hide write (program) latency. Striping is a

typical RAID 0 based scheduling policy used extensively in the disk community to

distribute data across several disks for better performance. Therefore, we have assumed

modular striping for write requests as a logical choice to utilize available parallelism

within flash memory array. The simplicity of this approach also provides a proficient

design choice as it adds almost no additional complexity to flash controller.

Table 6.8 and 6.9 illustrate total number of pages read from and written into each

memory bank in a 16 bank flash memory array configuration for each user workload.

Modular striping generates an equal number of write requests to each bank, although

request sizes can be different. For example, the first request can be an 8 KB write request

and will be routed to bank 1. The second request can be 4 KB and will be sent to bank 2.

Even though each bank serves 1 write request in this case, write latencies will be different

and the total amount of sectors written will not distribute evenly.

In our simulations with real user workloads we have observed that modular

striping of writes not only generate equal number of write requests per bank, it also

distributes write sectors almost evenly among flash memory banks. For a flash array of

16 banks, one would expect each bank to serve 6.25% of the overall sectors written for

perfect uniform distribution. As seen in Table 6.8, the number of sectors written into each

bank is within 5% of each other - meaning the busiest bank serves 6.56% of the total

151

write sectors and the least busy bank serves 5.95% of the total write sectors. These values

slightly vary among workloads with largest variation in user workload 7. In this

workload, the number of sectors written into each bank is within 20% of each other. This

shows that modular striping of write requests not only generates an equal number of write

requests per bank, but it also generates an almost equal number of total sector writes for

152

User Workloads

Bank # 1 2 3 4 5 6 7 Aggregate

1 5.65% 6.39% 6.83% 6.40% 6.30% 6.51% 6.28% 6.34%

2 6.09% 6.37% 6.96% 6.79% 6.70% 6.30% 6.34% 6.52%

3 6.59% 5.77% 6.78% 6.56% 6.26% 6.06% 6.41% 6.36%

4 6.79% 6.47% 6.71% 5.95% 6.58% 6.75% 6.22% 6.53%

5 6.32% 6.72% 6.06% 6.13% 6.36% 6.21% 6.97% 6.37%

6 6.64% 6.50% 6.46% 5.74% 5.81% 5.96% 7% 6.29%

7 6.61% 6.78% 6.42% 5.71% 6.28% 6.00% 6.43% 6.33%

8 6.01% 7.09% 6.01% 6.08% 6.18% 6.31% 7.05% 6.35%

9 5.94% 6.10% 5.92% 6.01% 5.86% 6.53% 7.55% 6.22%

10 6.31% 5.63% 6.17% 6.62% 6.13% 6.55% 6.68% 6.28%

11 6.57% 6.24% 6.01% 6.72% 6.31% 5.33% 5.91% 6.16%

12 6.12% 5.74% 5.58% 6.14% 5.83% 6.15% 5.44% 5.86%

13 6.06% 5.25% 6.18% 5.99% 5.73% 6.39% 5.63% 5.90%

14 5.87% 6.09% 5.82% 6.31% 6.43% 6.35% 5.48% 6.06%

15 6.02% 6.64% 6.32% 6.35% 6.59% 6.38% 4.98% 6.22%

16 6.41% 6.20% 5.77% 6.48% 6.64% 6.38% 5.64% 6.23%

Table 6.8: Percentage of Write Sectors per Bank. Ideally each memory bank should serve
equal number of write requests. The percentage of write sectors should be 6.25% for a 16 bank
configuration.

each bank. The main reason for this is that fact that typical PC user workloads are bursty

and request sizes do not vary much within each burst. Although more sophisticated write

scheduling algorithms can be implemented, which aim at uniform distribution of write

requests, their impact will not be very different. Moreover, they will add more complexity

into the flash controller logic, whereas modular striping is a very straight forward

algorithm to implement at almost no cost.

153

User Workloads

Bank # 1 2 3 4 5 6 7 Aggregate

1 6.19% 5.24% 10.64% 11.04% 15.78% 6.68% 5.92% 9.01%

2 2.45% 4.34% 5.66% 3.60% 4.34% 11.16% 3.87% 5.14%

3 25.13% 9.41% 8.42% 7.64% 7.63% 17.64% 3.95% 12.71%

4 6.01% 8.61% 8.13% 3.28% 7.58% 7.14% 3.10% 6.50%

5 3.98% 1.89% 4.40% 3.93% 2.81% 6.62% 3.46% 4.01%

6 3.25% 1.31% 1.93% 1.15% 1.64% 1.30% 2.94% 1.95%

7 6.75% 2.59% 3.88% 1.73% 3.57% 1.40% 3.12% 3.52%

8 5.95% 2.27% 3.61% 8.75% 5.20% 2.23% 7.30% 4.91%

9 5.85% 5.74% 4.91% 8.83% 5.91% 5.29% 31.92% 7.99%

10 2.91% 28.02% 15.94% 9.65% 7.38% 5.33% 8.44% 10.34%

11 12.03% 16.57% 21.93% 31.51% 25.15% 14.64% 7.66% 18.90%

12 6.83% 4.32% 2.01% 1.05% 1.89% 13.35% 3.40% 4.96%

13 1.82% 1.76% 1.39% 0.91% 1.79% 1.12% 4.45% 1.70%

14 1.66% 1.40% 1.29% 1.17% 2.16% 1.02% 4.13% 1.66%

15 4.55% 4.02% 3.87% 4.39% 4.87% 3.72% 2.47% 4.11%

16 4.66% 2.53% 1.99% 1.38% 2.29% 1.37% 3.88% 2.59%

Table 6.9: Percentage of Read Sectors per Bank. Uniform distribution of read requests would
be the best case scenario as it will utilize available parallelism, however storage systems do not
have any control over what the user would request for reads.

Although write requests are distributed equally among banks, the same can not be

said of reads. Table 6.9 shows the total number of sectors read from each bank for all user

workloads. The distribution of read sectors among banks is not as uniform as writes and

in some cases shows high variations. There are two factors which affect how read sectors

are distributed among banks. One is temporal locality of requests. If data is written into

disk, it is likely that it will be read in the near future. Then the distribution of writes

among banks increases the possibility of future read requests being distributed as well. In

this case, modular striping also helps in distributing reads - although its impact is limited.

This may be controlled better by using a different write scheduling algorithm. Much like

modular striping which optimizes write latency (and improves read distribution to some

extent), another scheduling algorithm may try to achieve uniform distribution of reads.

Note that if write requests are not evenly distributed, some banks might become too busy

serving writes. This will degrade performance of reads scheduled to these busy banks.

Fortunately this can be worked around by utilizing a RP (read priority) or WSRF

scheduling algorithm. Some heuristics that come to mind as an alternative to modular

striping are: Nth write request assigned to the bank with the least number of write sectors

or to the bank with shortest request/read/write queue or to the bank whose blocks have

worn out the least (wear leveling).

A second factor which controls how read requests are distributed is simply user

workload characteristics. One user workload might generate reads whose addresses are

unevenly distributed whereas another user workload might generate read requests whose

addresses are within close proximity of each other. Unfortunately, this second factor is

154

outside of our control. Although it is possible to design a scheduling algorithm which

attempts to predict locality of user read requests, it will very likely increase the

complexity of flash controller substantially.

6.8. Block Cleaning

As mentioned earlier, flash memory technology does not allow overwriting of data (in-

place update of data is not permitted) since a write operation can only change bits from 1

to 0. To change a memory cell’s value from 0 to 1, one has to erase a group of cells first

by setting all of them to 1.

Typically each flash memory design maintains a list of recently erased blocks

(free blocks). As write requests are received, free pages from these free blocks are

allocated in consecutive order for these write requests. Over time, the number of free

blocks will diminish. In this case flash memory will have to perform some form of block

cleaning. Flash memory array will be scanned for blocks with invalid pages as potential

erase blocks and block cleaning will be performed. During block cleaning, the flash

memory device will be in busy mode and all read and write requests to the device will be

stalled in queue.

One of the important factors during this cleaning process is “block cleaning

efficiency”. Block cleaning efficiency is defined as the percentage of invalid pages to the

total number of pages during block cleaning. Efficiency can heavily impact the latency of

block cleaning. When a block is cleaned with 100% efficiency, all pages in this block are

invalid pages and block cleaning only involves erasing all pages within this block. The

typical block erase times are 1.5 or 3 ms. If a block is cleaned with 50% efficiency, half

155

of the pages within the block has valid user data and has to moved first. 32 pages of valid

user data will be read out, written into some other free block and then erase operation will

be performed. This will substantially increase cleaning latency. If the movement of valid

user data can be limited within the same memory bank or within the same die in a

memory bank, copying of valid pages can be performed via an internal move operation.

With internal move operation, a page will be read into the cache register and then moved

into the data register. While data from the data register is written to a different location,

the next page can be read into the cache register. In our example of block cleaning with

50% efficiency, copying of 32 pages of valid user data will take 1 page read (read first

page), 31 interleaved page read and write operations and 1 page write (write last page).

Assuming 25 µs for page read, 200 µs for page write and 3 µs for cache-to-data register

transfer time, it will take 6.521 ms just to move valid data. This will add to the already

long latency of the block erase process. Moreover, if copying the valid data is not

performed within the same memory bank or within the same die then the data has to be

read and written via 8-bit I/O interface and will take even longer.

In order to measure the impact of block cleaning on flash memory performance,

we have simulated a sample configuration with a very limited number of free memory

blocks. We have used 32 GB flash solid-state disk with 4 memory banks sharing a single

8-bit 25 MHz I/O channel. We have assumed that each 8 GB memory bank has only 2048

free blocks - 256 MB free space. When the number of free blocks falls below a pre-

determined level, block cleaning is triggered automatically. A single block is selected as a

candidate for block cleaning and all read and write requests are blocked until the block is

156

cleaned and added into the free block pool. Each flash memory bank has its own 256 MB

free block space and implements block cleaning independently. While one bank is busy

with block cleaning, other banks may continue to serve their requests if they have free

blocks above the threshold. Depending on how low this threshold is set, flash memory

banks will start block cleaning much earlier or much later. In order to gage the impact of

this threshold, we have simulated 3 different levels - 64 MB, 128 MB and 192 MB. When

this threshold is low, flash memory banks start block cleaning later and when it is higher,

flash memory banks start block cleaning much earlier.

As we mentioned above, another factor which determines block cleaning latency

is block cleaning efficiency. We have simulated block cleaning efficiency levels of 100%,

70% and 30%. A higher cleaning efficiency translates into lower block cleaning latency -

thus read and write requests in the queue are blocked for a shorter amount of time. We

have also assumed that block cleaning is performed within each bank. This allowed us to

perform an internal data move operation during block cleaning if valid user pages needed

to be copied.

Figures 6.43-45 show the impact of block cleaning on average disk-request

response time, average read response time, and average write response time for various

user workloads.

As expected, block cleaning has a negative impact on request response times.

However, identifying block cleaning as a performance bottleneck for flash memory solid-

state disks would be inaccurate. A closer look at simulation results show that block

cleaning efficiency is the parameter that defines the level of performance degradation

157

158

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

3

6

9

12

47 15
9

20
5 62 39

6
40

5

25 51 27 42

28 40 13
5 14 35 15 41

31 64 96 28 99 13
9

No Cleaning 64 MB

30%

70%

100%

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Cleaning Efficiency

14

128 MB 192 MB
Cleaning Threshold

Figure 6.43: Block Cleaning. Average request service time in milliseconds when block cleaning
is triggered at different thresholds with varying cleaning efficiency. Block cleaning efficiency is
the parameter that defines the level of performance degradation.

159

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e

(m
s)

0

2

4

6

8

40 44 81 82

9 16 21 27

10 11 45 8 20 8 21

20 28 39

No Cleaning 64 MB

30%

70%

100%

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Cleaning Efficiency

128 MB 192 MB
Cleaning Threshold

Figure 6.44: Reads with Block Cleaning. Average read request service time in milliseconds
when block cleaning is triggered at different thresholds with varying cleaning efficiency. Block
cleaning efficiency is the parameter that defines the level of performance degradation.

160

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

0

6

12

18

24

R
es

p
o
n

se
 T

im
e

(m
s)

0

6

12

18

24

34
6

45
8

75
3

77
1

37 78 34 59

44 64 20
9 51 63

14
0

16
9

23
9

No Cleaning 64 MB

30%

70%

100%

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Cleaning Efficiency

128 MB 192 MB
Cleaning Threshold

11
8

12
8

33962646 51

Figure 6.45: Writes with Block Cleaning. Average write request service time in milliseconds
when block cleaning is triggered at different thresholds with varying cleaning efficiency. Block
cleaning efficiency is the parameter that defines the level of performance degradation.

induced by block cleaning. If we consider results with 100% block cleaning efficiency,

the average disk request response time increased by 5-20% depending on the cleaning

threshold. For read requests, this was even lower. When cleaning threshold is set to 192

MB - higher threshold triggers block cleaning much earlier - read requests performance

only decreased by 7% on average. When block cleaning efficiency is reduced to 70%,

latency increase induced by block cleaning starts to show. The impact of the cleaning

threshold is better observed when the cleaning efficiency is reduced from 100%.

When block cleaning efficiency is reduced to 30%, the performance of the storage

system degrades significantly. Request response times increase 10 times, in some cases

100 times. If we draw on an analogy to main memory, block cleaning for flash memory is

what swapping is to RAM. When the amount of swapping is low, the performance

degrades but O/S would still operate. If more memory is swapped, the performance

would degrade further until the entire virtual memory system starts trashing. Similarly,

performance of the flash memory system degrades as block cleaning efficiency decreases

until to a point where the flash memory system starts trashing. At this point the storage

system becomes so busy with internal data movement and block cleaning that the user

requests are held up in the queue almost indefinitely.

One of the performance parameters that affect the cost of block cleaning is

identified as uniformity [2]. Uniformity is defined as the fraction of blocks that are

uniform in flash memory. All pages in a uniform block are either valid or invalid. In other

words, a uniform block does not contain both valid and invalid pages together. The main

conclusion of this study is that; the cost of block cleaning increases dramatically when

161

uniformity is low. The results of our simulations support this conclusion. As uniformity in

flash memory decreases, the number of blocks with all invalid pages also decrease. If the

number of blocks with all invalid pages is low, the probability of block cleaning with

100% efficiency is also low. When block cleaning is triggered, most of the candidate

blocks have both valid and invalid pages within them , decreasing block cleaning

efficiency. This dramatically increases request response times as our results show.

It is important to note that block cleaning efficiency not only determines block

cleaning latency due to internal data movement (copying of valid pages), but it also

determines how many free pages can be added to the free pool. For example, if a block is

cleaned with 100% efficiency, the number of free pages increases by 64. Flash memory

can serve 128 KB write requests before block cleaning is triggered again. However, if

cleaning efficiency is 30%, only 19 pages are added to the pool. The other 45 pages out

of 64 available are used in storing valid user data in the cleaned block. Shortly after 38

KB writes are served, block cleaning needs to be performed again. Therefore block

cleaning efficiency also contributes to the frequency of block cleaning.

There are several algorithms which can be implemented at FTL to reduce the

impact of block cleaning on performance by either ensuring enough free pages when a

burst of user requests arrive or by ensuring that block cleaning is implemented at 100%

efficiency (minimum block cleaning latency).

One way to reduce the impact of block cleaning is to postpone it as much as

possible by employing a variable cleaning threshold. All studies on flash memory

performance in literate assumes a fixed block cleaning threshold. With a fixed threshold,

162

block cleaning will be triggered as soon as this threshold is crossed. On the other hand,

we know that typical PC user workloads are bursty. Instead of a fixed threshold, a

variable threshold can perform better. A variable threshold can postpone block cleaning

until all user requests within a batch are served.

Another way to limit block cleaning is harvesting disk idle times as efficiently as

possible. As outlined in [38], in I/O systems there is a lot of idle time for performing

background tasks. There has been significant research in the HDD community to harness

these idle times to reduce overall power consumption of the I/O system. Since SSDs have

an advantage over HDDs in power consumption, the same algorithms can be used for

SSDs to harness disk idle times for proactive block cleaning. Figure 6.46 displays disk

idle time distribution for a single I/O channel, 4 memory banks configuration. As shown,

each memory bank has substantial number of idle periods of larger than 10 ms. When all

our user workloads and all 4 memory banks are considered, there are more than 100K

idle periods of 10 to 100 ms, more than 30K idle periods of 100 ms to 1 s, and

approximately 18K idle periods of 1 to 10 s. If only 60% of idle times which are larger

than 1 s can be detected and used for block cleaning, it will eliminate all of the block

cleaning operations triggered during normal operation (figure 6.47 illustrates the number

of times block cleaning is triggered for all threshold and efficiency levels we have

simulated). In an idle period of 1 s, 666 blocks can be cleaned with 100% efficiency or 94

blocks can be cleaned with 30% efficiency. It is possible to detect these idle times using

the characteristics of typical user workloads and perform block cleaning operation in the

background unobtrusively. If an idle period is not long enough to perform several erase

163

164

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

1500

3000

4500

6000

N
u

m
b

e
r
 o

f
I
d

le
 P

e
r
io

d
s

0

1000

2000

3000

4000

0

2500

5000

7500

10000

N
u

m
b

e
r
 o

f
I
d

le
 P

e
r
io

d
s

0

1000

2000

3000

4000

0

2000

4000

6000

8000

N
u

m
b

e
r
 o

f
I
d

le
 P

e
r
io

d
s

0

1000

2000

3000

4000

0

500

1000

1500

2000

N
u

m
b

e
r
 o

f
I
d

le
 P

e
r
io

d
s

0

10000

20000

30000

40000

[2, 5)

Bank 4

Bank 2
Bank 3

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate
Bank Idle Periods (ms)

Bank 1

[5, 10) [10, 100) [100, 1000) [1000, 10000)

Figure 6.46: Idle Time Distribution. Distribution of idle times for memory banks in a single
shared I/O bus, 4 memory banks configuration. Each memory bank has a substantial number of
idle periods.

165

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

6000

12000

18000

24000

N
u

m
b

er
 o

f
B

lo
ck

 C
le

a
n

in
g
 R

eq
u

es
ts

0

4000

8000

12000

16000

0

7000

14000

21000

28000

N
u

m
b

er
 o

f
B

lo
ck

 C
le

a
n

in
g
 R

eq
u

es
ts

0

3000

6000

9000

12000

0

8000

16000

24000

32000

N
u

m
b

er
 o

f
B

lo
ck

 C
le

a
n

in
g
 R

eq
u

es
ts

0

4000

8000

12000

16000

0

3000

6000

9000

12000

N
u

m
b

er
 o

f
B

lo
ck

 C
le

a
n

in
g
 R

eq
u

es
ts

0

40000

80000

120000

160000

64 MB

30%

70%

100%

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Cleaning Efficiency

128 MB 192 MB
Cleaning Threshold

Figure6.47: Block Cleaning Requests. The number of times block cleaning is triggered for all
simulated threshold and efficiency levels. If only 60% of idle times which are greater than 1 s can
be utilized for block cleaning, it will eliminate all block cleaning operations triggered during
normal operation.

operations, it can still be used to move several pages around so that block cleaning

efficiency is always kept high. This way, the state of flash memory is optimized so that

future block cleaning requests are executed with the least possible latency. On the other

hand, all this background activity will increase power consumption of the flash memory

system. Even if there are no user requests, flash memory will be performing read, write,

and erase operations in the background. Performance impacts of block cleaning is so high

that the increase in power consumption is justified.

Baek et. al. [2] suggests a different page allocation scheme which maximizes

uniformity in flash storage - thus increasing block cleaning efficiency. As mentioned

before, page allocation in flash memory is a run-time resource allocation decision. In our

tests we have employed a write striping algorithm to utilize available concurrency. A

different resource allocation policy suggested by [2] is modification-aware page

allocation, which differentiates between hot data and cold data. Hot data is user data that

is updated frequently and allocating hot data to the same block increases uniformity.

In addition to its performance impact, block cleaning also has implications on

power consumption of the solid-state disk. Device manufacturers usually report power

consumption during typical read and write performance tests. Furthermore, these tests are

performed when flash memory is in perfect condition (i.e. blocks either have 100% valid

data or recently erased). Typically flash memory consumes same amount of power for

read, program and erase operations. For example, sample 1 Gbit memory from Micron

draws 25 to 35 mA current during page read, program and block erase operations [59].

When power supply voltage of 2.7 to 3.3 V is considered, this corresponds to 70 to 120

166

mW per operation. An erase operation will not add too much to power consumption by

itself, however when block cleaning efficiency and corresponding internal data

movement is concerned power consumption will increase considerably during block

cleaning. For example, cleaning a block with 50% efficiency translates into moving 32

pages of valid data - 1 page read, 31 interleaved page read and write and 1 page write -

followed by an erase operation. Flash memory has to perform 64 additional operations

(64x power consumption) before the desired erase operation. If we consider a sample

scenario where I/O requests are 8KB writes (typical average request size) and 50% block

cleaning efficiency; block cleaning will be triggered at every 8 requests and system

power consumption will increase by a factor of 3. If block cleaning efficiency is 30%,

increase in power consumption will be by a factor of 2.6 when there is an incoming

stream of average write requests.

6.9. Random Writes and Mapping Granularity

One of the main concerns with flash memory performance has been with random writes.

There have been studies documenting poor performance when requests are writes and

they are not sequentially ordered. Birrell et. al. looked into commodity USB flash disks

and found that the latency of random access writes is consistently higher [7].

The reason behind poor performance of random writes is LBA-PBA mapping

performed at the flash translation layer. As we explained in section 3.3.3, flash memory

solid-state disks do not support in-place update of data. Rather, every write request for a

specific logical address results in data to be written to a different physical address.

Therefore, NAND flash memory uses dynamically updated address tables and employes

167

various mapping techniques to match a logical block address requested by the host

system to a physical page or block within flash memory. Most of the typical address

mapping algorithms used for flash memory use two map tables; direct map tables and

inverse map tables. Direct map tables are stored fully or partially in SRAM. The cost

associated with SRAM has been one of the biggest concerns with commodity USB flash

memory. If mapping is implemented at block granularity, the size of the map table in

SRAM would be small. Its size and cost increases as mapping is performed at a finer

granularity.

Mapping granularity not only determines SRAM size and overall cost of the flash

memory system, but it also plays an important role in the latency of write requests. Figure

3.8 in section 3.3.3 shows a sequence of events for a sample write request with mapping

at block and page granularity. With page size is 2 KB and block size is 128 KB, 4 KB

write request will incur drastically different latencies with different mapping schemes. If

mapping is performed at block granularity, all valid user data within the target block will

be read, 4KB of it will be updated and all valid and updated user data will be written to a

free block. In the worst case, if all other pages within the target block are valid, 4 KB (2

pages) write request will trigger the reading of 62 pages and writing of an additional 62

pages. These additional read and writes performed in the background will substantially

increase write latency. This is indeed what is observed as “poor performance with random

writes”. Figure 6.48 shows a sequence of events for two 4KB write requests with block

mapping. When these write requests are random - not sequentially ordered - each 4KB

write request not only updates 8 sectors but also moves 16 other sectors. Overall write

168

169

Valid
Free
Invalid

Direct Map Table

Logical-Physical

Block #

Page0
1
2
3

Sectors 0-3

Block 0 Block 1

Block 2 Block 3

Free Free
Current

Working

Free Block

Page4
5
6
7

0

1

2

3

0

4

5

6

7

1

0

0

0

1

1
1

4 KB write request

to sectors 0-7

1

Block 0 Block 2

Update sectors 0-7

Move sectors 8-15

Total of 8 sectors are

read and 16 sectors are

written - original request

was to write 8 sectors

2

3

0

1

2

3

2

4

5

6

7

1

2

2

2

1

1
1

Block 0 Block 2

4 Update mapping

4 KB write request to sectors 16-235

Block 1

Block 3
Update sectors 16-23

Move sectors 24-31 Total of 8 sectors are

read and 16 sectors are

written - original request

was to write 8 sectors

6

7
0

1

2

3

2

4

5

6

7

3

2

2

2

3

3
3

Block 1 Block 3

8 Update mapping

2 write requests of 4KB (8sectors) each are

received and they are not sequentially ordered.

Total of 16 sectors are updated, which also

required reading and writing of 16 additional

sectors.

Direct Map Table

Logical-Physical

Block #

Page0
1
2
3

Sectors 0-3

Block 0 Block 1

Block 2 Block 3

Free Free
Current

Working

Free Block

Page4
5
6
7

0

1

2

3

0

4

5

6

7

1

0

0

0

1

1
1

4 KB write request to sectors 0-7 followed by 4 KB write

request to sectors 8-15
1

Block 0

Block 2
Update sectors 0-7

Update sectors 8-15
Total of 16 sectors are

written

2

3
0

1

2

3

2

4

5

6

7

1

2

2

2

1

1
1

Block 0 Block 2

4 Update mapping

2 write requests of 4KB (8sectors) each are received

and they are sequentially ordered. Total of 16

sectors are updated.

(a)

(b)

Figure 6.48: Non-sequential Writes. Sequence of events when two 4 KB write requests are
received. (a) Write requests are random - non-sequential. (b) Write requests are sequential.

latency is (assuming 25 µs page read and 200 µs page program time) 850 µs. If these

write requests were sequentially ordered, there would not be any need for additional data

moves. Write latency would be 400 µs. This example illustrates how mapping granularity

impacts write latency. If blocks of larger sizes are used, the impact would be greater.

In all of our simulations we have assumed mapping at page granularity. We have

also analyzed our user PC workloads to understand the impact of mapping granularity on

write requests. Figure 6.49 shows the number of additional write requests in each of our

user workloads for various levels of address mapping. When mapping is performed at

block level - block sizes of 64 pages - the number of sectors written increases by 3-6x.

Although this is a worst case scenario since it assumes all of the pages contain valid user

data, it only shows additional write requests. For each additional sector written, there is

an additional read request performed in the background. It is important to note that

typical PC user workloads include a fair amount of sequential access - spatial locality.

With a hypothetical workload which generates truly non-sequential write requests, the

additional data copied will be even larger.

In our simulations we have used mapping at page level. This is still higher than

conventional hard disk drives where access granularity is a sector. Fortunately, requests in

a typical PC user workload are aligned with virtual memory page size of 4 KB. In all our

workloads, random writes only increased the total number of sectors written by 0.4%.

Our results also show that mapping granularity can be increased to 8 KB, thus matching

average workload request size without generating any significant additional reads and

writes. Furthermore, mapping granularity can even be increased to 16 KB without

170

171

0

4000

8000

12000

16000

N
u

m
b

e
r

o
f

W
r
it

e
 S

e
c
to

r
s

(i
n

 K
)

0

2000

4000

6000

8000

0

6000

12000

18000

24000

N
u

m
b

e
r

o
f

 W
r
it

e
 S

e
c
to

r
s

(i
n

 K
)

0

2000

4000

6000

8000

0

4000

8000

12000

16000

N
u

m
b

e
r

o
f

 W
r
it

e
 S

e
c
to

r
s

(i
n

 K
)

0

2000

4000

6000

8000

0

2000

4000

6000

8000

N
u

m
b

e
r

o
f

 W
r
it

e
 S

e
c
to

r
s

(i
n

 K
)

0

20000

40000

60000

80000

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

1 2 4 8 16 32 64

Mapping granularity in terms of pages (2KB)

When mapping is implemented

Original Workload

Figure 6.49: Additional number of sectors written. Number of additional sectors written for
different levels of mapping granularity. Mapping granularity can be increased to 16 KB with less
than 20% increased in the total number of sectors written.

generating more than a 20% increase in the total number of sectors written. Compared to

page (2 KB) mapping, mapping at 16 KB will cut SRAM size by 4 with a nominal impact

on performance. For designs with only a limited budget for SRAM this can provide a

good cost-performance trade-off.

172

Chapter 7: Conclusions and Future Work

Today's typical solid-state disk drive is a complex storage system. Although it provides a

simpler face and lacks the complexities of mechanical parts, it has its own system

problems. NAND flash memory employs multiple memory banks in parallel to increase

storage system bandwidth and performance. When multiple memory banks are available,

data placement and resource allocation becomes a critical for performance and load

balancing. The asymmetric nature of read and write requests in flash memory pose

additional challenges and increases dependency on user workloads. Effective wear

leveling and block cleaning are two other issues unique to flash memory systems which

may effect performance.

The relationship between the flash memory system organization and its

performance is both very complex and significant. Issues arise in the design of solid-state

disk architectures mirror complex system problems. Therefore it is important to study the

internals of solid-state disk drives, provide an in-depth analysis of system-level

organization choices for solid-state disks, investigate device-level design trade-offs, and

provide a model on how solid-state disks work.

We have developed a solid-state disk simulator to measure the performance of

various flash memory architectures. Our SSD simulator models a generalized NAND

flash memory solid-state disk by implementing flash specific commands and algorithms,

all while providing the illusion of an HDD. We have collected our own disk traces from

portable computers and PCs running real user workloads to drive our simulator. Our

workloads represent typical multi-tasking user activity and consist of not only I/O traffic

173

generated by user applications, but also I/O requests generated by system and admin

processes.

With our SSD simulator, we explored the full design space of system-level

organization choices for solid-state disks. We also investigated device level design trade-

offs as well, including pin bandwidth, and I/O width. Moreover, we explored the potential

for improvements to solid-state disk organizations by flash oriented queueing algorithms

and bus access policies. We found the following:

• The flash memory bus does not need to scale up to HDD I/O speeds for good

performance. The real limitation to flash memory performance is not its bus speed

but its core interface: the movement of data between the flash device's internal

storage array and internal data and cache registers.

• SSD organizations that exploit concurrency at both the device- and system-level

(e.g. RAID-like organizations) improve performance significantly. These device-

and system-level concurrency mechanisms are, to a degree, orthogonal.

• Given a storage system with a fixed media transfer bandwidth, there are always

several near-optimal configurations that are within several percent of each other.

It is imperative to study full design space of flash memory organizations including

performance, cost, and power models.

• NAND flash interface provides drastically different read and write timing which

results in large performance disparities between reads and writes. Structural

mechanisms and physical organizations outlined in this dissertation mainly target

improving the throughput of write requests by reducing flash memory

174

programming time (ganging, striping, etc.) or by hiding programming latency

(request interleaving using multiple banks and channels). However, asymmetry

between reads and writes and the scale factor between their performance persists.

• This scale factor between read and write rates make solid-state disk performance

more dependent on the user workload.

• The inherent parallelism used in existing solid-state disk systems to amortize

write overhead can come at the expense of read performance if not handled

carefully.

• When distinctive differences between reading from and writing to flash memory

and the impact of system- and device-level concurrency techniques are taken into

account, there is potential for further improvements to solid-state disk

organizations by flash oriented heuristics and policies. Heuristics and policies

suggested in this dissertation accommodate the asymmetry between reads and

writes to optimize the internal I/O access to solid-state disk storage system

without significant changes to its physical organization.

• Read performance is overlooked in existing flash memory systems. Flash oriented

heuristics and policies presented in this dissertation favor read requests over write

requests whenever possible; because, as shown in Jacob, Ng, and Wang [40],

overall computer system performance (i.e., CPI) tracks disk's average read-

response time.

175

The scope of this dissertation can be further extended to provide better understanding

between solid-state disk architectures and their system performance. Following are

possible areas for future work:

• Although NAND flash interface modeled in this dissertation provides an accurate

timing of read, write (program) and erase operations for SLC flash memory, more

and more MLC flash memory chips are becoming commercially available as

technology scales down. Therefore our timing models can be enhanced by

introducing MLC support into our solid-state disk simulator.

• Our solid-state disk simulator can also be enhanced by incorporating power

consumption models into it. Some of the organizational trade-offs investigated

may have power constraints, such as maximum level of concurrency allowed.

• In this dissertation, we have followed a trace-driven approach since our primary

metric was request response time. An execution driven approach is also possible

to model a closed storage subsystem. If execution time is considered as the

performance metric, it is important to enable the feedback between the storage

system performance and the timing of the subsequent I/O requests.

• NAND flash solid-state disks assume a block device interface and hide their

peculiarities from the host system. FTL layer implements various algorithms and

data structures to support the block device interface and to extract maximum

performance from the flash memory array. However, if solid-state disks identify

themselves to the host system different then hard disk drives, better performance

and cost trade-offs can be achieved at the system level. One such example is the

176

support of a trim command being added to the ATA interface standard. With trim

command host OS is aware of the underlying solid-state drive and enhances its

performance by specifying which files are deleted. When a file is deleted, file

system marks it accordingly but does not necessary notify the storage subsystem.

To solid-state disks, a deleted user file still appears as valid data and special care

must be taken during write operations and block cleaning process. With trim

command, file delete information is propagated to the solid-state disk, which in

return can mark the data as invalid and avoid costly internal data movement

operations. Further research is imperative in flash specific file systems and

expanding operating system’s support for solid-state disks.

• Its high performance and low power not only enables solid-state disk as an

alternative to hard disk drive, also provides another layer in the memory hierarchy

after main memory. Furthermore, with the availability of SLC and MLC

technologies solid-state disks can be utilized at a finer granularity within the

177

DRAM

SLC Flash

Towards

CPU

2 bits per cell MLC Flash

3 bits per cell MLC Flash
.

.

.

n bits per cell MLC Flash

Hard Disk Drive

DRAM

SLC Flash

2 bits per cell

MLC Flash

3 bits per cell

MLC Flash
.

.

.

n bits per cell

MLC Flash

Hard Disk Drive

DRAM

SLC Flash

Towards

CPU

2 bits per cell

MLC Flash

3 bits per cell

MLC Flash
.

.

.

n bits per cell

MLC Flash

Hard Disk DriveFigure 7.1: Memory Hierarcy. System memory hierarchy can be redesigned to utilize
performance and cost trade-offs available through SLC and MLC flash memory technology.

memory hierarchy. A redesign of memory system hierarchy is imperative using

various flash memory technologies for better performance and cost trade-offs as

summarized in Figure 7.1.

178

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Panigraphy.

“Design Tradeoffs for SSD Performance.” In Proc. USENIX Annual Technical

Conference (USENIX 2008), Boston, MA, June 2008.

[2] S. Baek, J. Choi, D. Lee, and S. H. Noh. “Performance Characteristics of Flash

Memory: Model and Implications.” In Proc. 3rd International Conference on Embedded

Software and Systems, Daegu, Korea, pp. 162-173, 2007.

[3] S. Baek, S. Ahn, J. Choi, D. Lee, and S. H. Noh. “Uniformity Improving Page

Allocation for Flash Memory File Systems.” In Proc. 7th ACM & IEEE International

Conference On Embedded Software, pp. 154-163, 2007..

[4] D. Barnetson. “Solid State Drives: The MLC Challenge.” MEMCO 08, http://

www.forward-insights.com/present/SandiskMemcon.pdf, 2008.

[5] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti. “Introduction to Flash

Memory.” Proceedings of the IEEE, vol. 91, no. 4, pp. 489-502, April 2003.

[6] R. Bez and P. Cappelletti. “Flash Memory and Beyond.” In 2005 International

Symposium on VLSI Technology (IEEE VLSI-TSA), pp. 84-87, April 2005.

[7] A. Birrell, M. Isard, C. Thacker, and T. Wobber. “A Design for High-Performance

Flash Disks.” ACM SIGOPS Operating Systems Review, vol. 41, no. 2, pp. 88-93, 2007.

[8] T. Bisson, S. A. Brandt, and D. D. E. Long. “NVCache: Increasing the Effectiveness

of Disk Spin-Down Algorithms with Caching.” In Proc. 14th IEEE International

Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication

Systems, 2006.

179

[9] T. Bisson and S. A. Brandt. “Reducing Hybrid Disk Write Latency with Flash-Backed

I/O Requests.” In Proc. 15th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS’07), 2007.

[10] Bonnie, Unix File System Benchmark, http://www.textuality.com/bonnie.

[11] J. E. Brewer, and M. Gill. Nonvolatile Memory Technologies with Emphasis on

Flash: A Comprehensive Guide to Understanding and Using NVM Devices. Wiles-IEEE

Press, 2007.

[12] G. Campardo, R. Micheloni, and D. Novosel. VLSI-design of Non-volatile

Memories. Springer, 2005.

[13] Y. B. Chang and L. P. Chang. “A Self-Balancing Striping Scheme for NAND-Flash

Storage System.” In Proc. 2008 ACM symposium on Applied computing, 2008.

[14] L. P. Chang and T. W. Kuo. “An adaptive striping architecture for flash memory

storage systems of embedded systems.” In Proc. 8th IEEE Real-Time and Embedded

Technology and Applications Symposium, 2002.

[15] L. P. Chang and T. W. Kuo. “Efficient management for large scale memory storage

systems.” In Proc. ACM Symposium On Applied Computing, 2004.

[16] L. P. Chang and T. W. Kuo. “Efficient Management for Large-Scale Flash-Memory

Storage Systems with Resource Conservation.” ACM Transactions on Storage (TOS), pp.

381-418, 2005.

[17] L. P. Chang. “On Efficient Wear Leveling for Large-Scale Flash-Memory Storage

Systems.” In Proc. 2007 ACM Symposium on Applied Computing, Seoul, Korea, 2007.

180

[18] F. Chen, S. Jiang, and X. Zhang. “SmartSaver: Turning flash memory into a disk

energy saver for mobile computers.” In Proc. 2006 International Symposium on Low

Power Electronics and Design (ISLPEDÕ06), pp. 412-417, 2006.

[19] M. L. Chiang, P. C. H. Lee, and R. C. Chang. “Using data clustering to improve

cleaning performance for flash memory.” Software-Practice and Experience, vol. 29, pp.

267-290, 1999.

[20] Y. Choi. “16-Gbit MLC NAND flash weighs in.” EE Times, http://

www.eetimes.com/showArticle.jhtml?articleID=201200825, July 2007.

[21] T. S. Chung, D. J. Park, S. W. Park, D. H. Lee, S. W. Lee, and H. J. Song. “System

Software for Flash Memory: A Survey.” International Conference of Embedded and

Ubiquitous Computing (EUC), 2006.

[22] B. Cormier. “Hynix is the NAND flash memory engraved in 48 nm memory.” PC-

Inpact, http://translate.google.com/translate?hl=en&sl=fr&u=http://www.pcinpact.com/

actu/news/40473-Hynix-memoire-flash-NAND-48-

nm.htm&sa=X&oi=translate&resnum=3&ct=result&prev=/search%3Fq%3DHynix

%2B48%2Bnm%2BNAND%26hl%3Den, 2007.

[23] V. Cuppu and B. Jacob. “Concurrency, Latency, or System Overhead: Which Has the

Largest Impact on Uniprocessor DRAM-System Performance?” In Proc. 28th Annual

International Symposium on Computer Architecture (ISCA'01), pp. 62-71, 2001.

[24] C. Dirik and B. Jacob. “The Performance of PC Solid-State Disks (SSDs) as a

Function of Bandwidth, Concurrency, Device Architecture, and System Organization.”

181

Proc. 36th Annual International Symposium on Computer Architecture (ISCA'09), Austin

Texas, 2009.

[25] F. Doughs, F. Kaashoek, B. Marsh, R. Caceres, and J. A. Tauber. “Storage

alternatives for mobile computers.” In Proc. 1st USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Monterey, California, November 1994.

[26] D. Dumitru. “Understanding Flash SSD Performance.” http://managedflash.com/

news/papers/easyco-flashperformance-art.pdf, August 2007.

[27] G. Duncan. “Samsung Reveals 30nm, 64 Gb Flash.” Digital Trends, http://

news.digitaltrends.com/news-article/14582/samsung-reveals-30nm-64gb-flash-printer-

friendly, 2007.

[28] J. Elliott. “NAND Flash: Becoming the Ubiquitous Storage Platform.” Flash

Memory Summit, http://www.flashmemorysummit.com/English/Collaterals/Presentations/

2008/20080813_Keynote5_Elliott.pdf, August 2008.

[29] E. Gal and S. Toledo. “Mapping Structures for Flash Memories: Techniques and

Open Problems.” In Proc. IEEE International Conference on Software - Science,

Technology & Engineering, 2005.

[30] E. Gal and S. Toledo. “Transactional flash file system.” In Proc. USENIX 2005

Technical Conference, 2005.

[31] E. Gal and S. Toledo. “Algorithms and Data Structures for Flash Memories.” ACM

Computing Surveys, vol. 37, no. 2, pp. 138-163, 2005.

182

[32] G. R. Ganger, B. L. Worthington, and Y. N. Patt. “The DiskSim Simulation

Environment Version 2.0 Reference Manual.” http://www.pdl.cmu.edu/DiskSim/

disksim2.0.html.

[33] G. R. Ganger. “System-oriented evaluation of I/O subsystem performance.” Doctoral

Thesis, University of Michigan, 1995.

[34] J. Gray and B. Fitzgerald. "Flash Disk Opportunity for Server-Applications." http://

research.microsoft.com/~gray/papers/FlashDiskPublic.doc, January 2007.

[35] Hard Disk Drive Specification Deskstar 7K500. Hitachi, http://www.hitachigst.com/

tech/techlib.nsf/techdocs/CE3F5756C827F35A86256F4F006B8AD4/$file/

7K500v1.5.pdf, 2006.

[36] Hitachi Deskstar 7K500. Hitachi, http://www.hitachigst.com/tech/techlib.nsf/

techdocs/242718EDA9762C0386256F4E006B2F86/$file/7K500ud_final.pdf, 2005.

[37] HLNAND. HyperLink NAND Flash. MOSAID Technologies Inc., http://

hlnand.com/852572C9004980E9/ID/Next-Gen-Memory-WP1, May 2007.

[38] W. Hsu and A. J. Smith. “Characteristics of I/O Traffic in Personal Computer and

Server Workloads.” IBM Systems Journal, vol. 2, no. 2, pp. 347-372, April 2003.

[39] C. Hwang. “Nanotechnology Enables a New Memory Growth Model.” Proceedings

of the IEEE, vol. 91, no. 11, pp. 1765-1771, November 2003.

[40] B. Jacob, S. Ng, and D. Wang. Memory Systems: Cache, DRAM, Disk. Morgan

Kaufmann, 2007.

183

[41] H. Jeong. “Trends and Vision for the future memory.” 9th Leti Review, http://www-

leti.cea.fr/home/liblocal/docs/Annual%20Review/PRESENTATIONS/

Leti_AR07_session2_2.2_Hongsik%20Jeong.pdf, 2007.

[42] JFFS2: The Journalling Flash File System. Red Hat Corporation. http://

sources.redhat.com/jffs2/jffs2.pdf, 2001.

[43] T. Kgil, T. Mudge. “FlashCache: a NAND flash memory file cache for low power

web servers.” In Proc. 2006 International Conference on Compilers, Architecture and

Synthesis for Embedded Systems, Seoul, Korea, pp. 103 -112, 2006.

[44] H. Kim and S. Ahn. “A Buffer Management Scheme for Improving Random Writes

in Flash Storage.” In Proc. 6th USENIX Symposium on File and Storage Technologies

(FAST’08), pp. 239-252, 2008.

[45] B. Kim, S. Cho, and Y. Choi. “OneNAND (TM): A High Performance and Low

Power Memory Solution for Code and Data Storage.” In Proc. 20th Non-Volatile

Semiconductor Workshop, 2004.

[46] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho. “A Space-Efficient Flash

Translation Layer for CompactFlash Systems.” IEEE Transactions on Consumer

Electronics, vol 48, pp. 366-375, 2002.

[47] Y. J. Kim, K. Y. Kwon, and J. Kim. “Energy Efficient File Placement Techniques for

Heterogeneous Mobile Storage Systems.” In Proc. 6th ACM & IEEE International

conference on Embedded software, 2006.

184

[48] Y. Kim, S. Lee, K. Zhang, and J. Kim. “I/O Performance Optimization Techniques

for Hybrid Hard Disk-Based Mobile Consumer Devices.” IEEE Transactions on

Consumer Electronics, vol. 53, no. 4, pp. 1469-1476, November 2007.

[49] T. Krazit. “Intel flashes ahead to 1 Gb memory.” CNET News, http://news.cnet.com/

Intel-flashes-ahead-to-1Gb-memory/2100-1006_3-6057216.html?tag=nw.11, 2006.

[50] T. W. Kuo, J. W. Hsieh, L. P. Chang, and Y. H. Chang. “Configurability of

performance and overheads in flash management.” In Proc. 2006 Conference on Asia

South Pacific Design Automation, 2006.

[51] M. LaPedus. “Intel, Micron roll 34-nm NAND device.” EE Times, http://

www.eetimes.com/showArticle.jhtml?articleID=208400713, 2008.

[52] M. LaPedus. “SanDisk, Toshiba to ship 32-nm NAND in '09.” EE Times, http://

www.eetimes.com/news/latest/showArticle.jhtml?

articleID=212800210&printable=true&printable=true, 2009.

[53] S. H. Lim and K. H. Park. “An efficient NAND flash file system for flash memory

storage.” IEEE Transactions on Computers, pp. 906-912, 2006.

[54] G. MacGillivray. “Inside Intel's 65-nm NOR flash.” Techonline, http://

www.techonline.com/article/printArticle.jhtml?articleID=196600919, December 2006.

[55] C. Manning. “YAFFS: Yet Another Flash File System.” http://aleph1.co.uk/yaffs,

2004.

[56] R. McKee. “Lecture 26: Embedded Memory - Flash.” EE241 - Spring 2005,

University of California, Berkeley, http://bwrc.eecs.berkeley.edu/Classes/icdesign/

ee241%5Fs05/Lectures/Lecture26-Flash.pdf, 2005.

185

[57] Memory Management in NAND Flash Arrays. Micron Technology, Inc. Technical

Note TN-29-28. http://download.micron.com/pdf/technotes/nand/tn2928.pdf, 2005.

[58] S. L. Min and E. H. Nam. "Current Trends in Flash Memory Technology." In Proc.

2006 Asia South Pacific Design Automation (ASP-DAC '06), pp. 332-333, January 2006.

[59] MT29F1GxxABB 1 Gb NAND Flash Memory. Micron Technology, Inc. http://

download.micron.com/pdf/datasheets/flash/nand/1gb_nand_m48a.pdf, 2006.

[60] MT29FXX08XXX 4Gb NAND Flash Memory. Micron Technology, Inc. http://

download.micron.com/pdf/datasheets/flash/nand/4gb_nand_m40a.pdf, 2006.

[61] A. S. Mutschler. “Toshiba touts 43-nm CMOS 16-Gb NAND flash.” EDN:

Electronics Design, Strategy, News, http://www.edn.com/index.asp?

layout=articlePrint&articleID=CA6529998, 2008.

[62] D. Myers. “On the Use of NAND Flash Memory in High-Performance Relational

Databases.” Master’s thesis, MIT, 2007.

[63] NAND Flash Applications Design Guide. Toshiba America Electronic Components,

Inc., http://www.dataio.com/pdf/NAND/Toshiba/NandDesignGuide.pdf.pdf, April 2003.

[64] NAND Flash-based Solid State Disk Module Type Product Data Sheet. Samsung

Electronics Co., Ltd., http://www.bigboytech.com/new/v1.5/ssd/docs/

ssd_module_type_spec_rev121.pdf, January 2007.

[65] NAND vs. NOR Flash Memory Technology Overview. Toshiba America Electronic

Components, Inc., http://www.toshiba.com/taec/components/Generic/

Memory_Resources/NANDvsNOR.pdf, 2006.

186

[66] NSSD (NAND Flash-based Solid State Drive) Standard Type Product Data Sheet.

Samsung Electronics Co., Ltd., http://www.samsung.com/global/business/semiconductor/

products/flash/Products_StandardType_25inch.html, 2007.

[67] Onfi, Open NAND Flash Interface, http://onfi.org

[68] C. Park, W. Cheon, Y. Lee, M. S. Jung, W. Cho, and H. Yoon. “A Re-configurable

FTL (Flash Translation Layer) Architecture for NAND Flash based Applications.” 18th

IEEE/IFIP International Workshop on Rapid System Prototyping (RSP), vol. 28, pp.

202-208, 2007.

[69] C. Park, P. Talawar, D. Won, M. Jung, J. Im, S. Kim, and Y. Choi. "A High

Performance Controller for NAND Flash-based Solid State Disk (NSSD)." In Proc. 21st

IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW), pp. 17-20, 2006.

[70] D. Parthey and R. Baumgartl. “Timing Properties of Removable Flash Media.”

Junior Researcher Workshop on Real-Time Computing, 2007.

[71] V. Prabhakaran and T. Wobber. “SSD Extension for DiskSim Simulation

Environment.” Microsoft Reseach, http://research.microsoft.com/en-us/downloads/

b41019e2-1d2b-44d8-b512-ba35ab814cd4/default.aspx, March 2009.

[72] M. Rosenblum and J. K. Ousterhout. “The Design and Implementation of a Log-

Structured File System.” Proceedings of the 13th ACM Symposium on Operating Systems

Principles 1-15, 1991.

[73] S. Seguin. “Toshiba Launches First 512 GB SSD.” Tom's Hardware, http://

www.tomshardware.com/news/Toshiba-512GB-SSD,6716.html, 2008.

187

[74] Y. Shin. "Non-volatile Memory Technologies for Beyond 2010." 2005 Symposium

on VLSI Circuits, pp. 156-159, June 2005.

[75] STMicroelectronics Offers Automotive-Grade 32 Mbit NOR Flash Memory. IHS,

http://parts.ihs.com/news/stmicroelectronics-32mbit-nor.htm, 2007.

[76] Two Technologies Compared: NOR vs. NAND. M-Systems, http://www.dataio.com/

pdf/NAND/MSystems/MSystems_NOR_vs_NAND.pdf, July 2003.

[77] J. Walko. “NOR flash parts move to 65 nm processing.” EE Times Asia, http://

www.eetasia.com/ART_8800556954_480200_NP_509eba15.HTM#, 2008.

[78] G. Wong. “Flash Memory Trends.” Flash Memory Summit, http://web.njit.edu/

~rlopes/5.2%20-%20Flash%20Memory%20Trends_FMS.pdf, August 2008.

[79] M. Wu and W. Zwaenepoel. “eNVy: A Non-Volatile, Main Memory Storage

System.” Proceedings of the 1994 International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), 1994.

[80] J. H. Yoon, E. H. Nam, Y. J. Seong, H. Kim, B. Kim, S. L. Min, and Y. Cho.

“Chameleon: A High Performance Flash/FRAM Hybrid Solid State Disk Architecture.”

IEEE Computer Architecture Letters, vol. 7, no. 1, pp. 17-20, January 2008.

[81] C. Yuanhao, J. W. Hsieh, and T. W. Kuo. “Endurance enhancement of flash-memory

storage systems: an efficient static wear leveling design.” In Proc. 2007 Design

Automation Conference, pp. 212-217, 2007.

188

