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As their prices decline, their storage capacities increase, and their endurance improves, 

NAND Flash Solid-State Disks (SSD) provide an increasingly attractive alternative to 

Hard Disk Drives (HDD) for portable computing systems and PCs. HDDs have been an 

integral component of computing systems for several decades as long-term, non-volatile 

storage in memory hierarchy. Today’s typical hard disk drive is a highly complex electro-

mechanical system which is a result of decades of research, development, and fine-tuned 

engineering. Compared to HDD, flash memory provides a simpler interface, one without 

the complexities of mechanical parts. On the other hand, today’s typical solid-state disk 

drive is still a complex storage system with its own peculiarities and system problems.

Due to lack of publicly available SSD models, we have developed our NAND 

flash SSD models and integrated them into DiskSim, which is extensively used in 



academe in studying storage system architectures. With our flash memory simulator, we 

model various solid-state disk architectures for a typical portable computing 

environment, quantify their performance under real user PC workloads and explore 

potential for further improvements. We find the following:

• The real limitation to NAND flash memory performance is not its low per-device 

bandwidth but its internal core interface.

• NAND flash memory media transfer rates do not need to scale up to those of 

HDDs for good performance.

• SSD organizations that exploit concurrency at both the system and device level 

improve performance significantly.

• These system- and device-level concurrency mechanisms are, to a significant 

degree, orthogonal: that is, the performance increase due to one does not come at 

the expense of the other, as each exploits a different facet of concurrency 

exhibited within the PC workload.

• SSD performance can be further improved by implementing flash-oriented 

queuing algorithms, access reordering, and bus ordering algorithms which exploit 

the flash memory interface and its timing differences between read and write 

requests.
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Chapter 1: Introduction

1.1. Problem Description

Flash-based solid-state disks are rapidly becoming a popular alternative to hard disk 

drives as permanent storage, particularly in netbooks, notebooks and PCs, because of 

flash's faster read access, low power consumption, small size, shock resistance, and 

reliability compared to hard disks. SSDs are commercially available in numerous 

commodity PC models today; they are considered a high-end option due to price-per-bit 

that is higher than HDDs, but that price gap is closing very quickly.

Flash technology has additional characteristics that have slowed its takeover of 

hard disks, including a lower bit density relative to HDDs, limited endurance (i.e., its 

limited number of write cycles), and write performance. Solutions have reached a level of 

maturity to place flash on a near-term crossover with disks. Rapid migration to later 

technology has been driving the bit cost of NAND flash significantly lower and its 

density higher. NAND flash capacity has doubled every year since 2001 and is expected 

to continue at that rate until 2010; by 2010 it is expected to reach 32/64 Gb single chip 

density [39, 58, 74]. Over the same period, cost of NAND flash memory has decreased 

40-50% per year [69]. In addition, technological enhancements and architectural 

mechanisms have improved flash memory endurance - currently, NAND flash from 

several vendors is commercially available with an endurance rating of more than 50 years 

at 50 GB write per day. Soon, the limit on the number of writes will become a fading 

memory.
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Today’s typical hard disk drive is a highly complex electro-mechanical system 

which is a result of decades of research, development, and fine-tuned engineering. 

Despite this complexity, extremely detailed and accurate models of HDDs are publicly 

available [33]. Compared to HDD, flash memory provides a simpler interface, especially 

one without the complexities of mechanical parts. On the other hand, today’s typical 

solid-state disk drive is still a complex storage system with its own peculiarities and 

system problems. NAND flash solid-state disks employ multiple flash memory arrays in 

parallel to increase storage system bandwidth and performance. When multiple flash 

memory arrays are available, data placement becomes a critical problem for performance 

and load balancing. Flash memory programming rate is considerably slow and in-place 

update of data is not allowed. Asymmetric read and write rates make solid-state disk 

performance more dependent on user workload. Effective wear leveling and block 

cleaning are two other issues unique to flash memory systems. As it is stated by Agrawal 

et. at., issues that arise in flash memory solid-state disk design mimic complex system 

problems that normally appear higher in the storage stack, or even in distributed systems 

[1].

The relationship between flash memory system organization and its performance 

is both complex and very significant [1, 40, 24]. Very little has been published on the 

internals of solid-state disk drives; even less has been published on the performance 

resulting from various flash memory design options. The most in-depth study to date has 

been by Agrawal et. al. [1], who analyzed different mapping and ganging/striping policies 

at the device level (i.e., assuming a flash device exported multiple array-select lines to 
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enable concurrent access within the device) and ganging at the system level, targeting 

both enterprise workloads and synthetic workloads. In this dissertation we study the full 

design space of system-level organization choices for solid-state disks, investigate 

device-level design trade-offs, and provide a model on how SSDs work. We address the 

following issues:

• Concurrency: By system-level organization we mean the design of the SSD, 

treating the individual flash devices as constants. Variables in this space include 

the number of independent busses, their organizations (widths, speeds, etc.), 

banking strategies, and management heuristics that connect the SSD’s flash 

controller to the flash devices. As shown by Agrawal et al., increasing the level of 

concurrency in the flash SSD system by striping across the planes within the flash 

device can amortize the write overhead and increase throughput significantly [1]. 

Concurrency has been shown in the HDD space to provide tremendous bandwidth 

increases in interleaved organizations (e.g. RAID). Flash is interesting because 

unlike disks, its form factor need not change when accommodating interleaved 

organizations: one can achieve significant levels of concurrency in an SSD 

without significantly changing its overall size and shape. We investigate the 

effects of concurrent access to different flash banks via the same channel or by 

replicating resources and providing multiple independent channels to different 

flash banks, or by a combination of two.  

• Bandwidth issues: Common wisdom holds that SSD performance is limited by its 

media transfer rate. Currently, access to a single flash memory chip is provided by 
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an 8-bit bus which limits the available bandwidth to 33 MB/s (30 ns bus speed is 

common) for read access. For write requests, single chip bandwidth can be much 

lower at 6-10 MB/s due to slow programming time (200 µs for programming 2KB 

page). As interface transfer rates increase with the introduction of serial I/O 

interfaces and fiber channel, HDD performance will continue to scale, but SSD 

performance is expected to be limited by the device’s media transfer rate. 

Samsung's solution to this problem has been to move to a wider and higher 

performance bus, which can sustain 108 MB/s (16 bit, 54 MHz). Other vendors 

have followed suit. Two to three years ago, an 8-bit bus clocked at 50 ns was 

typical, whereas today most flash solid-state disks come with clocks speeds of 20–

30 ns. There is also a push by other vendors to improve read/write performance of 

flash disks by access via 800 MB/s bus in a ring topology [37].

• Write performance: Another approach to improving flash performance is to reduce 

the programming time, thus improving the throughput of write requests. For 

example, Micron proposed using two-plane flash devices which can 

simultaneously read and program two pages (2 KBytes each) in the same flash die 

[59]. This effectively doubles sustainable read and write bandwidth (reported page 

program performance increases from 8.87 MB/s to 17.64 MB/s). Another 

approach taken by Micron is combining flash memory blocks into so-called 

superblocks, enabling the simultaneous read or write of 2 or 4 pages within a flash 

device or even across different flash dies [57]. This mechanism is similar to 

Agrawal’s ganging and striping mechanisms. Samsung supports similar 
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architecture to hide programming latency wherein the flash controller controls 2 

separate channels and supports 4-way interleaving (write throughput of 30 MB/s 

is reported) [64, 69].

In this dissertation we address the question; which of these issues is the most significant - 

i.e., what approaches to improving solid-state disk drive performance provide the best 

performance at the lowest cost? We model various flash solid-state disk architectures for 

a typical portable computing environment and quantify their performance under diverse 

user applications such as browsing, listening to music, watching videos, editing pictures, 

editing text and document creation, office application, and email applications. This 

dissertation also explores the potential for improvements to SSD organizations by flash 

oriented heuristics and policies. We study flash oriented queuing algorithms, access 

reordering, and bus ordering algorithms to accommodate asymmetric nature of read and 

write requests. We also address the question; how to optimize the internal I/O access to 

SSD storage system without significant changes to its physical organization?

1.2. Contribution and Significance

The contributions of this dissertation are three-fold:

1) We develop a solid-state disk simulator which can be used to measure 

performance of various NAND flash memory architectures. Our SSD simulator is 

designed as an extension to DiskSim v2.0 and models a generalized NAND flash solid-

state disk by implementing flash specific read, program, erase commands, block cleaning 

and logical-to-physical address mapping, all while providing the illusion of an HDD. Our 

simulator is highly configurable and can simulate various solid-state disk architectures 
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while maintaining a view of a single disk drive to host system. We have used our own 

disk traces collected from portable computers and PCs running real user workloads to 

drive the SSD simulator. Our workloads represent typical multi-tasking user activity, 

which includes browsing files and folders, emailing, text editing and document creation, 

surfing the web, listening to music and playing movies, editing pictures, and running 

office applications. These workloads consist of not only I/O traffic generated by user 

applications, but also I/O read and write requests generated by system and admin 

processes [24].

2) We study NAND flash SSD architectures and their management techniques, 

quantifying SSD performance as a function of bandwidth, concurrency, device 

architecture, and system organization. We explore full design space of system-level 

organization choices for solid-state disks. Variables in this space include number of flash 

memory chips, number of independent busses, their organizations (widths, speeds, etc.), 

banking strategies, and management heuristics that connect the SSD's flash controller to 

the flash devices. We also investigate device-level design trade-offs as well, including pin 

bandwidth and I/O width [24]. We find the following:

• The flash memory bus does not need to scale up to HDD I/O speeds for good 

performance. Average read response times, a good indicator of system-level CPI 

[40, p. 52], do not improve much beyond 100 MB/s bus bandwidth.

• The real limitation to flash memory performance is not its bus speed but its core 

interface: the movement of data between the flash device's internal storage array 

and internal 2 KB data and cache registers.
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• SSD organizations that exploit concurrency at both the system and device level 

(e.g. RAID-like organizations and Micron-style superblocks) improve 

performance significantly.

• These system- and device-level concurrency mechanisms are, to a significant 

degree, orthogonal: that is, the performance increase due to one does not come at 

the expense of the other, as each exploits a different facet of concurrency 

exhibited within the PC workload.

• NAND flash interface provides drastically different read and write timing which 

results in large performance disparities between reads and writes. Increasing the 

level of concurrency in SSD systems amortizes write overhead and increases 

write throughput significantly. However, asymmetry between reads and writes and 

the scale factor between their performance persists.

3) We explore the potential for further improvements to SSD organizations by flash 

oriented heuristics and policies. When distinctive differences between reading from and 

writing to flash memory and the impact of system- and device-level concurrency 

techniques are taken into account, there is potential for exploiting the performance 

disparity between reads and writes. We study flash oriented queueing algorithms, access 

reordering, and bus ordering algorithms to accommodate asymmetric reads and writes. 

Specifically:

• Request scheduling heuristics: Most disk-scheduling algorithms attempt to reduce 

seek time, since the majority of time spent in servicing an I/O request in 

conventional hard disk drives is seek time. Unlike HDDs, flash memory solid-
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state disks do not have any mechanical components and therefore have a 

deterministic, uniform request service time. We show that; even with this limited 

potential, one can improve SSD storage system performance significantly by 

implementing flash-specific request-scheduling algorithms that exploit the flash 

memory interface and its timing differences between read and write requests.

• I/O bus access policies: We show that for a typical SSD physical organization 

(which provides concurrent access to different flash memory banks via the same  

I/O channel or multiple independent channels to different flash banks, or by a 

combination of the two), timing of I/O access requests and bus utilization is an 

important factor in performance. By taking into account the differences between 

read and write timing and using different I/O access policies, I/O bus utilization 

can be improved considerably.

• Data burst size: With a significant level of request interleaving, I/O bus utilization 

becomes critical, especially for read requests. By increasing the burst size in 

transferring data from/to the flash memory array, the number of I/O access 

requests can be reduced, thereby reducing I/O bus congestion.

1.3. Organization of Dissertation

The dissertation is organized as follows: Chapter 2 provides an overview of NAND flash 

memory. Characteristics of NAND flash memory is summarized and compared against 

other types of flash memory. Details of NAND flash memory solid-state disk 

architectures, including flash memory array organization, NAND flash interface, and 

flash specific algorithms, are covered in Chapter 3. Chapter 4 discusses related works for 
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the dissertation. Chapter 5 presents the methodology followed in the dissertation. Details 

of the SSD simulator designed and parameters for the simulations performed are also 

covered in chapter 5. Chapter 6 discusses the experimental results, mainly on the 

performance of NAND flash memory solid-state disks. Chapter 7 provides the conclusion 

to the dissertation.
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Chapter 2: Overview of NAND Flash Memory

Flash memory is a type of electrically erasable programmable read only memory 

(EEROM) invented by Dr. Fujio Masuoka in the 1980s while working at Toshiba. Main 

characteristics of flash memory, which differentiate it from other types of EEPROM, are 

its ability to program in large blocks and its low cost per bit. NAND type flash memory 

was first introduced by Toshiba in the late 1980s, following NOR type flash memory by 

Intel [63]. Although other types of flash memory have been developed, NAND and NOR 

types are the two dominant ones in volume production. Starting from mid 1990s 

development of battery operated portable electronic appliances, such as PDAs and mobile 

phones, dramatically increased the popularity of flash memory and its market share. 

Driven by personal computer market and portable communications systems, flash 

memory will continue rise in popularity.

2.1. Non-Volatile Memory

Semiconductor memories can be grouped in two categories: volatile and non-volatile. 

Content of volatile memory (e.g., Random Access Memory) can be changed fast, easy, 

and unlimited number of times, but it is lost when the power is switched off. On the other 

hand, non-volatile memory (e.g., Read Only Memory and flash memory) can retain its 

content even when it is not powered. Early designs of non-volatile semiconductor 

memory were fabricated with permanent data and did not provide the ability to modify 

data content. Current designs can be erased and re-programmed a number of times 

although at a comparatively slow speed compared to RAM [12].
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The very first non-volatile ROM was the mask-programmed ROM which was 

programmed during fabrication and could not be changed. Then in 1956, PROM was 

invented. PROM allowed engineers to program its content by using silicon or metal 

fuses. These fuses could be blown by a programmer to change the state of a memory cell 

from 0 to 1 exactly once. In the early 1970s EPROM was invented, which can be erased 

by exposure to ultraviolet light and programmed by applying high voltage. EPROM uses 

one transistor memory cell, thus it is a high density and low cost non-volatile memory. 

For example, early PC designs employed EPROM as their BIOS chip. In the 1980s 

EEPROM (Electrically erasable programmable ROM) introduced electrical erase 

capacity at byte granularity. Although a single byte could not be rewritten an unlimited 

number of times as in RAM, EEPROM provides good endurance - typically over 1 

million program/erase cycle. However, EEPROM uses two transistors per memory cell 

and cell size cannot be easily scaled, therefore it is expensive and its density is much 

lower. Usually EEPROM has been used for storing parameters, user data, and 

configuration settings of a device. Flash memory provides a good compromise between 

EPROM and EEPROM. Its single transistor per cell architecture provides low cost per bit 

and high density comparable to EPROM. At the same time its ability to erase and 

program in large blocks provides flexibility comparable to EEPROM. Due to these 

characteristics, flash memory can be used both as code and user data storage and it has 

been successful in delivering to increasing demand for permanent storage driven by 

personal computer market and portable communications systems [12]. Figure 2.1 

provides a comparison of various non-volatile memories.
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Since the introduction of flash memory, many different flash technologies have 

been proposed. Among these, 4 types of flash memory have been adopted by industry: 

NOR type, divided bit line NOR (DINOR) type, NAND type, and AND type flash 

memory. Figure 2.2 shows a historical development of various flash memory 

technologies. Out of these four types of flash memory, NOR and NAND flash have been 

dominant in volume production and the most widely used among industry - NOR and 

NAND flash can be considered as the industry standard. DINOR type flash memory was 

introduced by Mitsubishi and AND type was introduced by Hitachi [12, 11]. NOR flash is 

mostly utilized as code and parameter storage in embedded systems due to is high speed 

random access, and ability to program at byte level. NAND flash is usually used for data 

storage in memory cards due to its high speed programming and high speed serial access 

[12]. Most recently, NAND flash solid-state disks (SSDs) are becoming popular as hard 

disk drive (HDD) replacements in the mobile personal computer market.
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2.2. Flash Memory Cell

Flash memory cell is a single transistor cell using a dual gate MOS device. A floating 

gate exists between the control gate and silicon substrate. Floating gate is completely 

isolated by dielectrics, therefore can trap electrons and keep its charge [5]. 

For programming memory cell, NOR flash uses channel-hot-electron (CHE) 

injection while NAND flash uses Fowler-Nordheim (FN) tunneling. With the CHE 

injection method, MOSFET is properly biased in drain and gate and a large current flows 

into the cell. Due to this large current, electrons in the channel gain sufficient energy to 

overcome the gate oxide barrier and get trapped in the floating gate. In FN tunneling, 

only drain of MOS device is biased and less current is used for programming. Therefore 

programming by FN tunneling takes longer than CHE injection but allows many cells to 
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be programmed simultaneously. Once electrons are trapped in the floating gate, they 

cannot escape high energy silicon dioxide barrier even after the device is powered off. 

When a flash memory cell is programmed, it is considered logic “0” because when it is 

read it cannot conduct a current  due to increased threshold voltage by the trapped 

charges in the floating gate [11, 63, 5].

In both NAND and NOR flash, cell erasure is performed by FN tunneling. With 

negative biasing of the cell gate, a high electric field is formed across gate oxide helping 

trapped electrons to overcome the high energy barrier and depart the floating gate. When 

a flash memory cell is erased, it is considered storing logic “1” value [11, 63, 5].

2.3. NOR vs. NAND FLASH

In NOR flash memory, memory cells are connected in parallel with common ground 

node. NOR type array organization as shown in Figure 2.4. Bitlines are formed by 

memory cells sharing the same drain contact and wordlines are formed by flash cells 
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sharing gate contact. This array organization provides high speed direct access to a 

memory cell and high noise immunity - 100% guaranteed good bits [12, 5]. On the other 

hand, NAND flash memory employs a different array organization. In NAND flash, 

several memory cells are connected in series between bit line and ground, thus increasing 

the density compared to NOR flash - e.g., 4-5F2 NAND flash memory cell size vs. 9-10F2 

memory cell size in NOR flash [63]. Actual sizes of two 64 MB flash memory dies are 

shown in figure 2.5 for comparison. Larger NOR flash memory cell size is due to bit line 

contact and ground contact for every two memory cells. 

Although series connection of memory cells increases density in NAND flash, it 

reduces the current for read operation. Reading a single memory cell requires reading 

other cells in the same bit line, therefore NAND flash memory cannot provide fast 

random access and is usually employed as a serial memory. Moreover, reduced current in 
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read operation makes NAND flash memory much more sensitive to noise and 

interference [12].

Fast random access time of NOR flash memory makes it ideal for code storage 

since the execution of code requires branching from one memory location to another. 

NOR flash memory can provide fully memory mapped random access interface with 

dedicated address and data lines, which also makes it better suited for code execution [5, 

63]. Moreover, NOR flash memory is very reliable and guarantees 100% good bits. This 

eliminates the possibility of system faults and the need for error detection logic. On the 

other hand, NAND flash memory is used for data storage due to its serial access 

characteristics. Also NAND flash memory provides higher storage density at a lower cost 

compared to NOR flash, which makes it better suited for data storage [5].
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Different programming mechanisms and array organizations of NAND and NOR 

flash memory result in different performance characteristics. Random access (read) time 

of NOR flash memory is significantly better than NAND - 60 ns compared to 10 µs. 

NOR flash memory allows writing at byte or word granularity at around 10 µs per byte or 

word. Although NAND flash memory write speed is much slower than NOR (200 µs per 

byte), simultaneous programming of cells is allowed. When this ability to program cells 

in parallel is accounted, NAND flash memory becomes much faster than NOR (200 µs 

per sector equivalent to 0.4 µs per byte) [78].

Power consumption and endurance of NAND and NOR flash memories is also 

different due to their programming mechanisms. Programming with CHE injection 

requires 0.3 to 1 mA of current, whereas FN tunneling uses less than 1 nA per cell for 

programming. NAND flash memory consumes less power during write operation even 

though it programs multiple cells in parallel. Since FN tunneling is used both for erase 

and program operations in NAND flash, its endurance is up to 10 times better compared 

to NOR flash [11, 63]. Endurance of flash memory is measured in number of cycles a 

memory cell can be erased and reprogrammed. Endurance cycles of 1,000,000 is typical 

for NAND flash memory [63]. Table 2.1 provides a comparison of two flash memory 

technologies.

2.4. Industry Trends

Flash memory is expected to keep its popularity in the digital consumer electronics 

market. At the same time, NAND type flash memory is expanding into high density 

storage media market as its bit cost is becoming comparable to the bit cost of 
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conventional storage media such as HDD. In 1994, 16 Mbit NAND flash memory was 

available and today 64 GByte NAND flash solid-state disks are replacing hard disks in 

high end portable computers. Moore’s law in memory suggests two fold increase in 

density every one and a half years. While NOR flash memory scaling has been according 

to Moore’s law, NAND flash density has been growing at a rate of two fold increase 
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NOR NAND

Access Random Serial

Read Performance 60 - 120 ns
15 - 30 ns in burst mode

10 - 50 µs
25 - 50 ns in page mode

Write Performance
10 µs/byte or word

200 µs/byte
200 µs/page in page mode

(0.4 µs/byte)

Cell Size (F2) 10 5

Execute in Place (XIP)
Capability

Yes No

Erase Speed Slow Fast

Erase Cycles 10 K - 100 K 100 K - 1M

Interface Full memory interface I/O interface

Capacity Low High

Cost per Bit High Low

Active Power High Low

Standby Power Low High

Reliability High Low
1-4 bit EDC/ECC required

System Integration Easy Hard

Table 2.1: Comparison of NAND and NOR flash [78, 76, 65].



every year - Hwang’s law [39, 74]. Figure 2.6 shows the historical trend of NAND flash 

scaling. This scaling of technology has reduced memory cell size more than 50 times in 

10 years [41]. Major factors helping this aggressive scaling of NAND flash memory are: 

30% lithographic shrinkage with each generation; new floating gate structure and device 

isolation, which scaled the cell area down by 50% in each generation; and increase in the 

number of memory cells in a string from 16 to 32, which reduced cell overhead by 15% 

[74]. Latest developments in NAND and NOR flash memory market by major 

manufacturers are listed in Table 2.2. By 2013, NAND flash memory technology is 

expected to move beyond 30 nm [6].

Despite this impressive growth, flash memory is also facing its technological 

challenges in scaling. More severe floating gate interference, lower coupling ratio, and 

less tolerant charge loss will limit NAND flash capacity to scale. Maintaining narrow 

erase cell threshold voltage, scaling drain program voltage, and gate length scaling are 

some of the technical challenges for NOR flash [74].
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As flash memory is facing these limitations, another way to continue scaling of 

cell size per bit is offered by multilevel cell (MLC) concept. In a single level cell (SLC), 

bit 0 is stored if electrons are trapped within the floating gate and bit 1 is stored 

otherwise. In MLC memory cells, the amount of electrons trapped in the floating gate are 

precisely controlled. This results in a set of threshold voltages for the memory cell. When 

the memory cell is read, various threshold voltages cause current value to change within 

predetermined levels. Thus a MLC memory cell designed with 2n different levels can 
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April 2006 90 nm, 512 Mbit NOR flash memory chips are available from Intel [49]

December 2006 Intel introduces 65 nm, 1 Gbit NOR flash memory chips [54]

March 2007 STMicroelectronics is offering 110 nm 32 Mbit NOR flash memory in 
automotive grade [75]

October 2007 Samsung develops 30 nm, 64 Gb NAND flash memory. 16 of these 
memory chips can be combined to achieve 128 GB memory card [27]

December 2007 Hynix will begin mass production of 48 nm, 16 Gb NAND flash memory 
chips in early 2008 [22]

February 2008 Toshiba and SanDisk co-developed 43 nm 16 Gb NAND flash memory 
chips (NAND strings of 64 cells aligned in parallel, resulting in 120 mm2 
chip area) [61]

May 2008 Intel and Micron introduced 34 nm 32 Gbit NAND flash chip. Each chips 
is 172 mm2 and 16 of them can be combined for 64 GB data storage. [51]

December 2008 Toshiba unveils 512 GB NAND flash solid state disk based on 43 nm 
technology [73]

December 2008 Spansion ships 65 nm 1Gbit NOR flash memory [77]

January 2009 SanDisk and Toshiba expect to ship 32 nm NAND flash memory by the 
end of 2009 [52].

Table 2.2: Recent NAND and NOR flash memory developments on the news.



store n bits [5]. Figure 2.7 shows the impact of the MLC concept, especially in increasing 

flash memory density in recent years. Today 8Gbit MLC NAND flash memory is 

commercially available as a single chip at 0.0093 µm2 per bit [74]. Figure 2.8 shows 

various SLC and MLC NAND flash memory chips commercially available from different 

vendors [78]. Although MLC has the potential to further increase density by using 4 or 

more bits per memory cell, it increases complexity and introduces new challenges to flash 

memory design. In order to precisely control the amount of electrons trapped in the 

floating gate, programming accuracy should be very high. Also reading a memory cell 

will require high precision current sensors and error correction circuitry. These additional 

circuitry and the requirement for high precision slows down programming and reading 

speeds (up to 3 - 4x) compared to SLC flash memory [5]. Moreover, endurance of MLC 

flash is not as good as SLC flash memory. Typically the number of endurance cycles for 

MLC flash with 2 bits per cell is 10 times less than SLC flash memory and further goes 

down with increasing number of bits per cell [28].
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Fig. 7. A 2-Gbit NAND Flash memory using 90 nm technology. Volume production is in 2003.

Fig. 8. NAND Flash memory technology roadmap.

Fig. 9. High-density memory production roadmap.

Flash memory technology, ArF will be used for lithography,

while KrF is for the 90-nm technology. The pure tungsten is

being considered to reduce the resistance of the word line.

For the cutting-edge multilevel cell (MLC), the threshold

voltage (Vth) uniformity must be ensured.

Fig. 10. High-density memory growth will surpass the prediction
from Moore’s law.

III. NEW MEMORY GROWTH MODEL IN THE ERA OF

NANOTECHNOLOGY

Based on the discussions in Section II, the overall memory

production roadmap is shown in Fig. 9. Even though the

HWANG: NANOTECHNOLOGY ENABLES A NEW MEMORY GROWTH MODEL 1769

Authorized licensed use limited to: University of Maryland College Park. Downloaded on October 18, 2008 at 09:59 from IEEE Xplore.  Restrictions apply.

Figure 2.7: High density memory growth. Figure adopted from [39].



Flash memory scaling and density increase provides new applications and new 

directions in the consumer electronics market. For example, scaling of NOR flash enables 

the design of mobile DDR interfaced memory. Smaller memory cells make it possible to 

manufacture 1 Gbit or more die size with  DDR interface speed, allowing chipsets with 

single memory controller and common execution bus (DRAM and flash memory 

operating at the same frequency).  This high performance memory architecture can be 

used in the next generation of mobile phones and devices, which can support newer data 

transmission standards such as 3G [74]. Another popular item in the consumer electronics 

market is NAND flash solid-state disk (SSD). As NAND flash scales and its cost per bit 

decreases, SSD’s are becoming a high performance, low power alternative to 

conventional hard disks (HDD). Today, consumers can buy 64 GB SSD in high end 

portable computers by paying an additional $400-500. Also NAND flash solid-state disks 

are in almost all netbooks, which are sold with 4 to 8 GB storage for under $500.
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Chapter 3: NAND Flash Solid-State Disks

As NAND flash memory cost per bit declines, its capacity and density increase and 

endurance improves, NAND flash solid-state disks (SSD) are becoming a viable data 

storage solution for portable computer systems. Their high performance, low power and 

shock resistance provide an alternative to hard disk drives (HDD). 

3.1. SSD vs. HDD: Cost, Performance and Power Comparison

As mentioned in chapter 2, NAND flash memory capacity has been doubling every year 

as Hwang’s rule suggests. Migration to lower processing nodes and development of 

multi-level (MLC) cell technology have been driving its bit cost lower while improving 

its endurance and write performance. Therefore solid-state disks are becoming an 

attractive replacement for conventional hard disks.

Many manufacturer’s are currently offering SSD as an optional upgrade for HDD 

on high end notebooks for a premium - $400-500 for 64 GB SSD. Although this price is 

still considerably expensive for a consumer market where the average notebook price is 

below $800, in a couple of years NAND flash SSD prices are expected to be the same as 

high end HDDs, as shown in figure 3.1. With this decrease on cost; by 2012, 83 million 

SSDs are expected to be sold - 35% notebook attachment rate [28]. In the meantime, 

MLC technology enables high density SSDs. Currently 64 GB SLC solid-state disks and 

128 GB MLC solid-state disks are available. Toshiba recently announced its 512 GB 

NAND flash solid-state disk [73]. High cost and low density have long been considered 

as two barriers against straightforward adoption of SSD’s. Once these barriers are 
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lowered, solid-state disks performance, reliability and low power consumption generates 

a great value proposition compared to conventional hard disks.

There are number of reviews available online each of which compares the 

performance of an SSD against an HDD using various applications as benchmarks. For 

example; a sample 64 GB SSD with SATA 3 Gb/s interface performs 9 times faster in 

loading applications (e.g., loading office work, outlook, internet explorer, adobe 

photoshop) compared to various 7K and 10K RPM hard disks [28]. Another popular 

benchmark is startup time for Windows Vista. In this benchmark, performance of a solid-

state disk is reported to be 3 times better than conventional magnetic disks [28]. In order 

to better understand the performance difference between conventional hard disks and 

solid-state disks, we need to take a closer look into how an I/O request is serviced in both 

systems.

Typical characteristics of I/O traffic in personal computers can be described as 

bursty, localized in areas of the disk and partitioned 50:50 between reads and writes. 

Average I/O request size is 7-9 KB and I/O traffic load is estimated to be around 2.4 
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Figure 1-1: Past and projected costs of magnetic and flash memory storage (courtesy
Samsung Corporation).

will need to be developed in order to fully realize the potential of these devices.

The rest of this thesis is organized as follows. In the next chapter, we describe

NAND flash memory and the techniques that are used to package it into flash disks.

In Chapter 3, we benchmark two commercially-available flash disks from major man-

ufacturers and compare their performance to standard magnetic disks. In Chapter 4,

we examine how flash disks affect the performance and utility of standard B-tree

index structures, and in Chapter 5, we measure the affect of flash disks on join al-

gorithm performance. In Chapter 6, we demonstrate that some of the write-related

drawbacks of flash disks can be overcome using a log-structured storage manager, al-

though doing so incurs a significant (3x) impact on read performance. In Chapter 7,

we provide an overall analysis of our results on flash disks, and in Chapter 8, we

investigate techniques that harness the hardware parallelism inherent in flash disks

to improve performance. Finally, we discuss related work in Chapter 9 and conclude

in Chapter 10.

6

Figure 3.1: SSD and magnetic storage cost projection. Figure adopted from [62].



Mbits per second [38]. We can consider an 8 KB request as a benchmark point and 

estimate the average request service for a read and a write request. The conventional hard 

disk drive used for this example is 3.5” Deskstar 7K500 from Hitachi - 500 GB, 7200 

RPM. For this HDD; command overhead is 0.3 ms, average seek time is 8.2 msec, write 

head switch time is 1 msec, average media transfer rate is 48 MB/sec and ATA 133 

interface is supported [36]. Given these parameters, the average time for a random 8 KB 

read with Deskstar 7K500 is

 0.3 + 8.2 + 4.2 + 0.16 + 0.004 = 12.864 msec

and for a random 8 KB write is

0.3 + 9.2 + 4.2 + 0.16 + 0.004 = 13.864 msec

 As NAND flash memory, we used 16 Gb Micron NAND flash chip. 16 of these 

chips can be put together to form a 32 GB solid-state disk. For this SSD, read access time 

is 25 µs and the media transfer rate is 19 MB/s [60]. Given these parameters, the average 

time for a random 8 KB read with Micron SSD is

 0.25 µs + 411.2 µs = 0.411 msec

and for a random 8 KB write is

800 µs + 102.8 µs = 0.903 msec

The significant amount of time spent on hard disk drives are due to mechanical 

components - seek time and rotational latency. NAND flash memory has an inherent 

performance advantage over HDD since there are no mechanical components in solid-

state disks. Figure 3.2 shows the mechanical and electrical components of  an HDD and 

an SSD. On the other hand, hard disks are considerably better in media transfer rate 

which can benefit sequential I/O requests. Also I/O traffic generated in personal 

computers is localized in areas of the disk, which minimizes disk seek time. Hard disk 
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drives also utilize scheduling algorithms which minimize seek times and access times. 

However, solid-state disk performance is still considerably better than hard disks since 

they have no mechanical component - essentially zero seek time.

The lack of mechanical components in solid-state disks not only permit better 

performance, it also results in significantly less power consumption. For example Hitachi 

Deskstar 7K500 consumes 11-13 W while reading or writing. Its idle average power is 9 

W, while it consumes 0.7 W in sleep mode [35]. On the other hand a 64 GB 2.5” 

Samsung SSD consumes 1 W (200 mA typical active current operating at 5V) in active 

mode and 0.1 W in sleep mode [66]. Due to its low power consumption, one of the first 

proposals to use solid-state disks in storage systems was as a non-volatile cache for hard 

disks. When flash memory cost was high and density was low, hybrid hard disks were 

proposed for mobile consumer devices. In these hybrid designs, NAND flash memory 

was used as a high capacity (higher capacity than DRAM based disk buffers) standby 

buffer for caching and prefetching data, especially when the hard disk was spun down in 
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Figure 3.2: HDD vs SSD. Mechanical and electronic components of an HDD and an SSD.



sleep mode. This way the hard disk idle times were extended, thus saving power 

[bisson_2006]. Figure 3.3 shows a typical hybrid disk drive organization and its power 

specifications.

3.2. Endurance: Reality or Myth?

Hard disk drives has always been prone to endurance or reliability problems due to wear 

and tear of their mechanical components. Hard disk drive manufacturers have 

implemented various techniques to increase the life span of the rotating media and its 

components. For example  head load and unload zones protects disk during idle times, 

dynamic bearing motors help reduce vibrations and increase operational shock ratings. 

Today’s hard disk drives typically report three to five years of service life, which is 

typically defined as the average time period before the probability of mechanical failures 

substantially increase. 

For solid-state disks, reliability and endurance is a different concept. Due to lack 

of mechanical components solid-state disks are much more reliable and more resistant to 

shocks compared to hard disk drives. On the other hand, one of the main concerns with 
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flash memory is its endurance. A flash memory cell has a lifetime, it can be erased and 

reprogrammed a limited number of times, after which it can no longer hold a charge. 

Consumers fear that once they buy a solid-state disk, it will only last a couple of months - 

a misconception that has slowed down the adoption of NAND flash solid-state disks.

Endurance of flash memory is measured in the number of cycles - the number of 

write updates on a memory location. Typical NAND flash endurance is 100,000 to 

1,000,000 cycles for SLC type and 10,000 to 100,000 for MLC type. For example, 

assume we have a 64 GB NAND flash memory with an endurance rating of 100,000 

cycles. If we are updating the same 64 MB disk block with a sustained write speed of 64 

MB per second, then the lifetime of this solid-state disk would only be 28 hours. 

Fortunately, flash solid-state disks employ highly optimized wear leveling techniques, 

which ensure that write updates are written to different physical locations within the disk 

and each memory cell wears out evenly. When wear leveling techniques are considered, a 

64 GB solid-state disk with 100,000 endurance cycles can sustain a 64 MB per second 
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write load for more than 3 years. Moreover if 1,000,000 endurance cycles are taken into 

account, this will increase to more than 30 years. One metric used by the industry to 

specify the endurance rating of a solid-state disk is longterm data endurance (LDE). LDE 

is defined as the total number of writes allowed in SSD’s lifespan [4]. For example, a 32 

GB SLC solid-state disk from SanDisk has an LDE spec of 400 TB, and a 64 GB MLC 

model with 100 TB LDE. If Bapco (Business Applications Performance Corporation) 

mobile user ratings for a professional is considered, 400 TB LDE corresponds to more 

than 17 years [4]. A 17 years lifespan for a solid-state disk is much more than a user 

expected lifespan of a data storage system. With these specifications, one can assume that 

this limit on the number of writes for NAND flash solid-state disks is theoretical and 

should not be a concern in the takeover of hard disks. As said by Jim Elliott VP of 

Marketing from Samsung: “Do you need a million mile auto warranty?” [28].

3.3. SSD Organization

In conventional hard disks, data is stored in disk platters and accessed through read and 

write heads. Surface number or head number identifies a platter. Each platter has multiple 

tracks and each track has a number of blocks depending on its zone. Tracks with the same 

track number in each platter form a cylinder. Access granularity is a sector (block) which 

has 512 bytes and the location of a block on disk is specified using PBA (Physical Block 

Address). PBA is formed by a combination of cylinder number, head number, and sector 

number.

Solid-state disks use a memory array structure different than hard disk drives. 

NAND flash memory is organized into blocks where each block consists of a fixed 
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number of pages. Each page stores data and corresponding metadata and ECC 

information. A single page is the smallest read and write unit. Data can be read from and 

written into this memory array via an 8-bit bus. This 8-bit interface is used both for data, 

address information, and for issuing commands. Flash memory technology does not 

allow overwriting of data (in-place update of data is not allowed) since a write operation 

can only change bits from 1 to 0. To change a memory cell’s value from 0 to 1, one has to 

erase a group of cells first by setting all of them to 1. Also a memory location can be 

erased a limited number of times, therefore special attention is required to ensure that 

memory cells are erased uniformly. Despite these differences in storing and accessing 

data, solid-state disks still assume a block device interface. From host’s file system and 

virtual memory perspective, there is no difference accessing a HDD or a SSD.

Figure 3.5 shows a 32 GB NAND flash solid-state disk architecture from 

Samsung [64]. Depending on the capacity of the disk, several flash memory arrays are 

banged together with dedicated or shared I/O bus. An 8 bit I/O bus is an industry wide 

standard to keep memory chip pin counts the same across different manufacturers. Once 
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several flash memory arrays are organized to achieve desired capacity and bandwidth, 

they are accessed through NAND interface layer. This layer consists of a flash controller 

which implements internal read, write and erase commands and controls timing of 

address, data, and command lines. NAND interface does not specify dedicated lines for 

address, data, and command signals as an 8 bit I/O bus is shared for all - chip pin count is 

limited to reduce cost.

NAND flash solid-state disks assume a block device interface. Currently used 

interfaces are Fiber Channel (FC), parallel SCSI (Small Computer System Interface), 

parallel ATA (Advanced Technology Attachment), serial ATA (SATA), and serial attached 

SCSI (SAS). User’s systems (traditionally called host) communicates to the block device 

through one of these protocols. The host interface layer is responsible for the decoding 

host system commands and transferring them to a flash translation layer (FTL). FTL layer 

converts requests’ logical block address into physical page address in the flash memory 

and initiates read/write commands in the NAND interface layer. Address translation is 

one of the many activities of FTL later. Although flash memory lacks the mechanical 

complexities of a conventional hard disk, it has its own peculiarities. Since flash memory 

does not support the in-place update of data, every write request for a specific logical 

block address results in data to be written to a different physical address with every 

update. Therefore, logical to physical address mapping in flash memory is much more 

complicated and requires a dynamically updated address table. Moreover, FTL also 

implements wear leveling algorithms. Wear leveling ensures that memory cells in an 

array are equally used - homogeneous distribution of erase cycles. As mentioned before, 
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wear leveling is very important in ensuring a long lifespan for solid-state disks. In 

addition to wear leveling, FTL also implements other features of flash memory such as 

effective block management, erase unit reclamation, and internal data movements. Also, 

since there are multiple flash arrays, multiple I/O commands can be processed in parallel 

for improved performance. FTL layer is responsible in extracting maximum performance 

by using various types of parallelisms while keeping power consumption and cost at a 

minimum. One would consider FTL layer as the differentiating factor between different 

SSD manufacturers as it bundles proprietary firmware.

3.3.1. Flash Memory Array

NAND flash memory is organized into blocks where each block consists of a fixed 

number of pages. Each page stores data and corresponding metadata and ECC 

information. A single page is the smallest read and write unit. Earlier versions of flash 

memory had page sizes of 512 Bytes and block sizes of 16 KBytes (32 pages). Currently 

a typical page size is 2 KBytes (4 sectors of 512 Bytes each), and a typical block size is 

128 KBytes (64 pages). The number of blocks and pages vary with the size of the flash 

memory chip. Earlier flash devices with 512 Bytes page sizes are usually referred to as 

small-block NAND flash devices and devices with 2 KBytes page sizes are referred to as 

large-block. In addition to storage cells for data and metadata information, each memory 

die includes a command register, an address register, a data register, and a cache register. 

Figure 3.6 shows NAND flash memory array organization for a sample 1 Gbit flash 

memory from Micron [59]. Larger density flash arrays are usually manufactured by 

combining several lower density flash arrays in a single die - multiple planes in a die. For 
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example, 2 Gbit Micron flash memory is two 1 Gbit arrays on a single die (2 planes in a 

die). Furthermore, two dies can be stacked together to form a 4 Gbit flash memory. These 

two dies can operate independently or together, depending on the model and 

configuration. Figure 3.6 also shows 16 Gbit flash devices from Samsung and Toshiba, 

where multiple planes are visible. Samsung’s 16 Gbit NAND flash is MCL type and 

33

I/
O

 C
o
n
tr

o
l

I/O

Column

R
o

w

Data Reg

Cache Reg

Control 

Logic

Cmd Reg

Status Reg

Addr Reg

CE#
W#

R#

Flash Memory Bank

Data Reg

Cache Reg

2K bytes

1 Block

1 Page = 2 K bytes

1 Blk = 64 Pages

1024 Blocks per Device (1 Gb)

Flash

Array

Fig. 7. A 2-Gbit NAND Flash memory using 90 nm technology. Volume production is in 2003.

Fig. 8. NAND Flash memory technology roadmap.

Fig. 9. High-density memory production roadmap.

Flash memory technology, ArF will be used for lithography,

while KrF is for the 90-nm technology. The pure tungsten is

being considered to reduce the resistance of the word line.

For the cutting-edge multilevel cell (MLC), the threshold

voltage (Vth) uniformity must be ensured.

Fig. 10. High-density memory growth will surpass the prediction
from Moore’s law.

III. NEW MEMORY GROWTH MODEL IN THE ERA OF

NANOTECHNOLOGY

Based on the discussions in Section II, the overall memory

production roadmap is shown in Fig. 9. Even though the
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To meet increasing demand for more digital storage,
leading flash memory manufacturers are touting their
latest single-chip 16-Gbit MLC NAND flash devices.
Earlier this year, Toshiba announced a 16-Gbit MLC NAND flash
manufactured in the 56-nm process node. Samsung, meanwhile, introduced
a 16-Gbit MLC NAND flash using a 51-nm process, a half a process node
ahead of Toshiba's.

Developing MLC NAND flash memories
within the 50-nm range process node
requires overcoming many technical
challenges, from both a process and
circuit design perspective. Some of the
issues that must be addressed are the
proper layout design of bitlines and surrounding dummy patterns; the
placement of P-well bias; efficient self-boosting circuitry for row decoder and
wordline switches; efficient and reliable high-voltage pump circuitry; and
efficient read, programming, erase and verify algorithms to guarantee reliable
operations with reduced charges stored in smaller flash memory cells.

Semiconductor Insights has analyzed the latest 16-Gbit MLC NAND flash
devices from both Toshiba and Samsung. Initial results showed that both
devices achieved impressive die area and Mbit/mm ratings for storage with
some architectural changes from previous designs. More details of the new
designs will be disclosed after further analyses of the architecture and
circuits, process and device characteristics, and waveform analysis to show
the innovations Samsung and Toshiba have made.

Samsung 16-Gbit NAND 
In its latest 16-Gbit MLC NAND flash device, Samsung has simplified the
floor plan and architecture from the previous-generation 65-nm 8-Gbit MLC
NAND flash device. There are two row decoder areas, which split the
memory array into four 4-Gbit arrays. Page buffers are now all consolidated
in one side of the chip, as opposed to having two halves on either side of the
memory array in the previous-generation product.

Die photograph of Samsung's 51-nm 16-Gbit MLC NAND flash

device.

Samsung still has the bonding pads on both sides of the chip, but the 16-
Gbit device has pads on both edges in the wordline direction, apparently to
improve power distribution. The previous generation has pads in the bitline
direction.
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direction.

Toshiba 16-Gbit NAND 
Toshiba's latest device has the same overall architecture and floor plan as its
previous-generation 70-nm 8-Gbit MLC NAND flash. The page buffer size
has been increased to 4 kbytes from 2 kbytes. The chip has two 8-Gbit flash
memory arrays divided by row decoders.

Die photograph of Toshiba's 56-nm 16-Gbit MLC NAND flash device.

As with the preceding device, all bonding pads are in one side of the chip.
Toshiba appears to have a different architecture in its 8-Gbit manufactured in
the same 56-nm process node. According to an "IEEE Journal of Solid-State
Circuits" paper published in January, the 8-Gbit design appeared to have 4
kbytes of page buffers located between two 4-Gbit flash memory arrays. In
16-Gbit design, however, the page buffers are along the side where the
bonding pads are, and the row decoders are between two 8-Gbit arrays. By
placing row decoders, page buffers and all bonding pads on one side, the

latest Toshiba 16-Gbit device achieved efficient floor plan with only 173mm2

of chip size. Toshiba apparently has overcome challenges with internal power
distribution and stability by putting all power pads on one side of the chip.

By migrating their production to 5x-nm process node, both Samsung and

Toshiba have achieved 40 percent improvement of Mbit/mm2 with only a 20
percent increase in chip size from their previous 8-Gbit designs. Samsung's
design appears to have achieved about a 5 percent smaller chip size due to
its smaller feature-size advantage over Toshiba.

(Click on image to enlarge)

Road map to more bits per cell 
While flash makers continue to develop more advanced flash technology
beyond 40 nm and 30 nm, increasing bit density by enhancing MLC
technology to 3 bits per cell is being pursued at the 5x-nm process node.
Toshiba and SanDisk are reportedly developing 3-bit-per-cell technology at
their 56-nm process node to develop a 24-Gbit flash memory device. The 3-
bit MLC technology will also produce 48-Gbit MLC NAND flash memories in
the 40-nm generation.

Precise placement of eight unique threshold voltages to the flash memory
cells and performing error correction would be challenges for developing 3-bit
technology. The 4-bit technology is expected to emerge at the 40-nm
process node. MLC technology for 3 bits per cell and 4 bits per cell is
expected to be critical for companies to remain competitive in 2009 through
2011.

Other challenges 
Availability of single-chip 16-Gbit MLC NAND flash memory devices is
expected to stimulate the market for applications such as solid-state disk and
hybrid hard drive. Samsung has announced a 64-Gbyte SSD using the latest
51-nm 8-Gbit SLC flash devices (equivalent to 16-Gbit MLC). Intel, for its
part, has its Turbo Memory support for Windows Vista. SSD's faster boot
times and application startup times, and its enhanced reliability and battery
life, should spur the adoption of SSDs and HHDs in the notebook market.
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manufactured using 51 nm technology. 16 Gbit is divided into 4 4-Gbit arrays. Page 

buffers are all in one side of the device but bonding pads are located in both sides for 

better power distribution. Toshiba’s 16 Gbit NAND flash is also MLC type but 

manufactured using 56 nm technology. It uses two 8-Gbit memory arrays. One difference 

with this device is that data and cache registers are 4 KB instead of the more common 2 

KBytes [20]. This suggests that each of two 8-Gbit arrays is indeed a two plane memory 

array operating in synch - 2 KBytes data and cache registers from both planes are 

combined and operate as one.

3.3.2. NAND Flash Interface

NAND flash memory supports 3 operations: read, write (program), and erase. 8 bit I/O 

bus is used for the interface without any dedicated address and command lines. As 

mentioned before, the smallest access unit for read and write is a page and erase 

operation is applied to an entire block.

To read a page, one issues a read command to the command register and writes 

the block number and the page number within the block into the address register. 

Complete page data (2 KBytes) will be accessed in tR time and will be loaded into the 

data register. The typical value for tR is 25 µs. Afterwards data can be read from data 

register via 8 bit I/O bus by repeatedly pulsing RE (Read Enable) signal at the maximum 

tRC rate. Earlier solid-state disks could pulse RE at a rate of 20 MHz. Currently, a 33 or 

50 MHz rate is common. In addition to a read command, NAND flash interface also 

supports random read and read cache mode operations. Random read can be used when 

only a sector is required from a page. When a page is accessed and loaded into the data 
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register, a specific sector (512 Bytes) within the page can be addressed and transferred 

via I/O bus. If sequential pages need to be accessed, the read command can be used in 

cache mode to increase the data transfer rate. In this mode, when the first page is loaded 

into the data register, it will be transferred from the data register to the cache register. 

Typically, copying data from the data register to the cache register takes 3 µs. While data 

is being read out from the cache register by pulsing RE, subsequent page can be accessed 

and loaded into the data register. Depending on the manufacturer, read in cache mode can 

have restrictions. One common limitation is that sequential pages have to be within a 

block - crossing block boundaries is not permitted. Figure 3.7a-b shows sample timing of 

read and read cache mode operations.

Similar to a read command, a write or program command has to be issued at the 

page level, and pages within a block have to be written in sequential order. To program a 

page, one issues a write command to the command register, writes a block number and 

page number into the address register, and loads data into the data register. The data will 

then be programmed into the target page in tW. The typical value for tW is 200 µs. To 

program more than a page, write command can be used in cache mode, which is similar 

to read in cache mode command. In write cache mode, data is first loaded into the cache 

register and then transferred from the cache register to the data register. While page is 

programmed using data from the data register, data for the subsequent page can be loaded 

into the cache register via 8 bit I/O bus. One of the limitations of page programming is 

that, pages within a block must be programmed consecutively from the first page of the 

block to the last page of the block. Figure 3.7c-d shows sample timing of write and write 
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cache mode operations. Timing of a read request is heavily dependent on I/O bus speed, 

while timing of write requests is determined by how quickly a page can be programmed.

Write operation in flash memory can only change bit values from 1 to 0. The only 

way to change bit values from 0 to 1 is by erasing. Unlike read and write commands, 

erase command can only be performed at block level. Once issued, all bit values in all 

pages within a block are set to 1. To erase a block, one issues an erase command to the 

command register and loads the block number into the address register. Flash memory 

will then set its status to busy for tE while the erase operation is performed and verified. 

The typical value for tE is 2 ms. Figure 3.7e shows sample timing of an erase operation.

3.3.3. LBA-PBA Mapping

One of the limitations of flash memory is that memory cell bit values can only be 

changed from 0 to 1 by erasing blocks of memory. A typical block size used in current 

solid-state disks is 128 KB and a sector size for a block device is 512 bytes. Therefore, if 

a sector within a block needs to be updated, a sequence of operations must be performed. 

First, the entire 128 KB block is read out to RAM, which takes 5 to 6 ms.  Second, the 

block will be erased to be ready for the update, which takes 2 ms. Then the sector within 

the block will be updated in RAM and the entire block will be written back to flash 

memory, which takes almost 13 ms. Given that the average write request size for a typical 

personal computer disk workload is 7-9 KB [38], this long sequence of events will be 

repeated with almost every write request. More important, some blocks of flash memory 

will be erased more often due to frequent localized I/O requests, which will cause flash 

memory to wear unevenly. 
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In order to address this performance and wear problem, flash memory solid-state 

disks do not support the in-place update of data. Rather, every write request for a specific 

logical address results in data to be written to a different physical address. Therefore, 

NAND flash memory uses dynamically updated address tables and employs various 

mapping techniques to match a logical block address requested by the host system to a 

physical page or block within flash memory. These mapping techniques are implemented 

at FTL layer and much more complicated than logical to physical address mapping in 

conventional hard disk drives. Block mapping, page mapping, virtual-physical address 

mapping, LBA-PBA mapping are all commonly used terms to address these sophisticated 

mapping algorithms and data structures.

Most of the typical address mapping algorithms use two map tables. A direct map 

table will provide the physical location of data using its logical address. An inverse map 

table will store with each block of data its logical index and is used to generate the direct 

map table.

An inverse map table is distributed and stored in the flash memory with original 

data using header fields, preamble fields or ECC/CRC fields. Typical sector size for most 

disk drives is 512 Bytes. In addition to 512 Bytes of data, each sector also stores header 

information, preamble fields, ECC, and CRC fields. In flash memory solid-state disks 

each 2 KB page actually consists of 2 KB of data and 64 bytes of reserved space for ECC 

and metadata information. The logical index for a page can be included into the metadata 

information. Also in some flash memory implementations, one page in each block - 

typically the first page or the last page - may be reserved for logical index data. When 
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flash memory is powered up, the FTL layer will read through flash memory and use 

logical index data for each page or block to construct a direct map table.

A direct map table can be stored fully or partially in SRAM. Storing a direct map 

table fully in RAM would be the ideal case since it will be accessed for each read and 

write request and fast look-up is essential for performance. On the other hand, SRAM is 

one of the most expensive components of flash memory and its size is the deciding factor 

in the cost of a solid-state disk. Depending on performance and cost requirements, direct 

address mapping is implemented at block granularity or at page granularity or a 

combination of both.

When block mapping is implemented at block granularity, the logical address of a 

request is divided into two parts: virtual block number and sector offset within the block. 

Direct map table is then queried using a virtual block number and mapped to a physical 

block number. Combination of a physical block number and a sector offset is used to 

access data for a read request. In the case of a write request, all sectors of the physical 

block are read, requested sector is updated and data is written back into a new, free block. 

Afterwards the virtual block number in the direct map table is updated with the new 

physical block number and the old physical block is marked as invalid. When mapping is 

implemented at block granularity, only virtual to physical block addresses need to be 

stored in a direct map table. In a typical 32 GB solid-state disk, assuming the page size is 

2 KB and the block size is 64 pages, there are 262144 blocks. This would require 18 bits 

to store a physical block address. Assuming direct map table is an array which stores 

physical address of logical block i at its ith location, the size of the table would be less 
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than 1 MB. The cost of storing this direct map table in an SRAM would not be high. On 

the other hand, performance would suffer because every write request involves reading 

valid sectors from memory, updating a sector and programming an entire block. Figure 
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3.8a shows a sequence of events for a sample write request when address mapping is 

implemented at block granularity.

 When block mapping is implemented at page granularity, the logical address of a 

request is divided into a virtual page number and a sector offset within the page. Upon 

receiving a read or write request, the direct map table is queried to map the virtual page 

number to the physical page number. If the request is a write request, a free page is 

allocated from a working free block. New data is written into this free page while the old 

page is marked invalid and the direct map table is updated. Typically 2 KB is the standard 

page size and an average I/O request size is 7-9 KB [38]. This provides a good alignment 

between I/O requests and page boundaries, which results in better performance. On the 

other hand, mapping at page granularity would require 48 MB SRAM to store a direct 

map table for a typical 32 GB solid-state disk.

Although address mapping at page granularity delivers performance, SRAM costs 

can be too high, especially when solid-state disk densities are increasing beyond 64 GB. 

Therefore,a hybrid mapping technique is usually implemented. The typical personal 

computer I/O traffic is highly localized. There are hot spots in the disk accessed by 

frequent small writes and cold spots which are accessed infrequently by larger requests. 

Instead of implementing a direct map table as a static array, dynamic data structures can 

be used for increased flexibility. When a request pattern is detected as hot data, address 

mapping is implemented at page granularity. For other infrequent cold data, mapping is 

kept at block level. In some implementations, address mapping may be stored partially in 

flash memory itself. Address mapping algorithms and techniques for flash memory are an 
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active research area. There are also several patents filed, which are adopted as standard 

by industry. A comprehensive survey by Gal and Toledo provides details of various 

mapping algorithms and techniques used in flash memory [31].

3.3.4. Block Cleaning

Over time as write requests are serviced and new free physical pages are allocated for 

these write requests, the number of pages with invalid data increases. To service future 

write requests, blocks with these invalid pages need to be cleaned via the erase operation. 

This is a block cleaning process and is managed by the FTL layer and flash controller. 

Block cleaning may also be referred to as block reclamation or garbage collection. 

Block cleaning is a long latency operation, which can have significant 

implications on the performance of a solid-state disk. When a block is claimed for 

cleaning, all valid user data must be moved before the block is erased. Block erasure is a 

long but fixed latency operation - typically 1.5 to 3 ms. However, copying valid used data 

to another location is dependent on the number of valid pages and the location of the 

target block. If valid user pages can be moved to another free block within the same flash 

memory chip or plane, fast internal data move operations may be used. Otherwise, valid 

data has to be read by the flash controller via 8-bit I/O bus and written to another flash 

memory array. With internal move operation, a page will be read into the cache register 

and then moved into the data register. While data from the data register is written to a 

different location, the next page will be read into the cache register. For example, assume 

a block is claimed for cleaning and half of the pages within the block have valid user data 

(32 pages out of 64 possible). If the valid user data can be moved to a different block 

42



within the same memory bank or within the same die in a memory bank, the internal data 

move operation will take 1 page read (read first page), 31 interleaved page read and write 

operations and 1 page write (write last page). Assuming 25 µs for page read, 200 µs for 

page write and 3 µs for cache-to-date register transfer, it will take 6.521 ms to move valid 

data. This will add to the already long latency of the block erase operation. If copying of 

the valid data cannot be performed within the same memory bank or die, then data has to 

be read and written via 8-bit I/O interface, which will take even longer than 6.521 ms.

Firmware implemented at FTL or flash controller layer decides the timing of the 

block cleaning process, which blocks to claim for cleaning and where to move the valid 

user data in the reclaimed blocks. This is a run-time resource allocation problem with 

many constraints and several block cleaning algorithms have been suggested in the 

literature. Baek et. al. provides a comprehensive analysis of block cleaning, a detailed 

model for cost of block cleaning and an approach of clustering user data into hot and cold 

to reduce this cost [2, 3].

3.3.5. Wear Leveling

As mentioned in section 3.2., one of the main concerns with flash memory has been its 

endurance. Wear leveling techniques have been critical in overcoming this concern. Wear 

leveling is also a constraint in the block cleaning process - in deciding which block to 

claim for cleaning.

The main goal of wear leveling is to make sure that frequent localized write 

requests do not result in some blocks being erased more often, which will cause flash 

memory to wear unevenly. The ideal is all blocks are equally used - homogeneous 
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distribution of erase cycles among blocks. It is important to note that wear leveling and 

block cleaning place contrary restrictions on block management. Block cleaning requires 

some form of hot and cold data clustering so that frequent localized write requests may 

be separated from infrequent updates to reduce the cost of cleaning [2, 3]. But such 

clustering of data also results in frequent erasure for blocks storing frequently updated 

data, resulting in a non-homogeneous distribution of erase cycles. An efficient wear 

leveling algorithm for large scale flash memory systems is presented by Chang [17].
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Chapter 4: Related Work

Prior research on flash memory systems has mostly been on the design of various FTL 

algorithms and the development of hybrid memory systems. There has been limited 

publications on the internals of solid-state disks and their performance characteristics. In 

this chapter, we will first discuss testing methodologies and simulation techniques used in 

prior research on flash memory systems. Second, we will discuss previous studies on the 

performance of flash memory systems and the interplay between memory architecture 

and performance. The rest of the chapter will be on hybrid memory systems and flash 

memory data structures and algorithms, such as page mapping, block cleaning, and wear 

leveling algorithms.

4.1. Flash Memory Simulations

Very little has been published on the internals of solid-state disk drives; less has been 

published on the performance resulting from various design options. The majority of 

studies have either been on the development of algorithms and data structures for various 

FTL functionality (such as address mapping, block cleaning, wear leveling) or the 

development of hybrid memory systems. In a hybrid setting, flash memory is often 

utilized as a cache for hard disk drives to reduce overall power consumption of I/O 

systems. There have been 2 different testing methodologies used in these studies. 

One methodology is employing an embedded system or a prototype system with 

commodity flash memory attached to it. Baek et. al. uses an embedded system with an 

XScale PXA CPU, SDRAM, and NAND flash memory running Linux kernel and YAFFS 

to manage flash memory. In their simulations they compare modified YAFFS against 
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native YAFFS [2, 3]. Bisson and Brandt use a small amount of flash memory (NVCache) 

in a hybrid disk drive. They evaluate benefits of their hybrid disk drive by 

interconnectiong flash memory and hard disk drive over USB 2.0 and using a modified 

Linux kernel. By implementing NVCache in Linux Kernel, I/O requests are intercepted 

and redirected to flash memory [8, 9]. In his thesis Myers analyzed the use of NAND 

flash memory in relational databases and used two 32 GB commodity solid-state disks. 

Both disks are attached to a system using ext2 file system running with Linux kernel with 

4 GM RAM [62]. Birrell et. al. uses a testing environment where commodity USB flash 

memory drives are attached to a Win32 file system. A USB analyzer is used to measure 

read and write latencies [7]. Dumitru uses a similar approach in testing read and write 

performance of commodity flash solid-state disks and compares them against commodity 

hard disk drives [26]. Gray and Fitzgerald use I/O benchmark tools SQLIO.exe and 

DiskSpd.exe in testing random read and write performance of a beta NAND flash 32 GB 

solid-state disk. These bechmark tools are used in generating 1, 2 or 4 outstanding I/O 

requests with variable block sizes [34]. In a similar study, Kim and Ahn use a real 

hardware prototype system with MLC NAND flash memory and test read/write 

performance using a series of benchmark tools such as PCMark, IOMeter, and Postmark 

[44]. Park et. al. uses a third party benchmark tools to compare performance of 

commodity HDDs and SSDs. Both disk drives are attached to a Samsung notebook [69]. 

Yoon et. al. uses a prototype system of their Chameleon Hybrid SSD architecture. This 

prototype system includes 4 flash memory modules attached to a development board 

together with an ARM7TDMI test-chip running at 20 MHz, a Xilinx Virte II FPGA chip 
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(implements FTL), and 64 KB SRAM. PCMark benchmark tool is used for testing [80]. 

In a more detailed study, Parthey and Baumgartl rely on black-box testing of 19 different 

commodity flash memory drives. The drives are connected via USB 2.0 card reader to an 

AMD64 Athlon computer running Linux [70]. Although testing commodity flash memory  

drives provides valuable information on the performance of real systems, the amount of 

information available is often times very limited. Without the knowledge of the internal 

workings of the item tested it is hard to identify design parameters and their impact on 

overall performance of the I/O system. On the other hand more information can be 

obtained by simulations. 

Simulating an I/O system is flexible, detailed, convenient, and provides intuition. 

However there has not been any publicly available simulators for flash memory systems. 

In their study on I/O performance optimization techniques for hybrid hard disk drives, 

Kim et. al. utilized a hybrid disk simulator, SimHybrid. SimHybrid consists of a hybrid 

hard disk controller, DRAM device model, a disk device model and SimFlash which is a 

flash memory simulator. SimFlash models a 1GB NAND flash memory [48]. SimFlash’s 

default flash memory of 1 GB does not scale to the capacity of solid-state disk drives and 

there is no information on the availability of it. In analyzing use of flash memory file 

cache for low power web servers, Kgil and Mudge also use a 1 GB flash memory model 

and integrate it as a page cache into M5, full system architectural simulator [43]. Other 

studies which focus entirely on flash memory use a series of simulators for performance 

verification [15, 16, 81, 17, 13, 25, 47, 18, 19]. There is no information on the 

implementation details of these simulators or on their availability. This suggests that these 
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simulators are only limited to testing and the verification of specific data structures and 

algorithms proposed in their respective studies. Therefore, we intend to develop a NAND 

flash memory simulator to be used in studying any solid-state disk storage system 

architecture, all while providing the illusion of representing a hard disk drive to the host 

system. 

We have modeled our flash memory code and integrated it into DiskSim v2.0. 

DiskSim is an efficient and accurate disk system simulator and can be easily ported into 

any full-system simulator [32]. Our modified version of DiskSim can simulate a 

generalized NAND flash SSD by implementing flash specific read, program, erase 

commands, block cleaning, LBN-PBN mapping. Our default model simulates a 32 GB 

NAND flash SSD and can easily be extended beyond 32 GB capacity. More details of our 

NAND flash solid-state disk simulator is available in chapter 5. In a parallel effort, 

another extension of the DiskSim simulator for SSDs has been made available from 

Microsoft Research [71]. This SSD extension also provides an idealized NAND flash 

SSD model and provides limited support [1]. Our flash memory SSD simulator is based 

on DiskSim v.2.0 and Microsoft Research's SSD Extension is based on DiskSim v4.0. 

Other similarities or differences between our flash memory simulator and this SSD 

extension for DiskSim is not available to our knowledge.

4.2. Flash Memory Architectures and Performance

What has received relatively little attention is the interplay between SSD organization 

and performance, including write performance. As previous studies have shown [23, 1], 

the relationship between memory-system organization and its performance is both 
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complex and very significant. Very little has been published on the internals of solid-state 

disk drives; less has been published on the performance resulting from various design 

options. Min and Nam described basics of flash memory and its technological trends in 

[58]. They also outlined various enhancements in the performance of flash memory such 

as write request interleaving and need for higher bus bandwidth. Request interleaving can 

be implemented within a chip or across multiple chips and will also benefit read and 

erase latency. Higher bus bandwidth is another technique which is already being 

employed by OneNAND bus architecture - 16-bit 108 MBps bus instead of a typical 8-bit 

33 MBps [45]. A third technique highlighted in their study is the utilization of a dedicated 

communication path between host interface and flash interface which frees up system 

bandwidth. Birrell et. al. investigated write performance of flash disks and identified 

increased latency for non-sequential writes by running micro-benchmarks for commodity 

USB flash drives [7]. This increased latency of random writes (non-sequential write 

requests) is due to the difference between how disk space is addressed linearly by logical 

block address and how data is actually laid out in pages and blocks in flash memory. In a 

similar study Gray and Fitzgerald tested 32 GB Flash SSD from Samsung and reported 

average request time of 37 msec for 8 KB non-sequential writes [34]. Their study states 

benchmark test results but does not explain any of their findings. [26] provides a 

comparison of Flash SSD’s from various vendors and suggests techniques such as write 

caching to improve performance. OS write caching, flash specific file systems, drive 

write caching, and block remapping are some of the proposed techniques, although 

evaluations of these proposed solutions are not available. Kim and Ahn implemented a 
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RAM buffer (similar to write buffers in hard disks) to improve latency of random writes 

in flash memory [44]. This write buffer is placed between the host buffer cache and the 

flash translation layer. They have also implemented three buffer management algorithms 

on a 1 GB NAND flash memory prototype on a target board with an ARM940T 

processor, 32 MB SDRAM, and a USB 2.0 interface. Although their prototype 

implements a USB flash memory instead of a larger capacity solid-state disk drive. Park 

et. al. provides details on the existing hardware of NAND solid-state disks and their 

multi-chip architecture. One of the important aspects of this architecture is the flash 

controller which can support 2 I/O channels and up to 4-way interleaving. Request 

interleaving has been an effective way in hiding request latencies. Within flash memory 

systems, it can be used to support parallel write requests for improved performance. Their 

study also provides a concise discussion of software architectures in NAND solid-state 

disks [69]. Another way to improve request latencies, especially with write requests, is 

using a bank assignment policy to utilize the multi-chip architecture. A static assignment 

policy is striping, which assigns write request to bank number N = LBA(mod number of 

banks). This is almost identical to RAID-0. For user workloads with heavy locality, this 

static bank assignment policy will result in an un-even distribution. Adaptive bank 

scheduling policies are proposed to provide an even distribution of write request to boost 

performance [14, 13].

One of the more recent and detailed studies on the performance of solid-state 

disks is [1]. Agrawal et. al. provides a detailed discussion on design tradeoffs for NAND 

flash SSDs by performing simulations using Microsoft Research's SSD extension to 
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DiskSim. Their work analyzes different SSD organizations using synthetic workloads and 

enterprise traces, and concludes that serial interface to flash memory is a bottleneck for 

performance. By employing parallelism within a flash memory package and interleaving 

requests to a flash memory die, the overall system bandwidth is doubled. Although this 

study is the most similar to ours, there are major differences on the methodology and 

areas of investigation. One of their conclusions is that SSD performance is highly 

workload sensitive; performance differs substantially if write requests are sequential or 

random (their synthetic traces are largely sequential; their enterprise traces are largely 

random; the performance improvements shown for the synthetic traces are far more 

significant than those shown for the real-world traces). Additionally, the workloads used 

in their study are read oriented, with roughly a 2:1 read-to-write ratio, which helps to hide 

the problem of slow writes in an SSD. However, in PC applications (user-driven 

workloads), there tends to be a much higher proportion of writes: in our workloads, we 

see a 50:50 ratio, which would tend to expose flash’s write problem. User driven 

workloads are not biased towards sequential or random requests but provide a mix of 

random and sequential writes at a given time interval. Agrawal’s study outlines core 

limitations of flash memory within the boundaries of a flash memory device/package; 

limitations such as logical to physical mapping granularity, limited serial interface, block 

erasure, cleaning frequency, and wear leveling. Our study extends their work by focusing 

on exploiting concurrency in SSD organizations at both the system and device level (e.g. 

RAID-like organizations and Micron-style superblocks). These system- and device-level 

concurrency mechanisms are, to a significant degree, orthogonal: that is, the performance 
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increase due to one does not come at the expense of the other, as each exploits a different 

facet of concurrency available within SSD organizations.

4.3. Hybrid Memory Systems

One of the main attractions of flash memory is its low power consumption. There have 

been several proposals to use flash memory in various parts of the memory and/or storage 

system to reduce overall power consumption. Bisson and Brandt integrated flash memory 

into hard disk drives [8, 9]. Flash memory in these hybrid disks are referred to as 

NVCache. When there is NVCache, I/O scheduler can redirect some I/O requests (for 

example long latency write requests) to flash memory to reduce overall request latency. 

This will also reduce power consumption as hard disk drives can be spun down for longer 

periods of time and expensive spin-up operations can be avoided. One limitation with 

using NVCache in hybrid disks is the additional cost of flash memory. Due to very low 

cost margins in disk drives, even adding a couple hundred MB flash memory into storage 

systems has a big impact on cost and may limit use and benefits of NVCache. Another 

area where flash memory can improve performance of conventional hard disks is in 

system boot time or application start time. For frequently used applications or 

applications which generate a significant amount of random I/O requests (which are 

troublesome for hard disks with long seek latency), data can be stored in flash memory or 

NVCache for better performance. This is often referred to as data pinning into flash 

memory. Host OS decides on which data to pin or provides an interface to the user for 

selecting applications to be pinned. If capacity allows, even the entire OS code and data 

can be pinned to flash memory for fast boot times. Kim et. al. provides a discussion and 
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evaluation of I/O optimization techniques for hybrid hard disk based systems [48]. In a 

similar study Chen et. al. also uses flash memory as a buffer for data prefetching and 

write caching [18]. The main goal of their algorithms on prefetching and caching data is 

to reduce power consumption of I/O systems by effectively extending disk idle periods. 

In [47], hard disk and flash memory is combined for an energy efficient mobile storage 

system. This hybrid system consumes 30-40% less power.

Instead of using flash memory as a caching mechanism in hybrid disk drives, Kgil 

and Mudge utilize it as a file cache in main memory [43]. Their proposal replaces 1 GB 

DRAM main memory with 128 MB DRAM and 1 GB Flash Memory combination. This 

FlashCache architecture is especially fitting for web servers. Typical web server 

workloads are not computationally intensive and they are heavily read biased. This 

requires use of large amounts of DRAM in web servers to mitigate I/O latency and 

bandwidth. However this significantly increased power consumption of the system even 

when it is idle. By replacing portions of DRAM with flash memory as a secondary file 

cache, power consumption of web server can be significantly reduced. The read heavy 

nature of web server workloads help in hiding write latency problems of flash memory 

and allows read performance to be effective.

4.4. Flash Memory Data Structures and Algorithms

Compared to hard disk drives, flash memory provides a simpler read/write interface, one 

without the complexities of mechanical parts. On the other hand, flash memory has its 

own peculiarities of not allowing in-place data updates, logical-physical address 

mapping, block erasing and wear leveling. To use flash memory as a storage device, one 
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needs to hide these peculiarities from the host system since the file system and virtual 

memory systems assume a block device interface when accessing the storage system. For 

this purpose, Flash SSDs implement a software layer called Flash Translation Layer and 

provide an illusion of HDD to host systems. Most studies on flash memory have been on 

the efficient implementation of these various flash translation layer functionality.

Park et. al. provides an overview of hardware architecture for a flash memory 

controller and summarizes basic functionality implemented at flash translation layer [69]. 

As mentioned in this study logical to physical address mapping can be performed at page 

level or block level. When implemented at page level write requests can be performed at 

page programming latency. However a large map table is required. If  address mapping is 

implemented at block level, the size of the table is considerably reduced at the cost of 

increased write latency. In typical SSD architectures, hybrid mapping is performed, 

which is a combination of page and block mapping. In hybrid mapping, address space is 

typically divided into regions and either page or block mapping is implemented within a 

region. A very detailed understanding of their page mapping, block mapping and hybrid 

mapping schemes are available in [68].

Similar to hybrid mapping, a log block scheme is proposed in [46]. In this scheme 

some blocks are marked as log blocks and are mapped at page-level. Small, frequent 

writes are forwarded into log blocks but a majority of user data is kept in data blocks. 

Blocks which are addressed at block level are called data blocks. By keeping number of 

log blocks limited, address table size can be kept small. Log blocks can be converted into 

data blocks by a merge operation.
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A comparison of mapping at different levels is provided by [21]. As highlighted in 

this study, additional data copy operations in block mapping imposes high cost. On the 

other hand, block mapping requires only limited space to store mapping information. An 

example given in this study compares mapping table sizes for 128 MB flash memory. As 

shown in table 4.1, block mapping requires the smallest SRAM to store mapping 

information. Chung et. al. also explains how this mapping information is managed using 

either map block method or per block method.

Another clustering based hybrid mapping technique is proposed by Chang and 

Kuo [15]. Based on user access patterns on a 20 GB hard disk, address space is divided 

into physical clusters. Physical clusters are stored in main memory in a tree based data 

structure and logical to physical address mapping is performed using a hash-based 

approach. This hash-based approach can be configured for performance [50]. For a 16 

GB flash memory, their approach required 2.95 MB for mapping information. Mapping 

table would be 256 MB if page level mapping was used and 8 MB if block level mapping 

was used [16].
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Bytes for Addressing Total Map Table Size

Page mapping 3 Bytes 3B * 8192 * 32 = 768 KB

Block mapping 2 Bytes 2B * 8192 = 16 KB

Hybrid mapping (2 + 1) Bytes 2B * 8192 + 1B * 32 * 8192 = 272 KB

Table 4.1: Mapping Granularity. Table size to store mapping information for a sample 128 MB 
flash memory. Page size of 1 sector and block sizes of 32 pages is assumed. Flash memory 
consists of 8192 blocks. Table adopted from [21].



Another constraint with logical and physical address mapping is time to construct 

a mapping table when the device is powered up. With USB drives this was not a big 

issue, however as flash memory size increases to 16 GB, 32 GB or to 256 GB with solid-

state disks, scanning pages to generate a mapping table at start-up time is not an easy 

task. Birrell et. al. proposes an address mapping technique which optimizes time to build 

the data structures and the mapping table [7]. Their approach uses mapping at page 

granularity for better write speed and can reconstruct mapping tables within a couple of 

seconds. Moreover their study explains in great detail all components of a mapping table. 

They divide mapping data into information stored in the flash memory itself and data 

held in RAM by the flash controller. They assume page sizes of 2KB and block sizes of 

64 pages. For the 512 MByte flash memory modeled in their study, there are 4K blocks 

and 256K pages. The main mapping table is called an LBA table which is a 256K entry 

array. When indexed by logical address, LBA table maps logical disk address to flash 

page address.  Each array element uses 22 bits; 18 bits for the flash page address and 4 

bytes to indicate whether each of the 4 sectors within a page is valid or not. In addition to 

256K entry LBA table, a smaller 4K entry table is used to keep block usage information. 

Indexed by block number, each entry contains the number of valid pages within each 

block. A 4K bit vector holds the free block list - which is a pool of free blocks ready to be 

re-used. These arrays are stored in volatile RAM and are managed by flash controller. 

When the device is powered up they have to be re-constructed from information stored in 

the flash memory itself. In order to perform fast data re-construction, the last page of 

each block is reserved to hold summary information. The first 63 pages can still hold user 
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data. Also 64 bytes reserved for each page is used to store metadata information. 

Typically logical block address is stored in metadata together with error correction code. 

In their proposed re-construction algorithm, Birrell et. al. stores additional information in 

these 64 bytes, which allows them to scan all the physical blocks and pages quickly 

during power-up. When the device is powered up for the very first time their algorithm 

takes around 16 sec to re-construct mapping information. Once the necessary data 

structures are built and metadata information is updated, the re-construction can be 

performed within couple seconds in successive power-ups [7].

A discussion of flash memory mapping algorithms and data structures is available 

in [29]. Open problems with logical to physical mapping is also presented in this study.

Logical to physical address mapping is required in flash memory because in-place 

update of data is not supported. Once a page is written, subsequent writes to the same 

page cannot proceed because bit values cannot be changed from 0 to 1. Erasing is the 

only way to change bit values from 0 to 1 in flash memory and can only be performed at 

block level. Block erasing is also a long latency operation. It is considered as a 

performance bottleneck and it is important to optimize its efficiency. Baek et. al. provides 

an understanding of cost of block cleaning [2, 3]. When a block is claimed for cleaning, 

all valid user data within this block has to be moved into another free location. Once all 

valid user data is moved, the block can be erased and added to the free block list. Block 

erasure is a fixed latency operation. However copying valid user data to another location 

is dependent on the number of pages with valid user data and the location of the target 

block. If valid user data can be moved to another free block within the same flash 
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memory chip or plane, fast internal data move operations can be used. To model cost of 

cleaning, Baek et. al. defines three key parameters [2, 3]:

Utilization (u): Percentage of valid pages in flash memory - indicates percentage 

of valid pages that need to be copied when a block is erased.

Invalidity (i): Percentage of invalid pages in flash memory - indicates percentage 

of blocks that are candidates for block cleaning

Uniformity (p): Percentage of blocks which are uniform in flash memory. A block 

is defined as uniform if it does not contain valid and invalid pages simultaneously.

Given these parameters cost of block cleaning is:

cleaningcost = B * ((1-p) + i * p) * et + P * (1-p) * (u / (u+1)) * (rt + wt)

where:

u: utilization (0 ≤ u ≤ 1)

i: invalidity (0 ≤ i ≤ 1-u)

p: uniformity (0 ≤ p ≤ 1)

B: Number of blocks in flash memory

P: Number of pages in flash memory

rt: Page read latency

wt: Page program latency

et: block erase latency

Their study also discusses the implications of these three parameters and finds 

that utilization and uniformity have a bigger impact that invalidity. Moreover, cost of 

block cleaning increases dramatically when uniformity is low. Uniformity is also used as 

"block cleaning efficiency" to determine the cost of cleaning a single block. Block 
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cleaning efficiency is defined (slightly different than uniformity) as the ratio of invalid 

pages to the total pages in a block during block cleaning [1]. Baek et. al. also proposes a 

page allocation algorithm which increases uniformity to reduce block cleaning costs. The 

main idea behind their page allocation technique is the ability to distinguish between hot 

and cold data. This distinction between user requests is common in flash memory 

community. Hot data is referred to as user data that is modified frequently and cold data 

is referred to as user data that is modified infrequently. If one can classify hot data, write 

requests to hot data may be allocated to the same block. Since hot data will be modified 

frequently, pages within this block will eventually become invalid - a uniform block. 

Their study proposes an algorithm in identifying hot and cold data and shows that 

performance may be improved by reducing the number of erase operations and data copy 

operations during block cleaning [2, 3]. 

A similar approach of clustering user data into hot and cold is also proposed by 

[19]. Their study provides an understanding of three stages of the block cleaning process. 

These three stages are identification of candidate blocks for cleaning, copying of valid 

pages into free space, and erasing blocks. Performance of the cleaning process is 

determined by when to clean, which blocks to choose as candidates, and where to copy 

valid data. Chiang et. al. provides details on policies on each one of these cleaning stages 

and proposes a new cleaning policy named Cost Age Time (CAT) [19]. Their CAT 

cleaning policy resulted in 50-60% fewer erase operations as they use a fine-grained 

system to cluster hot and cold data. Wu and Zwaenepoel also look into block cleaning 

cost in flash memory for their eNVy storage system [79]. Their study uses a hybrid 
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cleaning policy, which combines a greedy cleaning policy with locality gathering. Greedy 

cleaning policy chooses a block with the most number of invalid pages. Locality 

gathering is the same approach of clustering data into hot and cold regions.

Block cleaning policies not only consider cleaning efficiency and latency, but also 

wear leveling. As mentioned before, each flash memory cell has a lifetime. Each block in 

flash memory can be erased for a limited number of times, after which memory cells can 

no longer hold charge. Although endurance of flash memory increased to 100K or 1M 

cycles with recent improvements, and solid-state disks can sustain write loads for years 

with their current capacity, wear leveling algorithms have always been an integral part of 

block cleaning policies. The main goal of wear leveling is making sure that frequent and 

localized write requests do not result in some blocks to be erased more often, which will 

cause flash memory to wear unevenly. The desire is for all blocks to be equally used - 

homogeneous distribution of erase cycles among blocks. This will ensure a long life span 

of solid-state disks. However, wear leveling and block cleaning place contrary restrictions 

on the management of blocks. As explained, efficient block cleaning requires some form 

of clustering in page allocation so that frequent localized write requests to hot data can be 

separated from infrequently updated cold data. But such clustering of data also results in 

frequent erasures for blocks storing hot data, resulting in non-homogeneous distribution 

of erase cycles. Therefore, block cleaning policies usually not only take into account 

cleaning efficiency and erase latency, but also consider wear leveling.

An efficient wear leveling algorithm is presented in [81]. The main goal of this 

algorithm is to ensure that cold data is not stored in a block for very long periods of time. 
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Block management is performed in a pre-determined time frame, which is called as 

resetting interval. In a similar study, Chang proposes a wear leveling algorithm for large 

scale flash memory systems, called dual-pool algorithm [17]. Dual-pool algorithm 

ensures that blocks are not overly worn by storing infrequently updated data. Once a 

block participates in wear leveling, it has to wait for some time before being considered 

for wear leveling again. In order to achieve these, blocks are partitioned into two sets: a 

hot pool and a cold pool. Cold data is stored in blocks from the cold pool and hot data is 

stored using blocks from the hot pool. Hot and cold pools are resized adaptively as cold 

data is slowly moved away from the blocks with low erase cycles to more worn out 

blocks.

Flash memory solid-state disks emulate a block device interface. A different 

approach is using a file system specific for flash memory and letting system software 

manage flash storage [30, 42, 55, 53]. These file systems usually employ a log-structured 

approach [72]. A survey on flash specific file systems and related patents can be found in 

[31]. This survey also discusses various sophisticated data structures and algorithms 

designed to overcome the limitations of flash memory (block mapping, erase-unit 

reclamation and wear leveling).
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Chapter 5: Methodology

One of the contributions of this dissertation is the development of a solid-state disk 

simulator which can be used to measure the performance of various NAND flash memory  

architectures. For accurate timing of disk requests our NAND flash SSD simulator is 

designed as an extension of DiskSim v2.0. Disk traces collected from portable computers 

and PCs running real user workloads are used to drive this flash simulator.

5.1. DiskSim Disk Simulator

DiskSim is an efficient, accurate disk system simulator from Carnegie Mellon University 

and has been extensively used in various research projects studying storage subsystem 

architectures [32]. It was originally developed at the University of Michigan and written 

in C. DiskSim not only simulates hard disk drives, but also includes modules for 

secondary components of the storage system such as device drivers, buses, disk 

controllers, request schedulers, and disk cache components. DiskSim may be used as a 

trace-driven simulator or can internally generate synthetic workloads. Accuracy of 

DiskSim v2.0 has been extensively validated against various hard disk drives from 

different manufacturers, such as Cheetah and Barracuda disk drives from Seagate, 

Ultrastar 18 ES from IBM, Atlas III, and 10K from Quantum. DiskSim can simulate disk 

array data organizations and can be integrated into full system simulators. DiskSim only 

models the performance behavior of disk systems; data is not actually read or written for 

I/O requests. Additionally, disk power models are available as extensions of DiskSim 

through other studies [gurumurthi2003drpm-}]. Figure 5.1 shows the storage system 

components modeled in DiskSim v2.0.
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5.2. NAND Flash Solid-State Disk Simulator

This dissertation uses a solid-state disk simulator, which is designed as an extension of 

DiskSim v2.0. This simulator models a generalized NAND flash solid-state disk by 

implementing flash specific read, program, erase commands, block cleaning, and logical-

to-physical address mapping, all while providing the illusion of an HDD.

NAND flash interface commands supported by the simulator are page read, page 

read in cache mode, program page, program page in cache mode, and erase block.

Logical-to-physical address mapping is performed at the granularity of a page. 

For a 32 GB SSD, this requires the address mapping table to have 16777216 entries. 

Logical-to-physical address map table is modeled as an int array of size 16777216, which 

corresponds to 64 MB in table size. Map table is queried by the logical page address and 

stores the physical page address information and page status information (free/valid/

dirty). Implementation details of the address mapping table is shown in figure 5.2.

The flash simulator maintains a pool of free blocks and allocates pages in a 

consecutive order from current working free block when a write request is received. In 
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Figure 5.1: DiskSim storage system simulator components. DiskSim implements most 
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order to process write requests, the flash simulator must have at least one free block 

available at all times. Otherwise, block cleaning operation is triggered to erase blocks 

with invalid pages and add to the list of free blocks. Simulator searches for blocks with 

the smallest erase latency during block cleaning since block reclamation causes all read 

and write requests to the device to be stalled in queue. For quick search of blocks eligible 

for cleaning, the simulator also maintains a list of blocks which include only invalid 

pages. Blocks with only invalid pages are the blocks with the smallest erase latency. The 

number of free blocks that trigger garbage collection may be configured within the 

simulator. Three data structures are used to maintain blocks within the simulator. An int 

array of 262144 entries (1 MB table size) is used to store block status information. An int 

array is used as a free block pool with a default size of 16384, which represents 2 GB free 

disk space. A separate table is used to store disk utilization information which is accessed 

during garbage collection. This table has 65 entries and stores the number of blocks with i 
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Logical-to-Physical Address Table

Physical Page Address - Bits 0-27 (mask 0x0fffffff)

A recently erased page is free but 
does not hold any valid user data

Free
Not ValidBit 31 

reserved 
for sign

Bit 28 - Logical Page Valid

Bit 29 - Physical Page Free

Bit 30 - Physical Page Valid

i=0

i=16777215

i=16777214

i=16777213

Not Free
Valid

Not Free
Not Valid

After a write, 
page holds 
valid user data

If user data is updated with a new 
write request, page is marked invalid

Figure 5.2: Logical-to-physical address mapping. Logical-to-physical address mapping is 
performed at the granularity of a page. Map table stores physical page address information and 
page status information.



valid pages at location i. Implementation details of these data structures are shown in 

Figure 5.3.

A specific wear leveling algorithm is not implemented. However, write requests 

are forwarded to the least used physical locations within the address space of the storage 

system, providing simple wear leveling without overly complicating the performance 

models used. Figure 5.4 illustrates solid-state disk components modeled in our simulator.

DiskSim is a highly-configurable storage system simulator. Our NAND flash 

solid-state disk simulator thrives on this property and extends it further. Today’s typical 

solid-state disks are organized as multiple chips connected in different ways using 

various number of buses. These multiple chips can operate independently or can be 
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Block Status Table

Valid Page
Count

Bit 31 
reserved 
for sign

Bit 28 - Holds Invalid Pages

Bit 29 - Holds Free Pages

Bit 30 - Uniform Block

i=0

i=262143

i=262142

i=262141

08

Free Page
Count

16

Invalid Page
Count

List Head List Tail

Free Block List

Free Block
Page Count

Disk Utilization Table

i=0 Number of uniform blocks 
with all invalid pages

i=65 Number of uniform blocks 
with all valid pages

i=x
Number of non-uniform 
blocks with x number of 
valid pages

16384

Figure 5.3: Block management. Block status table, free block list and disk utilization table is 
used to maintain blocks within the simulator



linked together in a Micron-style superblock. The size of flash memory chips can be 

changed while keeping the storage system capacity constant. Our flash simulator can 

simulate these various solid-state disk architectures while providing the illusion of a 

single HDD to host system.

5.3. Disk I/O Traces

In this dissertation, we have used our own disk traces to measure the performance of 

NAND flash solid-state disks. These traces are collected from portable computers and 

PCs running real user workloads. The workloads represent typical multi-tasking user 

activity, which includes browsing files and folders, emailing, text editing and compiling, 

surfing the web, listening to music and playing movies, editing pictures, and running 

office applications.

Our workloads consist of not only I/O traffic generated by user applications, but 

also read and write requests generated by system and admin processes. System processes 

are important as they generate I/O traffic comparable to the traffic generated explicitly by  

the user application. For example, half of the sectors read from the disk are requested by 
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Figure 5.4: Flash SSD simulator components.



the host system. File system cache update constitutes 40% of sectors written to disk. A 

snapshot of processes running during typical multi-tasking user activity is provided in 

Table 5.1.

We have collected our workloads by monitoring file system activity and filtering 

disk requests. We have used fs_usage, which is a general BSD command, to monitor file 

system. System calls reported by fs_usage include both activity by host system processes 

and user initiated I/O requests. Data reported by fs_usage includes a timestamp, file 

system call type, file descriptor, byte count requested by the call, disk block address, file 

offset, process name, and time spent in system call. A sample output of fs_usage 

command is shown in figure 5.5.

Not all file system activity reported by fs_usage generates a read or write request 

to the hard disk drive. Therefore, we have filtered out file system calls which generate an 

I/O request. Any system call which initiates an I/O request has to provide a block address 

(tagged as D=0x) and request size (tagged as B=0x). A sample output of our filtering 

process is shown in figure 5.6. After filtering out I/O requests, we have sorted them in 

time and generated an ascii trace file. Final format of our traces is in default ascii trace 

format, where each request is defined by 5 parameters: request arrival time, device 

number, block number, request size, and request flags [32]. A sample trace in ascii format 

is shown in figure 5.7.

The characteristics of our traces are in-line with expected I/O traffic for personal 

computer workloads reported by Hsu and Smith [38]. The average I/O per second in our 

traces range from 1.6 Mbps to 3.5 Mbps, similar to 2.37 Mbps reported in [38]. Our 
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User Applications

Adobe Reader - Pdf viewing

Safari - Internet Browsing

Finder - Folder browsing and editing

iTunes - Listening to music

Word & Excel - Office Application

Preview - Picture viewing

Quicktime Player - Watching movie

Terminal

srm - File deleting

User Support 
Applications

AppleSpell - Checking spelling

iCal - Calendar and Alarm Scheduler

ATSServer - System font manager

mdimport - File indexing

Dock - Application quick launch

WindowServer - Manage application windows

Virtual Memory
kernel_task - Virtual memory manager

dynamic_pager - Handling swap files

File System Cache update - Flush file system cache to disk

Root Processes

configd - System and network configuration daemon

automount - Auto mount and unmount network file systems

diskarbitration - Mounting disk and file systems

coreaudiod - Daemon used for core audio purposes

syslogd - System log utility

securityd - Access to keychain items

mDNSResponder - Provides network services announcement

Table 5.1: Processes running during typical multi-tasking user activity.
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07:42:51.364  fsync! F=11! 0.019459 W mds                 

07:42:51.365  pwrite           F=11 B=0x20      O=0x00000000! 0.000023   mds                 

07:42:51.365  WrData[async] D=0x05dfc9b8  B=0x1000     /dev/disk0s10! 0.000221 W mds                 

07:42:51.365  fsync            F=11! 0.000297 W mds                 

07:42:53.555  PgIn[async]   D=0x06b28640  B=0x1000     /dev/disk0s10!0.019178 W WindowServer        

07:42:53.555  PAGE_IN         A=0x904d1000  B=0x1000! 0.019364 W WindowServer        

07:42:53.566  PgIn[async]   D=0x06b28630  B=0x2000     /dev/disk0s10!0.010042 W WindowServer        

07:42:53.566  PAGE_IN         A=0x904cf000  B=0x2000! 0.010158 W WindowServer        

07:42:53.566  PAGE_IN         A=0x904d0000  B=0x0! 0.000013   WindowServer        

07:42:53.594  PAGE_IN         A=0x93a00000  B=0x0! 0.000098   Camino              

07:42:53.594  PAGE_IN         A=0x938ed000  B=0x0! 0.000021   Camino              

07:42:55.942  write           F=8    B=0x1! 0.000032   Camino              

07:42:55.944  read            F=7    B=0x1! 0.000011   Camino              

07:42:55.944  write           F=8    B=0x1!  0.000007   Camino

.....

07:42:59.164  stat                 [  2]        /usr/share/icu/icudt32b>>>>> ! 0.000029   Camino              

07:42:59.164  stat                 [  2]        icudt32b ! 0.000021   Camino              

07:42:59.164  stat                 [  2]        /usr/share/icu/icudt32b_word.brk! 0.000017   Camino              

07:42:59.164  stat                 [  2]        icudt32b ! 0.000017   Camino              

07:42:59.180  PgIn[async]   D=0x05c54288  B=0x1000     /dev/disk0s10!0.016331 W Camino              

07:42:59.180  PAGE_IN         A=0x0310e000  B=0x1000! 0.016445 W Camino              

07:42:59.181  PgIn[async]   D=0x05c54290  B=0x1000     /dev/disk0s10!0.000214 W Camino              

07:42:59.181  PAGE_IN         A=0x0310f000  B=0x1000! 0.000306 W Camino              

07:42:59.181  RdData[async] D=0x05c54298  B=0x1000     /dev/disk0s10! 0.000306 W Camino              

07:42:59.181  PAGE_IN         A=0x03110000  B=0x0! 0.000148 W Camino              

07:42:59.181  PgIn[async]   D=0x05c542b0  B=0x1000     /dev/disk0s10!0.000274 W Camino              

07:42:59.181  PAGE_IN         A=0x03113000  B=0x1000! 0.000322 W Camino              

07:42:59.181  PgIn[async]   D=0x05c542b8  B=0x1000     /dev/disk0s10!0.000190 W Camino              

07:42:59.182  PAGE_IN         A=0x03114000  B=0x1000! 0.000247 W Camino              

07:42:59.182  RdData[async] D=0x05c542c0  B=0x1000     /dev/disk0s10! 0.000329 W Camino              

07:42:59.182  PAGE_IN         A=0x03115000  B=0x0! 0.000153 W Camino              

07:42:59.182  PgIn[async]   D=0x05c542a0  B=0x2000     /dev/disk0s10!0.000235 W Camino              

07:42:59.182  PAGE_IN         A=0x03111000  B=0x2000! 0.000300 W Camino              

07:43:00.189  getattrlist          /Users/cdirik/Library/Application Support/Camino/cookies.txt!0.000091   Camino

.....

07:43:05.336  WrData[async] D=0x03d5f378  B=0x1000     /dev/disk0s10

07:43:05.337  PgIn[async]   D=0x06e16528  B=0x1000     /dev/disk0s10!! 0.000716 W Camino              

07:43:05.337  PAGE_IN         A=0x04d88000  B=0x1000! 0.000846 W Camino              

07:43:05.338  WrData[async] D=0x03d60488  B=0x2000     /dev/disk0s10! 0.001634 W update              

07:43:05.344  getattrlist                       /.vol/234881033/5024290! 0.000113   ATSServer           

07:43:05.344  open            F=10    /.vol/234881033/10598/Trebuchet MS/..namedfork/rsrc!0.000057   ATSServer           

07:43:05.344  fstat           F=10! 0.000009   ATSServer           

07:43:05.345  WrData        D=0x00004916  B=0x20000    /dev/disk0s10!0.002422 W update              

07:43:05.347  WrData        D=0x00004a16  B=0x20000    /dev/disk0s10!0.002217 W update              

07:43:05.350  WrData        D=0x00004b16  B=0x14200    /dev/disk0s10!0.001534 W update

.....

07:45:25.201  RdData[async] D=0x06e18e40  B=0x6000     /dev/disk0s10! 0.072507 W WindowServer        

07:45:25.235  RdData[async] D=0x0651fa28  B=0x1000     /dev/disk0s10! 0.032838 W WindowServer        

07:45:25.235  RdData[async] D=0x0651fa30  B=0x2000     /dev/disk0s10! 0.033122 W WindowServer        

07:45:25.236  WrData        D=0x00003120  B=0x200      /dev/disk0s10! 0.016644 W mds                 

07:45:25.237  open F=4 /System/Library/Frameworks/Message.framework/Versions/B/Message! 0.000070   Mail                

07:45:25.237  fstat           F=4! 0.000009   Mail                

07:45:25.290  RdData[async] D=0x06dfd468  B=0x1000     /dev/disk0s10! 0.052882 W Mail                

07:45:25.290  pread           F=4  B=0x1000    O=0x00000000! 0.053019 W Mail                

07:45:25.291  close           F=4! 0.000021   Mail

Timestamp

Process initiating system call

Flush file system cache 

(system process) to disk 

starting from address 

0x00004916

Internet browsering process 

(user process) is reading 8 

sectors starting from block 

address 0x05c542b8

System call type

Email client is 

reading from disk

Figure 5.5: Fs_usage. Sample output of file system activity reported by fs_usage
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07:42:51.364    WrData[async] D=0x06022158  B=0x4000     /dev/disk0s10! 0.000362 W mds                 

07:42:51.365    WrData[async] D=0x05dfc9b8  B=0x1000     /dev/disk0s10! 0.000221 W mds                 

07:42:53.555    PgIn[async]   D=0x06b28640  B=0x1000     /dev/disk0s10! 0.019178 W WindowServer        

07:42:53.566    PgIn[async]   D=0x06b28630  B=0x2000     /dev/disk0s10! 0.010042 W WindowServer        

07:42:59.180    PgIn[async]   D=0x05c54288  B=0x1000     /dev/disk0s10! 0.016331 W Camino              

07:42:59.181    PgIn[async]   D=0x05c54290  B=0x1000     /dev/disk0s10! 0.000214 W Camino              

07:42:59.181    RdData[async] D=0x05c54298  B=0x1000     /dev/disk0s10! 0.000306 W Camino              

07:42:59.181    PgIn[async]   D=0x05c542b0  B=0x1000     /dev/disk0s10! 0.000274 W Camino              

07:42:59.181    PgIn[async]   D=0x05c542b8  B=0x1000     /dev/disk0s10! 0.000190 W Camino              

07:42:59.182    RdData[async] D=0x05c542c0  B=0x1000     /dev/disk0s10! 0.000329 W Camino              

07:42:59.182    PgIn[async]   D=0x05c542a0  B=0x2000     /dev/disk0s10! 0.000235 W Camino              

07:43:00.204    WrData[async] D=0x052a45e0  B=0x1e000    /dev/disk0s10! 0.002081 W mds                 

07:43:00.209    RdData[async] D=0x052a45e0  B=0x1000     /dev/disk0s10! 0.000846 W mdimport

.....

07:43:05.336    WrData[async] D=0x03d5f378  B=0x1000     /dev/disk0s10! 0.030643 W update              

07:43:05.337    PgIn[async]   D=0x06e16528  B=0x1000     /dev/disk0s10! 0.000716 W Camino              

07:43:05.338    WrData[async] D=0x03d60488  B=0x2000     /dev/disk0s10! 0.001634 W update              

07:43:05.345    WrData        D=0x00004916  B=0x20000    /dev/disk0s10! 0.002422 W update              

07:43:05.347    WrData        D=0x00004a16  B=0x20000    /dev/disk0s10! 0.002217 W update              

07:43:05.350    WrData        D=0x00004b16  B=0x14200    /dev/disk0s10! 0.001534 W update              

07:43:05.456    WrData        D=0x00003120  B=0x200      /dev/disk0s10!! 0.000222 W update              

07:43:05.462    WrMeta[async] D=0x0000231a  B=0x200      /dev/disk0s10! 0.001262 W update              

07:43:05.462    WrMeta[async] D=0x00002d70  B=0x1000     /dev/disk0s10! 0.001380 W update              

07:43:05.463    WrMeta[async] D=0x00002dd8  B=0x1000     /dev/disk0s10! 0.001522 W update              

07:43:05.463    WrMeta[async] D=0x000030e8  B=0x1000     /dev/disk0s10! 0.001683 W update              

07:43:05.463    WrMeta[async] D=0x0000a120  B=0x2000     /dev/disk0s10! 0.001850 W update              

07:43:05.463    WrMeta[async] D=0x0000a140  B=0x2000     /dev/disk0s10! 0.001991 W update              

07:43:05.463    WrMeta[async] D=0x0000a150  B=0x2000     /dev/disk0s10! 0.002110 W update

.....

07:45:11.639    WrData[async] D=0x052b0720  B=0x20000    /dev/disk0s10! 0.002279 W Camino              

07:45:18.960    WrData[async] D=0x052b0820  B=0x1000     /dev/disk0s10! 0.000264 W Camino              

07:45:20.645    WrData[async] D=0x052b0828  B=0x1e000    /dev/disk0s10! 0.002035 W mds                 

07:45:20.647    RdData[async] D=0x052b0828  B=0x1000     /dev/disk0s10! 0.000797 W mdimport            

07:45:25.118    RdData[async] D=0x065209a8  B=0xd000     /dev/disk0s10! 0.023201 W Dock                

07:45:25.124    RdData[async] D=0x0651fa20  B=0x1000     /dev/disk0s10! 0.026276 W WindowServer        

07:45:25.129    WrData[async] D=0x068c2d50  B=0x1000     /dev/disk0s10! 0.000442 W mds                 

07:45:25.131    WrData        D=0x000059e3  B=0x18200    /dev/disk0s10! 0.001813 W mds                 

07:45:25.201    RdData[async] D=0x06e18e40  B=0x6000     /dev/disk0s10! 0.072507 W WindowServer        

07:45:25.235    RdData[async] D=0x0651fa28  B=0x1000     /dev/disk0s10! 0.032838 W WindowServer        

07:45:25.235    RdData[async] D=0x0651fa30  B=0x2000     /dev/disk0s10! 0.033122 W WindowServer        

07:45:25.236    WrData        D=0x00003120  B=0x200      /dev/disk0s10 !! 0.016644 W mds                 

07:45:25.290    RdData[async] D=0x06dfd468  B=0x1000     /dev/disk0s10! 0.052882 W Mail                

07:45:25.322    RdData[async] D=0x06b33998  B=0x1000     /dev/disk0s10! 0.030256 W Mail 

.....

07:47:26.964    WrMeta[async] D=0x00045190  B=0x2000     /dev/disk0s10! 0.017434 W mds                 

07:47:26.965    WrMeta[async] D=0x0005a630  B=0x2000     /dev/disk0s10! 0.017592 W mds                 

07:47:26.965    WrMeta[async] D=0x0007d7b0  B=0x2000     /dev/disk0s10! 0.017801 W mds                 

07:47:26.965    WrMeta[async] D=0x0007d7d0  B=0x2000     /dev/disk0s10! 0.017983 W mds                 

07:47:26.016    RdData[async] D=0x068c6978  B=0x10000    /dev/disk0s10! 0.068082 W mds                 

07:47:26.057    PgIn[async]   D=0x0582da78  B=0x1a000    /dev/disk0s10! 0.093692 W iTunes              

07:47:26.057    PgIn[async]   D=0x0582db60  B=0x1000     /dev/disk0s10! 0.000247 W iTunes              

07:47:26.058    PgIn[async]   D=0x0582db48  B=0x1000     /dev/disk0s10! 0.000181 W iTunes              

07:47:26.058    PgIn[async]   D=0x0582db50  B=0x2000     /dev/disk0s10! 0.000201 W iTunes              

07:47:26.110    PgIn[async]   D=0x05836470  B=0x3000     /dev/disk0s10! 0.051374 W iTunes              

07:47:26.156    PgIn[async]   D=0x05836238  B=0x1f000    /dev/disk0s10! 0.046598 W iTunes              

07:47:26.165    PgIn[async]   D=0x05836488  B=0x1000     /dev/disk0s10! 0.008531 W iTunes

Timestamp R / W Address Size

Search engine process

System process managing 

application windows

Internet browser 

(user process)

File indexing  

(system process)

Flush file system cache 

into disk (system 

process)

Email client (user process)

Music player 

(user process)

Figure 5.6: Disk I/O Requests. Sample output of file system activity. I/O requests are filtered.
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51364.000000 0 100802904 32 0 

51364.000000 0 83372296 64 0 

51365.000000 0 98552248 8 0 

53555.000000 0 112363072 8 1 

53566.000000 0 112363056 16 1 

59180.000000 0 96813704 8 1 

59181.000000 0 96813712 8 1 

59181.000000 0 96813720 8 1 

59181.000000 0 96813744 8 1 

59181.000000 0 96813752 8 1 

59182.000000 0 96813728 16 1 

59182.000000 0 96813760 8 1 

60204.000000 0 86656480 240 0 

60209.000000 0 86656480 8 1 

62196.000000 0 86657544 8 0 

62199.000000 0 86657552 8 0 

62228.000000 0 86657744 152 0 

62824.000000 0 86656808 8 0 

62914.000000 0 86657288 256 0 

64055.000000 0 112261320 8 1 

64127.000000 0 89896664 16 1 

.....

65467.000000 0 68240 16 0 

65468.000000 0 238256 16 0 

65468.000000 0 261568 16 0 

65468.000000 0 278848 16 0 

65468.000000 0 284784 16 0 

65468.000000 0 285056 16 0 

65469.000000 0 285520 16 0 

65469.000000 0 286032 16 0 

65469.000000 0 326464 16 0 

65469.000000 0 370224 16 0 

65471.000000 0 403264 16 0 

65472.000000 0 405280 16 0 

65472.000000 0 409952 16 0 

65472.000000 0 410336 16 0 

65472.000000 0 417424 16 0 

65473.000000 0 432432 16 0 

65473.000000 0 453648 16 0 

65473.000000 0 454512 16 0 

65474.000000 0 454560 16 0 

65475.000000 0 456640 16 0 

65720.000000 0 100921464 8 1 

65721.000000 0 100921472 8 1 

65721.000000 0 100921480 8 1 

65721.000000 0 100921488 8 1 

65721.000000 0 100921496 16 1 

65722.000000 0 100921512 8 1 

65722.000000 0 100921520 32 1 

65723.000000 0 100921552 8 1 

65724.000000 0 100921560 64 1 

65724.000000 0 100921624 8 1 

65727.000000 0 100921632 128 1 

Timestamp

Disk number Request size

Block # R / W

Localized Read 

Request

Bursty write 

traffic

Small intermixed 

read and write 

traffic

Bursty read 

traffic

Figure 5.7: Input Trace. Sample ascii input trace showing characteristics of user activity.



personal computer workloads generate 4.6 to 21.35 I/O requests per second with an 

average request size of 26 KB. Although this average request size is much higher than the 

7-9 KB expected by [38], it is weighted by a small number of large files; approximately 

half of the requests generated in our traces are 4-8 KB. We observed that the average 

request size in our personal workloads is skewed by the occasional very large write 

requests (of size 64 KB and higher). We have also confirmed that I/O traffic in our 

workloads is bursty, localized and balanced - I/O requests arrive in groups, frequently 

access localized areas of the disk, and are partitioned roughly 50:50 between reads and 

writes. Figure 5.8-14 summarize the properties of each trace and shows three different 4-

minute snapshots, representing different mixes of reads and writes. Request size 

distribution and read:write ratio for each trace is also shown.

5.4. Simulation Parameters

In this dissertation, we have modeled a 32 GB ATA 133 MB/s NAND flash SSD. We 

modeled today’s typical SSD which usually support multiple channels and multiple flash 

memory banks. We have simulated various configurations of flash memory banks on a 

shared bus or multiple independent channels to different flash banks or a combination of 

the two. Some of the configurations we have simulated are shown in figure 5.15. In each 

configuration modeled, the size of flash memory banks can change while the entire 

storage capacity is kept constant at 32 GB. For example, if 4 memory banks are 

connected via a single shared bus, figure 5.15b, then each bank is 8 GB in size. If a 

configuration with 2 independent I/O channels and 4 banks per channel is used, figure 

5.15c, then each memory bank is 4 GB (system capacity is 8 x 4 GB).
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In our models, we have used the following timing parameters for our flash 

memory model: page access time of 25 µs, page program time of 200 µs and block erase 

time of 1.5 ms. Our flash memory model is a large block flash memory with page sizes of 

2 KBytes and block sizes of 64 pages. Logical to physical address mapping is performed 

at the granularity of a page. The speed at which data can be read from the flash memory 

banks to the external flash controller also varies throughout our simulations. We have 

modeled 8-, 16- and 32-bit wide I/O busses with speeds of 25, 50 and 100 MHz.

To simulate a realistic flash management model, we have assumed modular 

striping for write requests. If we have a total of x memory banks, the Nth write request is 

assigned to bank number N(mod x). We have maintained a pool of free blocks for each 

bank and have allocated pages from current working free blocks when a write request is 

received. Modular striping also provides simple yet effective wear leveling, as each 

memory bank handles an equal amount of write traffic.
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Disk Parameters

Disk capacity 32 GB

Host I/F ATA 133 MB/s

Configuration

I/O channels 1, 2, 4

Memory banks per channel 1, 2, 4

Page size 2 KB

Block size 128 KB

Memory bank density 2, 4, 8, 16, 32 GB

LBN-PBN mapping Page mapping

Timing parameters

Page read 25 µs

Page write 200 µs

Block erase 1.5 ms

I/O transfer rate 25, 50, 100 MHz

Table 5.2: Simulation parameters. Base configuration for flash memory storage system.



Chapter 6: Experimental Results

In this dissertation, we explore the system-level organization choices for NAND flash 

memory solid-state disks - we study a full design space of system-level organizations, 

varying number of busses, speeds and widths of busses, and the degree of concurrent 

access allowed on each bus. To compare with system-level details, we also investigate 

device-level design trade-offs, including pin bandwidth and I/O width. We present 

scheduling heuristics and I/O access policies of NAND flash SSD storage systems, which 

exploit the distinctive differences between reading from and writing to flash memory.

6.1. Banking and Request Interleaving

One way to increase the performance of flash memory disks has been utilizing request 

parallelism among memory banks in the flash array where each bank can read/write/erase 

independently. As we have mentioned before, writing (programming) a page into flash 

memory is significantly longer than reading a page from flash. In a typical user workload, 

read and write requests come in batches - sequential reads and writes. One way to hide 

write latency in flash memory would be interleaving sequential writes by assigning write 

requests to individual flash memory banks. Since flash memory allocates a newly erased 

page for a write request, choosing an empty page for each write becomes a run-time 

decision of resource allocation. When sequential write requests arrive, one can assign free 

pages for these writes from different banks. This way sequential writes are dispatched to 

multiple independent banks in parallel, and page write times are interleaved. Figure 6.1 

shows a flash array organization with 4-way banking and a timing diagram for 4 

sequential write requests of 2 KB each. 
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On the other hand, sequential read requests do not benefit from multiple banks as 

much as write requests. Only the bank which holds the requested physical page can serve 

a read. However once write requests are serviced faster, read requests will wait less time 

in queue and read performance will also increase.

In order to understand the performance impact of banking and request 

interleaving, we have simulated sample configurations where 1, 2, 4 or 8 flash memory 

banks are attached to a single I/O bus and configured to read/write/erase independently. 

Modular striping is implemented as write policy - if we have a total of x memory banks, 

the Nth write request is assigned to bank number N(mod x). Average disk-request 

response time is reported, as a sum of physical access time (time to read/write data from/

to flash array) and queue wait time. Figures 6.2-4 show the effect of increasing the degree 

of banking on average disk-request response time for various user workloads.

As summarized in table 6.1, one sees significant improvements in both read and 

write request times (75-90%) when the level of banking is increased from 1 to 2. Request 

times can be further improved by 30-50% by increasing the level of interleaving from 2 
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to 4. However, from 4- to 8-way banking, reads and writes start to show different 

performance characteristics. While request times continue to improve for writes; read-

request performance begins to flatten, moving from 4- to 8-way banking. This is 

explained by an increase in the physical access times at high levels of banking due to bus 

contention - especially for low bandwidth 8-bit 25 MHz bus configuration. The more 

banks per channel, the larger degree of bus utilization, to the point of traffic congestion. 

As shown in figure 3.7 in chapter 3, read request timing mostly consists of time spent in 

reading data from flash memory via I/O bus. It is more sensitive to degradation in the I/O 

channel than writes because any congestion in the I/O bus will impact reads more than 

writes. For a typical 4K read request, 90% of the physical access is reading data from 

flash memory through I/O interface. On the other hand, for a typical 4K write request 

only 40% of the physical access is transferring data into flash memory and requires I/O 

bus. Delays in acquiring the I/O bus in a shared bus configuration will have a large 

impact on the read request timing. In our simulations with 8-way banking and low I/O 

84

All requests 1-way 2-way 4-way 8-way

25 MHz I/O 30.56 6.85 4.92 4.68

Reads

25 MHz I/O 15.55 3.01 2.41 2.38

Writes

25 MHz I/O 45.13 10.53 7.31 6.91

Table 6.1: 1-, 2-, 4-, and 8-way banking. Average request service times in milliseconds using a 
shared 8-bit 25 MHz I/O bus.
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Figure 6.2: Single Shared I/O bus, 1-, 2-, 4-, and 8-way banking. Average request service time 
in milliseconds using a shared 8-bit I/O bus for various user workloads is shown. Request times 
improve significantly moving from 1-way to 2-way banking or from 2-way to 4-way banking. 
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Figure 6.4: Writes with single shared I/O bus, 1-, 2-, 4-, and 8-way banking. Average write 
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is 
shown. Request times improve significantly moving from 1-way to 2-way banking or from 2-way 
to 4-way banking. Performance continues to improve when 8-way banking is used. Moreover, 
write request times show very high variation depending on the workload even with a high degree 
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bus bandwidth, we have observed 1.3 milliseconds spent in average on bus arbitration for 

each request. This corresponds to more than 50% of average read request service time. A 

good example is comparing user trace 1 and user trace 7, as trace 1 is read oriented and 

trace 7 is write heavy. With trace 1, moving from 4-way to 8-way banking performance 

improved 4-18% depending on the speed of I/O bus. On the other hand, trace 7 

performance improvement was 15-30% from 4-way to 8-way banking. Read performance 

only improved 2-15% for both traces.

Performance of read requests is critical because the overall system performance 

tracks the disk’s average read response time [40]. Therefore, one does not gain much by 

increasing the level of interleaving from 4 to 8 in a single channel configuration. 

Attaching more banks to a single channel increases the electrical load and may limit the 

maximum clock rate of the I/O bus. More load draws more power. When combined with 

increased access time due to bus contention, more power is drawn for a longer time. 

These factors increase the cost of 8-way banking and a 5-20% performance improvement 

may not be enough to justify the cost increase.

Another good example would be comparing 2-way and 4-way banking and 

analyzing performance improvements with cost and power considerations. If only write 

requests are taken into account, moving from 2-way banking with high speed 100-200 

MHz I/O bus to 4-way banking with a slower 25 MHz I/O bus will always see 

performance improvements. Increasing the load on the I/O channel, but slowing the clock 

rate may result in similar cost and power consumption. However, if we only focus on 
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reads, the same will result in 100% or more performance degradation. Then, one needs to 

consider workload characteristics - is expected usage read oriented or write heavy? 

Additional observations regarding read and write performance are: Write request 

timing show very high variation depending on the workload even with a high degree of 

banking. Asymmetry in read and write timing results in 2-3x scale difference between 

their performances. Load dependent variation in request times and significant difference 

time difference between reads and writes indicate that there is room for further 

improvements by employing various request scheduling techniques and run-time resource 

allocation policies.  

If better performance is aimed by using higher degree of interleaving (higher than 

8-way), more I/O channels may be used to access memory array to support increased 

concurrency. We have simulated configurations with multiple independent flash memory 

banks per channel in combination with multiple independent channels. Various flash 

memory organization simulated are shown in figure 6.5.

As summarized in table 6.2 and shown in figures 6.6-11, using multiple I/O 

channels to connect the same number of memory banks only improves performance when 

I/O bandwidth is low. With a moderate speed I/O channel (50 MHz), increasing the 
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number of I/O channels while keeping the same level of concurrency only results in a 

maximum of 5% performance improvement. This very small increase in performance will 

be costly. Adding more channels will increase the cost of a system as well as its power 

consumption. For typical user workloads, NAND flash memory interface is the limiting 

factor rather than the total system bandwidth. When I/O channels are added, they are idle 

most of the time. On the other hand, system behavior might be different when server 

workloads are used - where one would expect sustained read or write traffic over longer 

periods of time.

90

I/O Rate Number of I/O channels x Number of banks per channel

All 
requests 1 x 1 1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

25 MHz 30.56 6.85 6.41 4.92 3.44 3.35 4.68 3.11 2.8 2.83

50 MHz 25.8 5.64 5.57 2.86 2.81 2.8 2.38 2.29 2.27 2.13

Reads

25 MHz 15.55 3.01 2.59 2.41 1.85 1.75 2.38 1.75 1.63 1.59

50 MHz 11.19 1.52 1.47 0.84 0.8 0.79 0.73 0.69 0.67 0.62

Writes

25 MHz 45.13 10.53 10.08 7.31 4.97 4.89 6.91 4.41 3.93 4.01

50 MHz 39.98 9.58 9.51 4.79 4.74 4.72 3.97 3.82 3.8 3.58

Table 6.2: Request time of Flash SSD Organizations. Average request service time in 
milliseconds using a shared 8-bit I/O bus.



91

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

Access Queue
25 MHz I/O

50 MHz I/O

200 MHz I/O
100 MHz I/O

8 bit I/O bus

23
.9

19
.8
18

.5 18

1 x 1

(a) Trace 1

30
.1

25
.5
24

.6
24

.5

(b) Trace 2

(c) Trace 3

(d) Trace 4

Number of I/O channels x Banks per channel

1 x 2 2 x 1 1 x 4 2 x 2 4 x 1 1 x 8 2 x 4 4 x 2 4 x 4

18
.2

14
.3
13

.2
13

.1

26
.3

22
.2
20

.8
20

.5

Figure 6.6: 1-, 2-, 4-, and 8-way banking with multiple bus configurations. Average request 
service time in milliseconds using a shared 8-bit I/O bus for user workloads 1-4 is shown. Using 
multiple I/O channels to connect the same number of memory banks only improve performance 
when I/O bandwidth is low - 8 bit 25 MHz I/O channel.
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Figure 6.7: 1-, 2-, 4-, and 8-way banking with multiple bus configurations. Average request 
service time in milliseconds using a shared 8-bit I/O bus for user workloads 5-7 is shown. Using 
multiple I/O channels to connect the same number of memory banks only improve performance 
when I/O bandwidth is low - 8 bit 25 MHz I/O channel.
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Figure 6.8: Reads with 1-, 2-, 4-, and 8-way banking and multiple bus configurations. 
Average read request service time in milliseconds using a shared 8-bit I/O bus for user workloads 
1-4 is shown. Using multiple I/O channels to connect the same number of memory banks only 
improve read performance when I/O bandwidth is low - 8 bit 25 MHz I/O channel. Reads benefit 
when a faster I/O bus is used.
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Figure 6.9: Reads with 1-, 2-, 4-, and 8-way banking and multiple bus configurations. 
Average read request service time in milliseconds using a shared 8-bit I/O bus for user workloads 
5-7 is shown. Using multiple I/O channels to connect the same number of memory banks only 
improve read performance when I/O bandwidth is low - 8 bit 25 MHz I/O channel. Reads benefit 
when a faster I/O bus is used.
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Figure 6.10: Writes with 1-, 2-, 4-, and 8-way banking and multiple bus configurations. 
Average write request service time in milliseconds using a shared 8-bit I/O bus for user 
workloads 1-4 is shown. Write performance is more dependent on the total number of memory 
banks and does not change much with the number of I/O channels used to connect to memory 
banks.
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Figure 6.11: Writes with 1-, 2-, 4-, and 8-way banking and multiple bus configurations. 
Average write request service time in milliseconds using a shared 8-bit I/O bus for user 
workloads 5-7 is shown. Write performance is more dependent on the total number of memory 
banks and does not change much with the number of I/O channels used to connect to memory 
banks.



As mentioned, increasing the number if I/O channels only benefit when 

bandwidth is low (8-bit, 25 MHz I/O bus). Although more I/O channels will cost more 

and draw more power, 35% overall performance improvement might justify it in this 

case. On the other hand, one could get close to 50% improved performance if instead a 

higher bandwidth bus is utilized. This demonstrates another design choice where cost and 

power consumption should be weighted in. Several factors such as technology, 

manufacturing costs, pin count, and operating voltage will have an impact. When 

performance/cost is the deciding factor, design with one more I/O channel and 35% better 

performance may be better or worse than a design with a higher bandwidth I/O bus and 

50% better performance.

6.2. Superblocks

Another way to hide write latency in flash memory and to improve both read and write 

performance is ganging blocks across individual flash memory banks to create 

superblocks [57]. In this array organization, individual flash memory banks are combined 

by shared chip-enable, command signals, and I/O signals. Sharing of command signals 

enables merging physical blocks across flash arrays to create designated superblocks. 

This effectively increases the size of available data and cache registers and enables a 

superblock to process a higher volume of data in one step. Figure 6.12 shows a sample 

flash array organization with 4-way superblocks and timing diagram for an 8 KB write 

request.

One advantage of superblocks would be lower pin count due to shared chip-

enable, command signals, and I/O signals. Also there is no need for a bus arbitration logic 
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since all memory banks operate in lock step. One the other hand, flash controller 

complexity will increase to manage blocks across flash memory banks, as each bank must 

be checked independently (for example, compare figures 5 & 6 in [57]. Another 

limitation with superblocks is the fact that blocks are linked together permanently, due to 

the hardwiring of control and I/O pins. If any one of the blocks in a superblock becomes 

bad, all blocks in that superblock are considered unusable, thus reducing available 

storage.

In order to understand the performance impact of superblocks, we have simulated 

sample configurations where 1, 2, 4 or 8 flash memory banks are configured to form 1-, 

2-, 4- or 8-way superblocks and attached to a single I/O bus. Average disk-request 

response time is reported, which is a sum of physical access time (time to read/write data 

from/to flash array) and queue wait time. Figures 6.13-15 show the effect of increasing 

the level of superblocking on average disk-request response time for various user 

workloads.

As summarized in table 6.3, there are significant improvements in both read and 

write request times (80%) when the level of superblocking is increased from 1 to 2. 

Request times may be further improved up to 60% by increasing the level of 
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bus used in example is 8-bit wide and clocked at 25 MHz.



superblocking from 2 to 4. However, from 4- to 8-way superblocks, reads and writes start 

to show different performance characteristics. While request times continue to improve 

for reads; write-request performance improves even more, moving from 4- to 8-way 

banking. This is due to the fact that programming in flash memory takes several times 

longer than reading and superblocking directly attacks this programming latency 

problem. 

At the same time, performance of superblocking is dependent on the speed of I/O 

bus. When I/O bandwidth is low, moving from 4-way to 8-way superblocks hardly 

improves the performance. But when I/O bandwidth is high, performance improvements 

are 50-60%. In order to achieve better performance at high levels of superblocking, one 

also has to increase the bandwidth of the system. Cost and power consumption of higher 
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All requests 1-way 2-way 4-way 8-way

25 MHz I/O 30.56 6.45 4.95 4.91

100 MHz I/O 24.39 4.43 1.49 0.76

Reads

25 MHz I/O 15.55 2.53 2.09 2.07

100 MHz I/O 10.06 0.9 0.35 0.27

Writes

25 MHz I/O 45.13 10.25 7.73 7.68

100 MHz I/O 38.29 7.85 2.59 1.23

Table 6.3: 1-, 2-, 4-, and 8-way superblocks. Average request service time in milliseconds using 
single shared 8-bit I/O bus.
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Figure 6.13: Single I/O bus, 1-, 2-, 4-, and 8-way superblocks. Average request service time in 
milliseconds using a shared 8-bit I/O bus for various user workloads is shown. Request times 
improve significantly when the level of superblocking is increased and I/O bandwidth is high. 
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Figure 6.14: Reads with single I/O bus, 1-, 2-, 4-, and 8-way superblocks. Average read 
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is 
shown. Request times improve significantly when the level of superblocking is increased and I/O 
bandwidth is high.
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Figure 6.15: Writes with single I/O bus, 1-, 2-, 4-, and 8-way superblocks. Average write 
request service time in milliseconds using a shared 8-bit I/O bus for various user workloads is 
shown. Request times improve significantly when the level of superblocking is increased and I/O 
bandwidth is high.



bandwidth I/O channels should be added to the cost of higher controller complexity, 

increasing the overall cost of superblocking.

High variation on write request performance (depending on the workload) and the 

2-3x scale difference between read and write performance continue to be the case for 

superblocks as well. These indicate that it is possible to further improve system 

performance by employing various scheduling techniques and run-time resource 

allocation policies. Also, as shown in figure 6.13, requests spend a significant portion of 

time waiting in queue even with high levels of superblocking. One way to reduce queue 

times may be combining superblocks with banking and request interleaving.

6.3. Concurrency: Banking vs. Superblocks

Superblocks and request interleaving are methods that exploit concurrency at device- and 

system-level to significantly improve performance. These system- and device-level 

concurrency mechanisms are, to a significant degree, orthogonal: that is, the performance 

increase due to one does not come at the expense of the other, as each exploits a different 

facet of concurrency exhibited within the PC workload. One can formulate concurrency 

as “number of banks times superblocking within a bank”.

Banking and request interleaving exploits concurrency at system-level by treating 

flash memory banks as individual flash devices. As shown in section 6.1; by 

accommodating interleaved organizations, one can achieve significant levels of 

concurrency in an SSD without changing its overall size and shape. If we consider the 

anatomy of an I/O, banking and request interleaving improves performance by reducing 

queueing times. If more banks are available in the system, more requests can be 
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dispatched to these banks and each request will wait less time in queue. Although 

physical access times should not change by the level of banking in theory, there will be 

additional overheads when multiple independent banks share a limited system bandwidth.

Superblocks enable simultaneous read or write of multiple pages within a flash 

device or even across different flash dies [57]. By exploiting concurrency at the device 

level, one can effectively double NAND flash memory read and write bandwidth. If we 

consider anatomy of an I/O, superblocking improves performance by reducing physical 

access times. As the level of superblocking increases, read and write request access times 

improve.

The obvious question is which of these concurrency techniques is better? In order 

to answer this question, we have simulated different SSD organizations at different levels 

of concurrency. Variables in this space include bus organizations (widths, speeds, etc), 

banking strategies, and superblocking methods. We have simulated concurrency levels of 

2, 4, 8 and 16. Within each level, we exploited concurrency by banking, by 

superblocking ,or by a combination of two. For example; concurrency of 4 can be 

achieved by connecting 4 individual memory banks, or 1 memory bank using 4-way 

superblocking, or connecting 2 individual memory banks, each of which use 2-way 

superblocking. Single I/O bus at 25, 50, 100 and 200 MHz is used. Average disk-request 

response time is reported, which is a sum of physical access time (time to read/write data 

from/to flash array) and queue wait time.
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As summarized in table 6.4 and shown in figures 6.16-21, increasing concurrency 

by means of either superblocking or banking results in different performance depending 

on the system bandwidth.

For low bandwidth systems (8 bit 25 MHz I/O bus) increasing concurrency 

beyond 4 (4 banks, 2 banks with 2-way superblocking each, or one bank with 4-way 

superblocking) does not result in any further performance gains. When the level of 

concurrency is 4 or more, all configurations of banking and superblocks perform within 

7% of each other. This proves that at 25 MBps the storage system is limited by I/O 
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I/O 
Rate Concurrency = Number of Banks x Superblocks

All 
Req. 2x1 1x2 4x1 2x2 1x4 8x1 2x4 4x2 1x8 8x2 4x4 2x8 1x16

25 
MHz 6.85 6.45 4.92 4.56 4.95 4.68 4.37 4.29 4.91 4.27 4.48 4.39 4.89

100 
MHz 5.34 4.43 2.67 1.77 1.49 2.16 1.24 0.84 0.76 1.13 0.72 0.66 0.67

Read

25 
MHz 3.01 2.53 2.41 2.28 2.09 2.38 2.17 2.17 2.07 2.15 2.26 2.17 2.06

100 
MHz 1.2 0.9 0.58 0.4 0.35 0.47 0.32 0.29 0.27 0.3 0.27 0.27 0.27

Write

25 
MHz 10.5 10.3 7.31 6.75 7.73 6.91 6.48 6.31 7.68 6.31 6.61 6.5 7.66

100 
MHz 9.31 7.85 4.68 3.09 2.59 3.79 2.13 1.37 1.23 1.92 1.16 1.04 1.07

Table 6.4: Request time of Flash SSD Organizations. Average request service time in 
milliseconds using 8-bit I/O bus.
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Figure 6.16: 2, 4, 8, and 16 level concurrency. Average request service time in milliseconds 
using a shared 8-bit I/O bus for user workloads 1-4 is shown. Concurrency is defined as “Number 
of Banks x Level of Superblocking per Bank”. For low bandwidth systems, increasing 
concurrency beyond 4 does not result in any further performance improvements.
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Figure 6.17: 2, 4, 8, and 16 level concurrency. Average request service time in milliseconds 
using a shared 8-bit I/O bus for user workloads 5-7 is shown. Concurrency is defined as “Number 
of Banks x Level of Superblocking per Bank”. For low bandwidth systems, increasing 
concurrency beyond 4 does not result in any further performance improvements.
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defined as “Number of Banks x Level of Superblocking per Bank”.
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bandwidth. However, if one has to operate at low bandwidth either for cost cutting or 

power saving purposes, choosing a configuration heavily depends on the user workload. 

If overall request time is used as the performance metric, often times a configuration 

which uses a combination of banking and superblocking is ideal. For example; when the 

concurrency level is 8, in all traces except user trace 7, 8-way banking and 8-way 

superblocking perform slower than 2-way banking with 4 superblocks or 4-way banking 

with 2 superblocks. If read and write performance is evaluated individually, reads favor 

higher levels of superblocking. This is explained by the lesser probability of I/O bus 

contention. Since all memory blocks in a superblock operate in synch, there is no 

additional time spent in bus arbitration. Writes follow the same overall trend that 

combining banking and superblocking is more effective than only banking or only 

superblocking. This conclusion is counter intuitive. Superblocking especially improves 

write throughput by exploiting concurrency at device level. Therefore one would expect 

writes to benefit most from a configuration which uses a higher degree of superblocking. 

This is explained by the nature of user requests. As shown in chapter 5, in a typical user 

workload most writes are 4 or 8 Kbytes in size. With 2- and 4-way superblocking, data 

and cache registers are 4 and 8 Kbytes in size as well, thus fitting the request size. An 8 

Kbytes write request will not benefit as much from 8-way or 16-way superblocking as it 

will underutilize data and cache registers. Such requests may be served faster when there 

are two memory banks each of which employing 4-way superblocks rather than when 

there is single memory bank with 8-way superblocking.
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For high bandwidth systems (100 MBps and higher) increasing concurrency 

always improves performance. Also within a fixed level of concurrency, configuration 

with the highest degree of superblocking always performs better. This proves that the real 

limitation to NAND flash memory performance is its core interface. Exploiting 

concurrency at system level by banking and request living can workaround this limitation 

to an extent. Best performance is achieved when NAND interface performance is 

improved.

6.4. Media Transfer Rate

One of the factors limiting flash memory performance is considered to be its media 

transfer rate. In current flash memory devices, 8-bit 33 MHz I/O buses are common. As 

HDDs with 7200, 10K or 15K RPM are popular, and disk interface speeds are scaling up 

with serial interface and fiber channel, NAND flash SSD’s performance is expected to be 

limited by its media transfer rate.

Open NAND Flash Interface (ONFI) is an industry workgroup dedicated to 

NAND flash memory integration into consumer electronic products by resolving 

compatibility and interoperability of NAND devices from different vendors. ONFI is 

made of more than 80 companies, including  Hynix, Micron, Intel, Sony, Hitachi, and 

Kingston [67]. One of the new features of ONFI 2.1 is 166 and 200 MBps interface speed 

as an improvement over legacy NAND bus. Source synchronous DDR interface is used to 

achieve speeds up to 133 MBps with ONFI 2.0 and 166 MBps and higher with ONFI 2.1.

The impact of NAND I/O bus speed may be best observed in the context of 

sustainable read speed. Often times for storage systems, sustainable read and write 
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performance is considered as the performance metric. One of the popular file system 

benchmarks used to measure Unix file system performance is Bonnie [10]. Bonnie 

benchmark tests the performance of reading 100 Mbytes file. If we consider reading a file 

of 100 Mbytes in flash, this will correspond to reading 51200 pages of 2 Kbyte each. 

Considering read cache mode - as explained in chapter 3.3.2 - it will take 25 µs + 51200 * 

3 µs + 2048 * 51200 * T(I/O bus). If 33 MBps I/O bus is used, the result is 3.3 seconds. If 

133 MBps I/O bus is used, the result is 0.9 seconds, 73% faster. In both cases, more than 

95% of the time is spent in data transfer through I/O bus.

In order to find the impact of the media transfer rate on performance, we have 

simulated different SSD organizations with different I/O bus speeds. We have simulated 

I/O rates of 25, 50, 100, 200 an 400 MBps with 2-, 4-, 8-way banking or superblocks. 

Average disk-request response time is reported, which is a sum of physical access time 

(time to read/write data from/to flash array) and queue wait time. Figures 6.22-24 

illustrate average disk-request response time, average read time, and average write time 

for various user workloads.

In all storage system configurations, performance does not improve significantly 

beyond 100 MBps. This can be explained by the nature of user workloads. In a typical PC 

user workload, read and write requests are random, 4 to 8 KB in size with a read to write 

ration of approximately 50:50. With such workloads, random read and write performance 

dominates rather than sustainable throughput. For example, reading and writing of a large 

file such as 100 Mbytes file used in Bonnie benchmark is observed in less than 1% of the 

time.
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For typical PC user workloads, the real limitation to NAND flash memory 

performance is not its low media transfer rate but its core interface. The random nature of 

workloads and small request sizes are the two main factors. If server workloads are 

considered, the impact of the media transfer rate can be of great importance. Server 

workloads often times read and write in large sizes. And sustainable throughput is one of 

the key metrics in reporting server performance. It is possible to observe slightly different 

results with different workload timings. If a workload is sped up by compressing inter-

arrival times, one may see performance improvements beyond 100 MBps. For typical 

user workloads bus idle times dominate which in return underestimates performance 

improvements due to increased bus speed. As discussed, source synchronous DDR 

interface can be used to achieve speeds up to 200 MBps and possibly further. Moreover 

there are new flash memory architectures proposed which can achieve speeds 

considerably higher than 200 MBps by using ring style organizations. For example, 

HLNAND is one company whose NAND flash memory architecture uses up to 255 flash 

memory banks connected  in a daisy-chain cascade. This architecture can run at speeds of 

up to 800 MBps [37]. 

6.5. System Bandwidth and Concurrency

As we have showed previously, flash memory performance can be improved significantly 

if request latency is reduced by dividing the flash array into independent banks and 

utilizing concurrency. The flash controller can support these concurrent requests through 

multiple flash memory banks via the same channel or through multiple independent 

channels to different banks, or a combination of the two. This is equivalent to saying, “I 
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have 4 flash memory banks, how should I connect them? Should I use four 50 MHz 8-bit 

I/O channels, should I gang them together for a 32-bit I/O channel? Should I use faster or 

wider I/O? What should I do?”.

To answer these questions, we have simulated a sample configuration with 4 flash 

memory banks and with various I/O channel configurations which provide total I/O 

bandwidths ranging from 25 MBps to 1.6 GBps. Figure 6.25 shows sample organizations 

used to connect 4 flash memory banks. While keeping the total number of memory banks 

constant at 4, we have simulated I/O channel widths of 8, 16, and 32 bits with I/O bus 

speeds of 25, 50, 100 MHz - the total I/O bandwidth ranging from 25 MBps (single 8-bit 

I/O bus at 25 MHz) to 1.6 GBps (4 dedicated 32-bit I/O buses at 100 MHz each). Total I/

O bandwidth is calculated as “number of I/O channels x bus width x bus speed”. The 

simulation results for various user workloads are shown in Figures 6.26-31. Average disk-

request response time, which is a sum of physical access time (time to read/write data 

from/to flash array) and queue wait time, average read time, and average write time are 

reported.
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Figure 6.28: Reads - System Bandwidth. Average read request service time in milliseconds with 
changing system bandwidth for user workloads 1-4 is shown. Reads prefer faster I/O bus.
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Figure 6.29: Reads - System Bandwidth. Average read request service time in milliseconds with 
changing system bandwidth for user workloads 5-7 is shown. Reads prefer faster I/O bus.
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Figure 6.30: Writes - System Bandwidth. Average write request service time in milliseconds 
with changing system bandwidth for user workloads 1-4 is shown. So long as the total number of 
memory banks is constant, write performance does not change by connecting them differently.
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Figure 6.31: Writes - System Bandwidth. Average write request service time in milliseconds 
with changing system bandwidth for user workloads 5-7 is shown. So long as the total number of 
memory banks is constant, write performance does not change by connecting them differently.



One of the first observations is that overall performance does not change much 

beyond 200 MBps. In other words, if 4 flash memory banks are provided with the total 

bandwidth of more than 200 MBps, it does not matter how these memory banks are 

connected - single wide bus, dedicated bus, or multiple shared buses. This is expected as 

explained earlier. For typical PC user workloads, the real limitation to NAND flash 

memory performance is its core interface. As long as the system is provided with 

sufficient bandwidth, the performance will not improve any further unless more flash 

memory banks are added to the storage system.

For low bandwidth configurations - 25, 50 and 100 MBps - overall request service 

time changes within 15-20% if memory banks are connected differently. For some 

workloads, such as user trace 6, change in overall request times are even greater, 30-40%.  

For example; rather than connecting 4 memory banks with 4 dedicated channels (4 

channels x 8-bit x 25 MHz), one can achieve better performance if 4 I/O channels are 

ganged together to form a single wide I/O bus (1 channel x 32 bit x 25 MHz) - 

summarized in table 6.5. The cost of doing so may not be very high since the total 

number of pins on the flash controller side will be the same and only the number of pins 
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No of Channels x Bus Width x Bus Speed All requests Reads Writes

4 x 8 x 25 (100 MBps) 3.35 1.75 4.89

1 x 32 x 25 (100 MBps) 2.67 0.58 4.68

Table 6.5: 50 and 100 MBps Total I/O Bandwidth. Average request service time in 
milliseconds using a various interconnect configurations. Bus widths are in bits and bus speeds 
are in MHz.



on flash memory banks need to be increased. Load on the bus will be higher, which can 

slightly increase power consumption. Each memory bank now has to drive 32 pins rather 

than 8 pins. However, cost due to pin count increase may be eliminated if memory banks 

are tied together using superblocking as explained earlier. This way pin counts on each 

flash memory bank may be kept constant at 8. Another possibility would be using a 

narrower but faster bus - instead of using 32 bit bus at 25 MHz, using a 100 MHz 8-bit 

bus. Of course a faster bus will consume more power, but the options are available to 

choose between cost increase due to pin count and cost increase due to power 

consumption.

For read requests performance improvements are even higher. For example; rather 

than connecting 4 memory banks with 4 dedicated channels (4 channels x 8-bit x 25 

MHz), one can cut read request times by 3 if 4 I/O channels are replaced by a single fast 

narrow I/O bus. Keep in mind that if more than 4 memory banks share a single I/O bus, 

read performance starts to deteriorate due to bus contention - as explained in section 6.1. 

This provides a challenge for system designers. On the one hand, overall system 

performance tracks average read response time and reads prefer faster channels. If the 

total system bandwidth is constant as a design requirement, then it is better if memory 

banks are connected using a shared, fast and narrow bus. But loading a single bus with 

more than 4 banks has a negative impact on read performance.

Write performance is heavily dependent on the number of available memory 

banks as explained earlier. As long as the total number of memory banks is constant, 

write performance is not expected to improve by connecting them differently. Figures 

127



6.30-31 show that write performance does not change since the total number of memory 

banks is kept constant at 4.

6.6. Improving I/O Access

In chapter 6.1, we have showed that by increasing the level of banking and request 

interleaving one can improve performance significantly. However, one of the 

observations made was that as more banks are attached to a single I/O bus, read 

performance does not improve as much as write performance. This was due to an increase 

in the physical access times at high levels of banking. For low bandwidth shared I/O bus 

configurations, as more banks are connected I/O bus utilization increases to the point of 

traffic congestion. Delays in acquiring I/O bus in a shared bus configuration increases 

physical access times. Since read request timing mostly consists of time spent in reading 

data from flash memory via I/O bus; any congestion in the I/O bus impacts reads more 

than writes.

To improve I/O bus utilization, we suggest two device level optimizations. The 

optimizations target reducing delays in acquiring I/O bus for reads. As we mentioned 

earlier, performance of read requests is critical since overall system performance tracks 

the disk’s average read response time [40].

When the timing of read and write requests is analyzed, shown in figure 3.7 in 

chapter 3, it is seen that data is transferred over I/O bus in bursts of 2 KB. This is due to 

data/cache register sizes being the same as page size in flash memory. Typical page size is 

2 KB, as well as the size of data and cache registers. Therefore flash controller can only 

transfer data from/to a single flash memory bank in bursts of 2 KB. In a shared bus 
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configuration, flash memory bank has to acquire access to the bus for every 2 KB burst. 

Of course this assumes that bus is released any time it is not needed, which is typical in 

true resource sharing.

One way to reduce congestion in I/O bus is to reduce the number of bus access 

requests. If data can be transferred from/to flash memory array in bursts of larger than 2 

KB, then there will be less requests for bus access. Once I/O bus is acquired, more data 

can be transferred before it is released. By increasing cache register size to more than 2 

KB, one can increase data burst size. Figure 6.32 shows memory bank configurations 

with 2 KB cache register size and 8 KB cache register size. Timing of a sample 8 KB 

write request is also shown to display the change in I/O access. When cache size is 2 KB, 

data is written into the cache register in chunks of 2 KB and access to I/O bus is 

requested for each transfer - 4 I/O bus access requests for 8 KB write request. If the cache 

register size is increased to 8 KB - 4 pages of 2 KB each - then all data for the sample 

write request can be transferred in one burst. Access to I/O bus is requested only one 

time. Note than programming time does not change because data has to be written into 

flash memory one page at a time through the data register. The cache register only buffers 

data in advance as its name suggests. Moreover, read request timing will not change 

either. Even when the cache register size is increased, read requests will transfer data in 

bursts of 2 KB as flash memory reads data one page at a time. For read requests it is 

possible to buffer all pages of a request and transfer them over I/O bus in a single burst. 

However, holding data  in the cache register until all pages are read from the memory 
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array will have a negative impact on the performance of reads - and on the overall system 

performance. 

In order to gage the impact of increasing cache register size on performance, we 

have simulated a shared bus configuration with 2, 4, and 8 memory banks and cache 

register sizes of 2, 4, 8, and 16 KB. We have also increased the I/O bus speed from 25 

MHz to 400 MHz for each configuration.
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Increasing cache register and data burst size does not impact the performance for 

high speed I/O bus configurations. At high I/O bus speeds, time spent on transferring data 

over this channel is only a small portion. Most of the time spent for each access is 

physical access time - reading data from flash memory or writing data into flash memory.

For low speed I/O bus configurations, increasing cache register size does improve 

performance, especially for configurations when 8 memory banks share a single I/O bus. 

Figures 6.33-35 show an average read, write request response time, and overall response 

time for  each configuration simulated. Depending on the workload, read performance 

improves 10-15% with increased cache size. The best performance is achieved when the 

cache register size is 4 KB. Since most of the requests in typical user workloads are 4 and 

8 KB in size, a cache register matching typical request size provides the optimum design 

point. Although performance of write requests degrade with increasing cache register 

size, overall system performance will follow read request performance. The cost of 

increasing the cache register size should not be high either because no change in the flash 

interface is required.

Another optimization to improve I/O bus access is using different bus access 

heuristics for reads and writes. In a typical shared resource configuration, each 

component requests access for the resource when needed and releases it when it is not 

needed. However, considering the timing of a read or write request for NAND flash 

memory interface (figure 3.7 in chapter 3) ,data transfer is not continuous. Data is 

transferred from/to flash memory in bursts of 2 KB. Anytime 2 KB data is transferred 

from the cache register to the data register, access to I/O bus is not required and it can be 

released if another memory bank requests it. Only after a short period of time, memory 

bank releasing the bus will request it again. Figure 6.36a illustrates the timing of an 8 KB 

131



132

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8
Access Queue

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8

0

2

4

6

8

R
es

p
o
n

se
 T

im
e 

(m
s)

0

2

4

6

8

10
.1 10

.2
10

.3

19
.3

19
.2

19
.3
19

.5
12

.4
12

.5
12

.7
10

.3
10

.4
10

.8

8-bit 25 MHz I/O

2 KB
4 KB

8 KB
16 KB

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Register Size

2 
B
an

ks

4 
B
an

ks

8 
B
an

ks

8-bit 50 MHz I/O

18 17
.9

8.4

Figure 6.33: Increasing Cache Register Size. Average request service time in milliseconds with 
increasing cache register size.



133

0

1

2

3

4

R
es

p
o
n

se
 T

im
e 

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e 

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e 

(m
s)

0

1

2

3

4

0

1

2

3

4

R
es

p
o
n

se
 T

im
e 

(m
s)

0

1

2

3

4

6.5 6.4 6.5

4.4 4.3 4.4 4.1 4.1

8-bit 25 MHz I/O

2 KB
4 KB

8 KB
16 KB

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Register Size

2 
B
an

ks

4 
B
an

ks

8 
B
an

ks

8-bit 50 MHz I/O

5.4 5.2 5.4 5.4 4.9 5.2

Figure 6.34: Reads with Increasing Cache Register Size. Average read request service time in 
milliseconds with increasing cache register size. Best performance is achieved when cache 
register size is 4 KB.



134

p
ro

 F
it T

R
IA

L
 v

e
rs

io
n

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e 

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e 

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e 

(m
s)

0

3

6

9

12

0

3

6

9

12

R
es

p
o
n

se
 T

im
e 

(m
s)

14
.1

14
.3

14
.4

27 26
.8

27
.3

8-bit 25 MHz I/O

2 KB
4 KB

8 KB
16 KB

(a) Trace 1 (b) Trace 2

(c) Trace 3 (d) Trace 4

(e) Trace 5 (f) Trace 6

(g) Trace 7 (h) Aggregate

Register Size

2 
B
an

ks

4 
B
an

ks

8 
B
an

ks

8-bit 50 MHz I/O

12
.3

11
.8

11
.9

12
.1

16
.6 16

.7
17 13

.5
13

.6
14

.2
26

.1

11
.9

Figure 6.35: Write with Increasing Cache Register Size. Average write request service time in 
milliseconds with increasing cache register size.



135

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array

Xfer from data to 
cache register

Subsequent page is 
accessed while 
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Cmd

5 cycles
0.2 us

3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Xfer from cache to 
data register

Page is programmed 
while data for 
subsequent page is read200 us

Write 8 KB
(4 Pages)

Addr DI0 DI1 DI2 DI3

Pr0 Pr1 Pr2 Pr3

Access to I/O bus is not needed for 3 us and bus 
can be released if another memory bank asks for it. 
However, at the end of 3 us, it has to be acquired 
again.

Writes do not need I/O access as frequently as 
reads. I/O bus access is required between 
programming pages - 200us

(a) Release bus when it is not needed

Cmd Addr

5 cycles
0.2 us

25 us 3 us

2048 cycles
81.92 us

I/O [7:0]

R/W

Read page from 
memory array

Xfer from data to 
cache register

Subsequent page is 
accessed while 
data is read out

Read 8 KB
(4 Pages)

Rd0 Rd1 Rd2 Rd3

DO0 DO1 DO2 DO3

Hold I/O bus between data burst even if it is not needed

(b) Reads hold bus during entire data transfer

Figure 6.36: I/O Bus Access Timing. (a) Timing of read and write requests, access to I/O bus is 
released when it is not needed. (b) Timing for read requests with hold bus during entire data 
transfer access policy.



read request. If after page 0 is transferred, another memory bank requests I/O access, bus 

will be released as it is not used while page 1 is copied from data to cache register. After 

3 µs, access to I/O will be needed to transfer page 1. In a shared I/O bus configuration, 

the timing of a read request may be interrupted several times. The same is true for writes. 

However, as the timing of writes is dominated by page programming, access to I/O bus is 

not required as frequently as reads. For read requests it is better to guarantee 

uninterrupted I/O bus access during the entire data transfer.

We have simulated a shared bus configuration with 2, 4, and 8 memory banks and 

with I/O bus speeds of 25 MHz to 400 MHz. For each configuration we have tested two 

different I/O access policies. The yypical case simulates a true shared resource policy. I/O 

bus is released whenever it is not needed. In our proposed policy, I/O bus is held during 

the entire read data transfer time; and when servicing writes, I/O bus is released 

whenever it is not needed. Figures 6.37-39 show average read, write request response 

time and overall response time for  each policy simulated.

For high speed I/O bus configurations the difference between two policies is 

negligible. However for slow I/O buses - 25 MHz - read performance improves 5-10% on 

average when the I/O access policy is “hold bus during entire read request”. Depending 

on user workloads and the number of memory banks sharing I/O bus, read performance 

can be improved up to 20% if read requests hold I/O bus during the entire data transfer. 

Although average disk request times and average write request times show 2-5% 

degradation, overall system performance will trace read request performance. The cost of 

implementing this policy change will not be high since no changes to flash interface is 
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required.

6.7. Request Scheduling

One of the classic problems with disk drives have been command queuing and 

scheduling. In a typical storage system, the host sends a batch of I/O requests to the disk 

drive and waits for them to be serviced. One way to service these requests is using a first 

come first serve policy (FCFS). However, if the disk drive is given flexibility to decide a 

more efficient order to serve these requests, performance of the storage system can be 

improved. This has been the rationale behind various queuing and request reordering 

policies implemented in today’s conventional hard disk drives.

In conventional hard disks, majority of the time spent in serving an I/O request is 

seek time - time to move read/write head from its current location to the target location. 

Therefore, majority of disk scheduling algorithms are based on reducing seek time. 

Among I/O requests in the queue, ones whose target location is closer to read/write heads 

current location are served first. One of the most common disk algorithms based on this 

principle is Shortest Seek Time First (SSTF). Since SSTF algorithm is a greedy 

algorithm, it has a tendency of starvation. Another algorithm that is based on minimizing 

seek time is LOOK (aka Elevator Seek, SCAN) algorithm. In this algorithm, read/write 

head moves from one end of the disk to the other end and serves requests along the way. 

Both of these algorithms were developed when seek time was the dominant component of  

the total I/O request service time. Modern disk drives have improved significantly in their 

seek times. Although seek time is still a big component of the total request service time, 

physical access time is currently considered as the main component of servicing an I/O 
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request. Physical access time includes both seek time and rotational latency. Thus 

scheduling algorithms based on shortest access time are common among modern disk 

drives. Shortest Access Time First (SATF) is one such algorithm where the request with 

the minimum access time is serviced first.

Different than conventional hard disk drives, flash memory solid-state disks do 

not have any mechanical components as mentioned before. Therefore, there is no concept 

of seek time or rotation latency for flash memory disks. For solid-state disks, one cannot 

differentiate between different I/O requests in queue by comparing their address 

information. Accessing any location within flash memory has the same cost of loading a 

page. On the other hand, for flash solid-state disks the dominant factor in overall request 

service time is time spent in NAND flash interface as mentioned before. Moreover, flash 

interface timing is very different between reads and writes. There is a scale difference 

between reading a page from the flash memory array, 25 µs, and writing a page to the 

flash memory, 200 µs. We have also observed in all our previous results that; there is a 

big difference between average read times and average write times. For NAND flash 

solid-state disks, two factors are dominant in the overall request service time: request 

type (read or write) and request size. If a request requires reading or writing several 

pages, its service time will be proportional to the number of pages accessed.

In order to serve I/O requests more efficiently and improve solid-state disk 

performance, we suggest 4 different request scheduling policies designed for flash 

memory. All 4 of these request schedules are based on the fundamental idea of “servicing 

the request which will take the shortest time first”.
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Schedule 1 - Read Priority (RP): This request scheduling policy is based on two 

facts. First; there is a big scale difference between read times and writes times for flash 

memory. Typically reads will almost always take a shorter time to serve than writes - for 

a typical 4K and 8K request. Second; overall system performance tracks disk’s average 

read response time [40]. In this policy, read requests are always serviced  before any 

write request. In other words, reads have a higher priority over writes.

Schedule 2 - Shortest Request First, First Come First Serve on Ties (SRF - FCT): 

This request scheduling policy is based on the fact that NAND flash interface is the 

dominant factor in request response time. A request which reads or writes the least 

number of pages (shortest request) will be serviced first. On the other hand, typical user 

workloads consist of 4K or 8K requests. Request sizes do not show high variation. 

Therefore, there will be plenty of requests in queue which are of identical size. In such tie 

situations, FCFS policy is observed.

Schedule 3 - Shortest Request First, Read Priority on Ties (SRF - RPT): This 

request scheduling policy is same as schedule 2 but uses read priority algorithm on ties. If 

there are two requests of equal size but different types, reads have a higher priority over 

writes.

Schedule 4 - Weighted Shortest Request First (WSRF): This scheduling policy is a 

variation of schedule 2. In addition to request size, it also factors in the flash interface 

timing difference between reads and writes. For flash memory, typical page read time is 

25 µs and typical page program time is 200 µs. There is an 8x scale difference between 

reads and writes. In this schedule, request sizes are weighted according to request type. 
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The sizes of write requests are multiplied by 8 and then compared. For example, between 

8K read and 4K write request read request will be serviced first. A 4K write request will 

be considered equivalent to a 32K read request.

In order to gage the performance impact of these request scheduling algorithms, 

we have simulated these algorithms using a single bank flash memory configuration.  

Although multiple bank configurations improve performance significantly, using a single 

bank will generate long enough request queues, which will in turn make it easier to 

measure the performance impact of these request scheduling algorithms. Also I/O bus 

speed has a limited impact on read performance as explained earlier. Therefore, we have 

also increased I/O bus speed from 25 MHz to 400 MHz to incorporate I/O bus speed as a 

factor. Figures 6.40-42 show average read, write request response time and overall 

response time for each policy simulated. We have assumed FCFS scheduling policy as 

the baseline.

When reads are given priority over writes, their performance improves 

significantly, by 60-80%. This performance improvement on reads only comes at a small  

cost to writes - a write performance degradation of roughly 5%. Although overall request 

time improves by 15-20%, user perceived performance will track bigger improvements 

on read time. Another observation is that one can achieve read performance of 2 or 4 

banks by using a single bank with read priority as a scheduling algorithm. In designs 

where increasing the numbers memory banks is costly either due to increased pin count 

or power consumption, implementing read priority at the driver level can be a cost 

effective solution to providing similar read performance.
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When some form of shortest request first scheduling algorithm is used, 

performance improvements can be even bigger. Average request time improves 50-60% 

when the shortest requests are serviced first. Moreover, both reads and writes benefit 

from using these scheduling policies. Although SRF-FCT and SRF-RPT algorithms do 

not perform as well as RP if reads are considered, WSRF algorithm provides a great 

balance between reads and writes. Its read performance is almost as good as RP, at the 

same time it also improves writes significantly.

In addition to a single bank flash memory configuration, we have also simulated a 

4 channel, 16 banks (4 banks per I/O channel) flash memory configuration. Due to higher 

concurrency, queue times in this configuration were less than 1 ms and not one of these 

scheduling algorithms had an impact. It is observed that, for any configuration and user 

workload where queue times are less than 1-2 ms, scheduling policies become obsolete. 

On the contrary, if server workloads are used rather than PC user workloads, one can 

expect even higher improvements using these algorithms. Server workloads will be much 

heavier than typical user workloads and will result in a longer queue length. Thus a 

greater possibility of request re-ordering.

One of the side effects of any greedy request scheduling algorithm is that some I/

O requests may end up waiting in queue for an unduly long time. This is often referred to 

as starvation. For the request scheduling algorithms we have proposed here, very large 

write requests are prone to starvation.

Table 6.6 shows queue time distribution for user workload 1. This workload can 

be considered as read heavy, as its read to write ratio is 60:40. It is slightly biased 
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towards reads as requests in user workloads generally are partitioned 50:50 between reads 

and writes. If user workload 1 is run with a single bank, 8 bit, 25 MHz I/O configuration 

with FCFS scheduling policy, the average queue time for any request is 22.39 ms and the 

maximum queue length is 544 requests. If we exclude requests which did not experience 

any queue time, 47.5% of the requests spent less than 1 ms in the queue. The maximum 

time spent in queue is 1086.77 ms. 33 requests spent more than 1000 ms waiting in the 

queue. One observation is that, when proposed scheduling algorithms are used number of 

requests in [10, 100) and [100, 1000) buckets decreased considerably. Bucket [a, b) 

represents the number of requests which spent larger than a, less than b time waiting in 

the queue. On the other hand, the impacts of starvation can be observed as well. With any 

shortest request first type algorithm, the maximum queue time is increased by 3 times. 
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Queue Statistics FCFS RP SRF-FCT SRF-RPT WSRF

Avg. Queue Time (ms) 22.39 19.49 7.29 7.15 7.13

Max. Queue Length 544 541 120 120 118

Queue Time Distribution

(0, 1) 24709 25342 29504 29960 29571

[1, 10) 13016 13380 14626 14054 14620

[10, 100) 9491 9116 6393 6332 6334

[100, 1000) 4731 3875 1001 966 954

[1000, Max] 33 179 104 118 121

Max. Queue Time (ms) 1086.77 1219.58 3322.02 3322.02 3333.36

Table 6.6: User Workload 1 (Read Biased) Queue Statistics. Queue wait time distribution for 
user workload 1 (read biased workload).



Also the number of requests in the [1000, Max] bucket also increased substantially. For 

example, there were only 33 requests which spent between [1000, 1086.77] ms waiting in 

the queue with FCFS. However, there are 121 requests which spent between [1000, 

3333,36] ms in the queue with WSRF. It is important to note that these 121 requests only 

represent 0.12% of all requests  in the workload and they are almost always are write 

requests.

Let’s look at queue time distribution for a different workload. Table 6.7 shows 

queue time distribution for user workload 7. This workload can be considered as write 

heavy, as its read to write ratio is 35:65. When FCFS scheduling policy is used, the 

maximum queue time is 1320.86 ms and there are 18 requests which spent between 

[1000, 1320.86] ms in the queue. However, if the scheduling policy is changed, the 
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Queue Statistics FCFS RP SRF-FCT SRF-RPT WSRF

Avg. Queue Time (ms) 61.66 58.71 18.31 18.31 18.31

Max. Queue Length 110 110 82 82 82

Queue Time Distribution

(0, 1) 3678 3716 4669 4657 4676

[1, 10) 4547 4554 4662 4621 4658

[10, 100) 3518 3621 5090 5083 5088

[100, 1000) 3514 3374 774 778 773

[1000, Max] 18 7 7 7 7

Max. Queue Time (ms) 1320.86 1309.28 1237.68 1237.31 1237.31

Table 6.7: User Workload 7 (Write Biased) Queue Statistics. Queue wait time distribution for 
user workload 7 (write biased workload).



maximum queue time decreases and there are less requests whose queue time is larger 

than 1000 ms. Our simulations did not observe starvation in a write heavy workload.

With our scheduling algorithms, some kind of aging algorithm may be put in 

place to prevent possible starvation. If a request spends more than a pre-determined time 

in queue, it’s priority may be increased and it may be moved to the front of the queue. As 

mentioned mostly writes are prone to possible starvation. From an end user perspective, a 

write request waiting in the queue for an extended period of time is not of much 

importance. Already all modern disk drives implement read hit on write requests while 

they are waiting in the queue. Unless there is a sudden power loss these write requests 

will not be lost and it does not matter from a caching perspective if these writes are 

indeed written to physical media or waiting on the queue. And user perceived 

performance is dependent on read requests. As long as the possibility of starvation on a 

read request is near zero, time limits on aging can be relaxed as much as possible. Or may  

be not implemented at all. When flash memory is used in a USB drive, the possibility of 

sudden power loss is a reality and the amount of disk cache is very limited or does not 

exists at all for cost reasons. However, flash memory solid-state disks operate within the 

host system and sudden power loss is not much of a concern. They are equipped with a 

disk cache component much like conventional hard disk drives.

In addition to these various scheduling algorithms, we have also implemented 

modular striping as default write scheduling algorithm in our simulations. If there are a 

total of x memory banks, the Nth write request is assigned to bank number N(mod x) by 

default. Flash memory has a relatively long write (program) latency but flash memory 
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array also consists of multiple banks. Since we allocate a newly erased page for each 

write request, choosing a memory bank for each write and an empty page within that 

bank becomes a run-time decision of resource allocation. By distributing sequential 

writes among flash memory banks, we can hide write (program) latency. Striping is a 

typical RAID 0 based scheduling policy used extensively in the disk community to 

distribute data across several disks for better performance. Therefore, we have assumed 

modular striping for write requests as a logical choice to utilize available parallelism 

within flash memory array. The simplicity of this approach also provides a proficient 

design choice as it adds almost no additional complexity to flash controller.

Table 6.8 and 6.9 illustrate total number of pages read from and written into each 

memory bank in a 16 bank flash memory array configuration for each user workload. 

Modular striping generates an equal number of write requests to each bank, although 

request sizes can be different. For example, the first request can be an 8 KB write request 

and will be routed to bank 1. The second request can be 4 KB and will be sent to bank 2. 

Even though each bank serves 1 write request in this case, write latencies will be different  

and the total amount of sectors written will not distribute evenly. 

In our simulations with real user workloads we have observed that modular 

striping of writes not only generate equal number of write requests per bank, it also 

distributes write sectors almost evenly among flash memory banks. For a flash array of 

16 banks, one would expect each bank to serve 6.25% of the overall sectors written for 

perfect uniform distribution. As seen in Table 6.8, the number of sectors written into each 

bank is within 5% of each other - meaning the busiest bank serves 6.56% of the total 
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write sectors and the least busy bank serves 5.95% of the total write sectors. These values 

slightly vary among workloads with largest variation in user workload 7. In this 

workload, the number of sectors written into each bank is within 20% of each other. This 

shows that modular striping of write requests not only generates an equal number of write 

requests per bank, but it also generates an almost equal number of total sector writes for 
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User Workloads

Bank # 1 2 3 4 5 6 7 Aggregate

1 5.65% 6.39% 6.83% 6.40% 6.30% 6.51% 6.28% 6.34%

2 6.09% 6.37% 6.96% 6.79% 6.70% 6.30% 6.34% 6.52%

3 6.59% 5.77% 6.78% 6.56% 6.26% 6.06% 6.41% 6.36%

4 6.79% 6.47% 6.71% 5.95% 6.58% 6.75% 6.22% 6.53%

5 6.32% 6.72% 6.06% 6.13% 6.36% 6.21% 6.97% 6.37%

6 6.64% 6.50% 6.46% 5.74% 5.81% 5.96% 7% 6.29%

7 6.61% 6.78% 6.42% 5.71% 6.28% 6.00% 6.43% 6.33%

8 6.01% 7.09% 6.01% 6.08% 6.18% 6.31% 7.05% 6.35%

9 5.94% 6.10% 5.92% 6.01% 5.86% 6.53% 7.55% 6.22%

10 6.31% 5.63% 6.17% 6.62% 6.13% 6.55% 6.68% 6.28%

11 6.57% 6.24% 6.01% 6.72% 6.31% 5.33% 5.91% 6.16%

12 6.12% 5.74% 5.58% 6.14% 5.83% 6.15% 5.44% 5.86%

13 6.06% 5.25% 6.18% 5.99% 5.73% 6.39% 5.63% 5.90%

14 5.87% 6.09% 5.82% 6.31% 6.43% 6.35% 5.48% 6.06%

15 6.02% 6.64% 6.32% 6.35% 6.59% 6.38% 4.98% 6.22%

16 6.41% 6.20% 5.77% 6.48% 6.64% 6.38% 5.64% 6.23%

Table 6.8: Percentage of Write Sectors per Bank. Ideally each memory bank should serve 
equal number of write requests. The percentage of write sectors should be 6.25% for a 16 bank 
configuration.



each bank. The main reason for this is that fact that typical PC user workloads are bursty 

and request sizes do not vary much within each burst. Although more sophisticated write 

scheduling algorithms can be implemented, which aim at uniform distribution of write 

requests, their impact will not be very different. Moreover, they will add more complexity 

into the flash controller logic, whereas modular striping is a very straight forward 

algorithm to implement at almost no cost.

153

User Workloads

Bank # 1 2 3 4 5 6 7 Aggregate

1 6.19% 5.24% 10.64% 11.04% 15.78% 6.68% 5.92% 9.01%

2 2.45% 4.34% 5.66% 3.60% 4.34% 11.16% 3.87% 5.14%

3 25.13% 9.41% 8.42% 7.64% 7.63% 17.64% 3.95% 12.71%

4 6.01% 8.61% 8.13% 3.28% 7.58% 7.14% 3.10% 6.50%

5 3.98% 1.89% 4.40% 3.93% 2.81% 6.62% 3.46% 4.01%

6 3.25% 1.31% 1.93% 1.15% 1.64% 1.30% 2.94% 1.95%

7 6.75% 2.59% 3.88% 1.73% 3.57% 1.40% 3.12% 3.52%

8 5.95% 2.27% 3.61% 8.75% 5.20% 2.23% 7.30% 4.91%

9 5.85% 5.74% 4.91% 8.83% 5.91% 5.29% 31.92% 7.99%

10 2.91% 28.02% 15.94% 9.65% 7.38% 5.33% 8.44% 10.34%

11 12.03% 16.57% 21.93% 31.51% 25.15% 14.64% 7.66% 18.90%

12 6.83% 4.32% 2.01% 1.05% 1.89% 13.35% 3.40% 4.96%

13 1.82% 1.76% 1.39% 0.91% 1.79% 1.12% 4.45% 1.70%

14 1.66% 1.40% 1.29% 1.17% 2.16% 1.02% 4.13% 1.66%

15 4.55% 4.02% 3.87% 4.39% 4.87% 3.72% 2.47% 4.11%

16 4.66% 2.53% 1.99% 1.38% 2.29% 1.37% 3.88% 2.59%

Table 6.9: Percentage of Read Sectors per Bank. Uniform distribution of read requests would 
be the best case scenario as it will utilize available parallelism, however storage systems do not 
have any control over what the user would request for reads.



Although write requests are distributed equally among banks, the same can not be 

said of reads. Table 6.9 shows the total number of sectors read from each bank for all user 

workloads. The distribution of read sectors among banks is not as uniform as writes and 

in some cases shows high variations. There are two factors which affect how read sectors 

are distributed among banks. One is temporal locality of requests. If data is written into 

disk, it is likely that it will be read in the near future. Then the distribution of writes 

among banks increases the possibility of future read requests being distributed as well. In 

this case, modular striping also helps in distributing reads - although its impact is limited. 

This may be controlled better by using a different write scheduling algorithm. Much like 

modular striping which optimizes write latency (and improves read distribution to some 

extent), another scheduling algorithm may try to achieve uniform distribution of reads. 

Note that if write requests are not evenly distributed, some banks might become too busy 

serving writes. This will degrade performance of reads scheduled to these busy banks. 

Fortunately this can be worked around by utilizing a RP (read priority) or WSRF 

scheduling algorithm. Some heuristics that come to mind as an alternative to modular 

striping are: Nth write request assigned to the bank with the least number of write sectors 

or to the bank with shortest request/read/write queue or to the bank whose blocks have 

worn out the least (wear leveling).

A second factor which controls how read requests are distributed is simply user 

workload characteristics. One user workload might generate reads whose addresses are 

unevenly distributed whereas another user workload might generate read requests whose 

addresses are within close proximity of each other. Unfortunately, this second factor is 
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outside of our control. Although it is possible to design a scheduling algorithm which 

attempts to predict locality of user read requests, it will very likely increase the 

complexity of flash controller substantially.

6.8. Block Cleaning

As mentioned earlier, flash memory technology does not allow overwriting of data (in-

place update of data is not permitted) since a write operation can only change bits from 1 

to 0. To change a memory cell’s value from 0 to 1, one has to erase a group of cells first 

by setting all of them to 1. 

Typically each flash memory design maintains a list of recently erased blocks 

(free blocks). As write requests are received, free pages from these free blocks are 

allocated in consecutive order for these write requests. Over time, the number of free 

blocks will diminish. In this case flash memory will have to perform some form of block 

cleaning. Flash memory array will be scanned for blocks with invalid pages as potential 

erase blocks and block cleaning will be performed. During block cleaning, the flash 

memory device will be in busy mode and all read and write requests to the device will be 

stalled in queue. 

One of the important factors during this cleaning process is “block cleaning 

efficiency”. Block cleaning efficiency is defined as the percentage of invalid pages to the 

total number of pages during block cleaning. Efficiency can heavily impact the latency of 

block cleaning. When a block is cleaned with 100% efficiency, all pages in this block are 

invalid pages and block cleaning only involves erasing all pages within this block. The 

typical block erase times are 1.5 or 3 ms. If a block is cleaned with 50% efficiency, half 
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of the pages within the block has valid user data and has to moved first. 32 pages of valid 

user data will be read out, written into some other free block and then erase operation will 

be performed. This will substantially increase cleaning latency. If the movement of valid 

user data can be limited within the same memory bank or within the same die in a 

memory bank, copying of valid pages can be performed via an internal move operation. 

With internal move operation, a page will be read into the cache register and then moved 

into  the data register. While data from the data register is written to a different location, 

the next page can be read into the cache register. In our example of block cleaning with 

50% efficiency, copying of 32 pages of valid user data will take 1 page read (read first 

page), 31 interleaved page read and write operations and 1 page write (write last page). 

Assuming 25 µs for page read, 200 µs for page write and 3 µs for cache-to-data register 

transfer time, it will take 6.521 ms just to move valid data. This will add to the already 

long latency of the block erase process. Moreover, if copying the valid data is not 

performed within the same memory bank or within the same die then the data has to be 

read and written via 8-bit I/O interface and will take even longer.

In order to measure the impact of block cleaning on flash memory performance, 

we have simulated a sample configuration with a very limited number of free memory 

blocks. We have used 32 GB flash solid-state disk with 4 memory banks sharing a single 

8-bit 25 MHz I/O channel. We have assumed that each 8 GB memory bank has only 2048 

free blocks - 256 MB free space. When the number of free blocks falls below a pre-

determined level, block cleaning is triggered automatically. A single block is selected as a 

candidate for block cleaning and all read and write requests are blocked until the block is 
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cleaned and added into the free block pool. Each flash memory bank has its own 256 MB 

free block space and implements block cleaning independently. While one bank is busy 

with block cleaning, other banks may continue to serve their requests if they have free 

blocks above the threshold. Depending on how low this threshold is set, flash memory 

banks will start block cleaning much earlier or much later. In order to gage the impact of 

this threshold, we have simulated 3 different levels - 64 MB, 128 MB and 192 MB. When 

this threshold is low, flash memory banks start block cleaning later and when it is higher, 

flash memory banks start block cleaning much earlier.

As we mentioned above, another factor which determines block cleaning latency 

is block cleaning efficiency. We have simulated block cleaning efficiency levels of 100%, 

70% and 30%. A higher cleaning efficiency translates into lower block cleaning latency - 

thus read and write requests in the queue are blocked for a shorter amount of time. We 

have also assumed that block cleaning is performed within each bank. This allowed us to 

perform an internal data move operation during block cleaning if valid user pages needed 

to be copied.

Figures 6.43-45 show the impact of block cleaning on average disk-request 

response time, average read response time, and average write response time for various 

user workloads.

As expected, block cleaning has a negative impact on request response times.  

However, identifying block cleaning as a performance bottleneck for flash memory solid-

state disks would be inaccurate. A closer look at simulation results show that block 

cleaning efficiency is the parameter that defines the level of performance degradation 
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Figure 6.43: Block Cleaning. Average request service time in milliseconds when block cleaning 
is triggered at different thresholds with varying cleaning efficiency. Block cleaning efficiency is 
the parameter that defines the level of performance degradation.
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Figure 6.44: Reads with Block Cleaning. Average read request service time in milliseconds 
when block cleaning is triggered at different thresholds with varying cleaning efficiency. Block 
cleaning efficiency is the parameter that defines the level of performance degradation.
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induced by block cleaning. If we consider results with 100% block cleaning efficiency, 

the average disk request response time increased by 5-20% depending on the cleaning 

threshold. For read requests, this was even lower. When cleaning threshold is set to 192 

MB - higher threshold triggers block cleaning much earlier - read requests performance 

only decreased by 7% on average. When block cleaning efficiency is reduced to 70%, 

latency increase induced by block cleaning starts to show. The impact of the cleaning 

threshold is better observed when the cleaning efficiency is reduced from 100%.

When block cleaning efficiency is reduced to 30%, the performance of the storage 

system degrades significantly. Request response times increase 10 times, in some cases 

100 times. If we draw on an analogy to main memory, block cleaning for flash memory is 

what swapping is to RAM. When the amount of swapping is low, the performance 

degrades but O/S would still operate. If more memory is swapped, the performance 

would degrade further until the entire virtual memory system starts trashing. Similarly, 

performance of the flash memory system degrades as block cleaning efficiency decreases 

until to a point where the flash memory system starts trashing. At this point the storage 

system becomes so busy with internal data movement and block cleaning that the user 

requests are held up in the queue almost indefinitely.

One of the performance parameters that affect the cost of block cleaning is 

identified as uniformity [2]. Uniformity is defined as the fraction of blocks that are 

uniform in flash memory. All pages in a uniform block are either valid or invalid. In other 

words, a uniform block does not contain both valid and invalid pages together. The main 

conclusion of this study is that; the cost of block cleaning increases dramatically when 

161



uniformity is low. The results of our simulations support this conclusion. As uniformity in 

flash memory decreases, the number of blocks with all invalid pages also decrease. If the 

number of blocks with all invalid pages is low, the probability of block cleaning with 

100% efficiency is also low. When block cleaning is triggered, most of the candidate 

blocks have both valid and invalid pages within them  , decreasing block cleaning 

efficiency. This dramatically increases request response times as our results show.

It is important to note that block cleaning efficiency not only determines block 

cleaning latency due to internal data movement (copying of valid pages), but it also 

determines how many free pages can be added to the free pool. For example, if a block is 

cleaned with 100% efficiency, the number of free pages increases by 64. Flash memory 

can serve 128 KB write requests before block cleaning is triggered again. However, if 

cleaning efficiency is 30%, only 19 pages are added to the pool. The other 45 pages out 

of 64 available are used in storing valid user data in the cleaned block. Shortly after 38 

KB writes are served, block cleaning needs to be performed again. Therefore block 

cleaning efficiency also contributes to the frequency of block cleaning.

There are several algorithms which can be implemented at FTL to reduce the 

impact of block cleaning on performance by either ensuring enough free pages when a 

burst of user requests arrive or by ensuring that block cleaning is implemented at 100% 

efficiency (minimum block cleaning latency).

One way to reduce the impact of block cleaning is to postpone it as much as 

possible by employing a variable cleaning threshold. All studies on flash memory 

performance in literate assumes a fixed block cleaning threshold. With a fixed threshold, 
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block cleaning will be triggered as soon as this threshold is crossed. On the other hand, 

we know that typical PC user workloads are bursty. Instead of a fixed threshold, a 

variable threshold can perform better. A variable threshold can postpone block cleaning 

until all user requests within a batch are served.

Another way to limit block cleaning is harvesting disk idle times as efficiently as 

possible. As outlined in [38], in I/O systems there is a lot of idle time for performing 

background tasks. There has been significant research in the HDD community to harness 

these idle times to reduce overall power consumption of the I/O system. Since SSDs have 

an advantage over HDDs in power consumption, the same algorithms can be used for 

SSDs to harness disk idle times for proactive block cleaning. Figure 6.46 displays disk 

idle time distribution for a single I/O channel, 4 memory banks configuration. As shown, 

each memory bank has substantial number of idle periods of larger  than 10 ms.  When all 

our user workloads and all 4 memory banks are considered, there are more than 100K 

idle periods of 10 to 100 ms, more than 30K idle periods of 100  ms to 1 s, and 

approximately 18K idle periods of 1 to 10 s. If only 60% of idle times which are larger 

than 1 s can be detected and used for block cleaning, it will eliminate all of the block 

cleaning operations triggered during normal operation (figure 6.47 illustrates the number 

of times block cleaning is triggered for all threshold and efficiency levels we have 

simulated). In an idle period of 1 s, 666 blocks can be cleaned with 100% efficiency or 94 

blocks can be cleaned with 30% efficiency. It is possible to detect these idle times using 

the characteristics of typical user workloads and perform block cleaning operation in the 

background unobtrusively. If an idle period is not long enough to perform several erase 
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operations, it can still be used to move several pages around so that block cleaning 

efficiency is always kept high. This way, the state of flash memory is optimized so that 

future block cleaning requests are executed with the least possible latency. On the other 

hand, all this background activity will increase power consumption of the flash memory 

system. Even if there are no user requests, flash memory will be performing read, write, 

and erase operations in the background. Performance impacts of block cleaning is so high 

that the increase in power consumption is justified. 

Baek et. al. [2] suggests a different page allocation scheme which maximizes 

uniformity in flash storage - thus increasing block cleaning efficiency. As mentioned 

before, page allocation in flash memory is a run-time resource allocation decision. In our 

tests we have employed a write striping algorithm to utilize available concurrency. A 

different resource allocation policy suggested by [2] is modification-aware page 

allocation, which differentiates between hot data and cold data. Hot data is user data that 

is updated frequently and allocating hot data to the same block increases uniformity.

In addition to its performance impact, block cleaning also has implications on 

power consumption of the solid-state disk. Device manufacturers usually report power 

consumption during typical read and write performance tests. Furthermore, these tests are 

performed when flash memory is in perfect condition (i.e. blocks either have 100% valid 

data or recently erased).  Typically flash memory consumes same amount of power for 

read, program and erase operations. For example, sample 1 Gbit memory from Micron 

draws 25 to 35 mA current during page read, program and block erase operations [59]. 

When power supply voltage of 2.7 to 3.3 V is considered, this corresponds to 70 to 120 
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mW per operation. An erase operation will not add too much to power consumption by 

itself, however when block cleaning efficiency and corresponding internal data 

movement is concerned power consumption will increase considerably during block 

cleaning. For example, cleaning a block with 50% efficiency translates into moving 32 

pages of valid data - 1 page read, 31 interleaved page read and write and 1 page write - 

followed by an erase operation. Flash memory has to perform 64 additional operations 

(64x power consumption) before the desired erase operation. If we consider a sample 

scenario where I/O requests are 8KB writes (typical average request size) and 50% block 

cleaning efficiency; block cleaning will be triggered at every 8 requests and system 

power consumption will increase by a factor of 3. If block cleaning efficiency is 30%, 

increase in power consumption will be by a factor of 2.6 when there is an incoming 

stream of average write requests.

6.9. Random Writes and Mapping Granularity

One of the main concerns with flash memory performance has been with random writes. 

There have been studies documenting  poor performance when requests are writes and 

they are not sequentially ordered. Birrell et. al. looked into commodity USB flash disks 

and found that the latency of random access writes is consistently higher [7].

The reason behind poor performance of random writes is LBA-PBA mapping 

performed at the flash translation layer. As we explained in section 3.3.3, flash memory 

solid-state disks do not support in-place update of data. Rather, every write request for a 

specific logical address results in data to be written to a different physical address. 

Therefore, NAND flash memory uses dynamically updated address tables and employes 
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various mapping techniques to match a logical block address requested by the host 

system to a physical page or block within flash memory. Most of the typical address 

mapping algorithms used for flash memory use two map tables; direct map tables and 

inverse map tables. Direct map tables are stored fully or partially in SRAM. The cost 

associated with SRAM has been one of the biggest concerns with commodity USB flash 

memory. If mapping is implemented at block granularity, the size of the map table in 

SRAM would be small. Its size and cost increases as mapping is performed at a finer 

granularity.

Mapping granularity not only determines SRAM size and overall cost of the flash 

memory system, but it also plays an important role in the latency of write requests. Figure 

3.8 in section 3.3.3 shows a sequence of events for a sample write request with mapping 

at block and page granularity. With page size is 2 KB and block size is 128 KB, 4 KB 

write request will incur drastically different latencies with different mapping schemes. If 

mapping is performed at block granularity, all valid user data within the target block will 

be read, 4KB of it will be updated and all valid and updated user data will be written to a 

free block. In the worst case, if all other pages within the target block are valid, 4 KB (2 

pages) write request will trigger the reading of  62 pages and writing of an additional 62 

pages. These additional read and writes performed in the background will substantially 

increase write latency. This is indeed what is observed as “poor performance with random 

writes”. Figure 6.48 shows a sequence of events for two 4KB write requests with block 

mapping. When these write requests are random - not sequentially ordered - each 4KB 

write request not only updates 8 sectors but also moves 16 other sectors. Overall write 
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latency is (assuming 25 µs page read and 200 µs page program time) 850 µs. If these 

write requests were sequentially ordered, there would not be any need for additional data 

moves. Write latency would be 400 µs. This example illustrates how mapping granularity 

impacts write latency. If blocks of larger sizes are used, the impact would be greater.

In all of our simulations we have assumed mapping at page granularity. We have 

also analyzed our user PC workloads to understand the impact of mapping granularity on 

write requests. Figure 6.49 shows the number of additional write requests in each of our 

user workloads for various levels of address mapping. When mapping is performed at 

block level - block sizes of 64 pages - the number of sectors written increases by 3-6x. 

Although this is a worst case scenario since it assumes all of the pages contain valid user 

data, it only shows additional write requests. For each additional sector written, there is 

an additional read request performed in the background. It is important to note that 

typical PC user workloads include a fair amount of sequential access - spatial locality. 

With a hypothetical workload which generates truly non-sequential write requests, the 

additional data copied will be even larger.

In our simulations we have used mapping at page level. This is still higher than 

conventional hard disk drives where access granularity is a sector. Fortunately, requests in 

a typical PC user workload are aligned with virtual memory page size of 4 KB. In all our 

workloads, random writes only increased the total number of sectors written by 0.4%. 

Our results also show that mapping granularity can be increased to 8 KB, thus matching 

average workload request size without generating any significant additional reads and 

writes. Furthermore, mapping granularity can even be increased to 16 KB without 
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generating more than a 20% increase in the total number of sectors written. Compared to 

page (2 KB) mapping, mapping at 16 KB will cut SRAM size by 4 with a nominal impact 

on performance. For designs with only a limited budget for SRAM this can provide a 

good cost-performance trade-off.
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Chapter 7: Conclusions and Future Work

Today's typical solid-state disk drive is a complex storage system. Although it provides a 

simpler face and lacks the complexities of mechanical parts, it has its own system 

problems. NAND flash memory employs multiple memory banks in parallel to increase 

storage system bandwidth and performance. When multiple memory banks are available, 

data placement and resource allocation becomes a critical for performance and load 

balancing. The asymmetric nature of read and write requests in flash memory pose 

additional challenges and increases dependency on user workloads. Effective wear 

leveling and block cleaning are two other issues unique to flash memory systems which 

may effect performance.

The relationship between the flash memory system organization and its 

performance is both very complex and significant. Issues arise in the design of solid-state 

disk architectures mirror complex system problems. Therefore it is important to study the 

internals of solid-state disk drives, provide an in-depth analysis of system-level 

organization choices for solid-state disks, investigate device-level design trade-offs, and 

provide a model on how solid-state disks work.

We have developed a solid-state disk simulator to measure the performance of 

various flash memory architectures. Our SSD simulator models a generalized NAND 

flash memory solid-state disk by implementing flash specific commands and algorithms, 

all while providing the illusion of an HDD. We have collected our own disk traces from 

portable computers and PCs running real user workloads to drive our simulator. Our 

workloads represent typical multi-tasking user activity and consist of not only I/O traffic 
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generated by user applications, but also I/O requests generated by system and admin 

processes.

With our SSD simulator, we explored the full design space of system-level 

organization choices for solid-state disks. We also investigated device level design trade-

offs as well, including pin bandwidth, and I/O width. Moreover, we explored the potential 

for  improvements to solid-state disk organizations by flash oriented queueing algorithms 

and bus access policies. We found the following:

• The flash memory bus does not need to scale up to HDD I/O speeds for good 

performance. The real limitation to flash memory performance is not its bus speed 

but its core interface: the movement of data between the flash device's internal 

storage array and internal data and cache registers.

• SSD organizations that exploit concurrency at both the device- and system-level 

(e.g. RAID-like organizations) improve performance significantly. These device- 

and system-level concurrency mechanisms are, to a degree, orthogonal.

• Given a storage system with a fixed media transfer bandwidth, there are always 

several near-optimal configurations that are within several percent of each other. 

It is imperative to study full design space of flash memory organizations including 

performance, cost, and power models.

• NAND flash interface provides drastically different read and write timing which 

results in large performance disparities between reads and writes. Structural 

mechanisms and physical organizations outlined in this dissertation mainly target 

improving the throughput of write requests by reducing flash memory 
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programming time (ganging, striping, etc.) or by hiding programming latency 

(request interleaving using multiple banks and channels). However, asymmetry 

between reads and writes and the scale factor between their performance persists.

• This scale factor between read and write rates make solid-state disk performance 

more dependent on the user workload.

• The inherent parallelism used in existing solid-state disk systems to amortize 

write overhead can come at the expense of read performance if not handled 

carefully.

• When distinctive differences between reading from and writing to flash memory 

and the impact of system- and device-level concurrency techniques are taken into 

account, there is potential for further improvements to solid-state disk 

organizations by flash oriented heuristics and policies. Heuristics and policies 

suggested in this dissertation accommodate the asymmetry between reads and 

writes to optimize the internal I/O access to solid-state disk storage system 

without significant changes to its physical organization.

• Read performance is overlooked in existing flash memory systems. Flash oriented 

heuristics and policies presented in this dissertation favor read requests over write 

requests whenever possible; because, as shown in Jacob, Ng, and Wang [40], 

overall computer system performance (i.e., CPI) tracks disk's average read-

response time.
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The scope of this dissertation can be further extended to provide better understanding 

between solid-state disk architectures and their system performance. Following are 

possible areas for future work:

• Although NAND flash interface modeled in this dissertation provides an accurate 

timing of read, write (program) and erase operations for SLC flash memory, more 

and more MLC flash memory chips are becoming commercially available as 

technology scales down. Therefore our timing models can be enhanced by 

introducing MLC support into our solid-state disk simulator.

• Our solid-state disk simulator can also be enhanced by incorporating power 

consumption models into it. Some of the organizational trade-offs investigated 

may have power constraints, such as maximum level of concurrency allowed.

• In this dissertation, we have followed a trace-driven approach since our primary 

metric was request response time. An execution driven approach is also possible 

to model a closed storage subsystem. If execution time is considered as the 

performance metric, it is important to enable the feedback between the storage 

system performance and the timing of the subsequent I/O requests.

• NAND flash solid-state disks assume a block device interface and hide their 

peculiarities from the host system. FTL layer implements various algorithms and 

data structures to support the block device interface and to extract maximum 

performance from the flash memory array. However, if solid-state disks identify 

themselves to the host system different then hard disk drives, better performance 

and cost trade-offs can be achieved at the system level. One such example is the 
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support of a trim command being added to the ATA interface standard. With trim 

command host OS is aware of the underlying solid-state drive and enhances its 

performance by specifying which files are deleted. When a file is deleted, file 

system marks it accordingly but does not necessary notify the storage subsystem. 

To solid-state disks, a deleted user file still appears as valid data and special care 

must be taken during write operations and block cleaning process. With trim 

command, file delete information is propagated to the solid-state disk, which in 

return can mark the data as invalid and avoid costly internal data movement 

operations. Further research is imperative in flash specific file systems and 

expanding operating system’s support for solid-state disks.

• Its high performance and low power not only enables solid-state disk as an 

alternative to hard disk drive, also provides another layer in the memory hierarchy        

after main memory. Furthermore, with the availability of SLC and MLC 

technologies solid-state disks can be utilized at a finer granularity within the 
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memory hierarchy. A redesign of memory system hierarchy is imperative using 

various flash memory technologies for better performance and cost trade-offs as 

summarized in Figure 7.1.
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