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Chapter 1

Introduction and Motivation

Embedded systems, more than anytime in history, are becoming the driving force
of the computer and electronics industries. As desktop computers push their
performance close to physical limits and provide more computing power than most
applications need, the era of pursuing performance by any means is fading out,
while the new era, which is the pursuit of both performance and energy saving, is
rising above the horizon. Steve Leibson [17]mentioned that “it is rather apparent
that the PC market is no longer willing to accept the ‘performance at any price’
development curve that the industry has ridden for the past two decades”. The
two reasons he gave are “lack of need” and “processing power delivered relative
to energy expended, instead of just raw processing power”.

As new semiconductor technologies progress, more and more transistors can
be packed into one small chip. Today, in 2001, manufacturers such as AMD,IBM,
INTEL and Motorola are mass-producing chips based on a 150nm (0.15 micron)
technology. 100nm chips have already debuted. To utilize this capacity to pack
a huge amount of transistors on a chip, nowadays most digital systems, e.g. pro-
cessors and DSPs, are typically built around a processor “core” (i.e., a processor

without peripherals and memory provided as a design primitive, subsequently



called core). The off-the-shelf processor chips are adapted to their particular
function by providing adequate peripherals, ROM, RAM, and embedded soft-
ware. This high density integration makes putting probes directly on the pins of
a chip and measuring signals more and more difficult, and as a result, it is no
longer easy to understand what is going on inside the chip.

At the same time, the more and more powerful desktop computers provide us
with increasing potentials of simulation. With a fairly good understanding of the
architecture of a processor core and its integrated peripherals(like memory, MMU,
interrupt controller, timer, etc), it is totally possible to use a piece of code to
simulate the detailed activity inside a system-on-chip processor. Actually, much
research has been done this way, but mostly to simulate a desktop processor and
the goal was to get highest performance.

Because of our consideration of the important role that embedded systems
will play in the near future, and because of our understanding that the goal
of embedded systems is different from desktop systems, we decided to develop
a full-featured embedded system test-bed to provide us with a good embedded
system research environment. This test-bed will be a handy tool for us in our
studying of embedded processor architecture, embedded operating systems , and
software/hardware co-design. So the first goal of our work was to finish developing
such a test-bed and make sure it was working correctly.

As mentioned before, the design goal of embedded systems usually is not
just high performance. Instead, adequate performance, good response time and
minimal possible energy consumption will have a balance in such systems. Based
on the mentioned test-bed, we wanted to conduct an in-depth study on comparing

the performance of two different real time operating systems (RTOS) and a home-



made multi-tasking scheduler. So our second goal was to port two real time
operating systems to our test-bed, design a method to measure the performance
of them, and do a comparison.

As we all have known, energy consumption plays a very important role in
embedded systems. However, it is anything but easy to come up with an energy
consumption model of a specific processor. Much research work has been done in
this area and several methods, on different levels, have been proposed|[1, 2, 24, 7].
These papers have stated clearly the advantages of using an emulator instead of
a piece of real hardware in doing research work. Simply put, it is much more
flexible and much easier to work with a model, in the sense that we will be able
to look into the system and see which part is most energy-thirsty and will be
able to do some optimization on energy. So our third goal was to construct a
relatively accurate energy model for the target processor based on the simulator.

With the construction of the energy model, we were able to do energy con-
sumption research on our three guest operating systems and see how they per-
formed. First, we acquired the breakdown of power consumption numbers of each
operating system; after analyzing them, we decided to push our research a little
bit further and do some research on how to minimize an embedded operating
system’s energy consumption. We chose the voltage scaling technique to be our
entry point. Several studies have shown that voltage scaling is an effective way
to lower the energy consumption of a system; however, research work in this area
is still at the beginning stage. We would like to contribute our two cents on
finding an effective way to implement the voltage scaling technique in embedded

systems.



1.1 Goal of The Work

This research work is long-term-oriented. The ultimate goal of the work is to find
an effective way to lower the energy consumption of an embedded system while
keeping the performance at an acceptable level. Actually the evaluation criteria
itself is part of the research work, because it is always a compromise between
energy and performance. It is not very obvious to say, “This method is better
than that one” unless we can come up with overall criteria that include all these
factors and give an overall evaluation of the system. Therefore, coming up with
overall evaluation criteria is part of our research work.

Chris Collins has done a great job in starting this research project. The
starting point of this paper is that we already had a bare-bone cycle-accurate
emulator and co-operative real time operating system Echidna running on it.

The contributions of this thesis includes the followings:

1. Finished developing a full-featured cycle-accurate instruction level emula-
tor of Motorola MCORE processor (the test-bed). Also finished developing an
energy consumption model of this processor and adding speed-setting and voltage
scaling functions to the test-bed. The test-bed will provide most of the functions
needed for future research work (including debugging method), and also provide
good documentation so that even if the future research work needs to modify the
test-bed or add more functions, it should be very straight-forward.

2. Finished porting one non-preemptive and one preemptive real time oper-
ating system to the test-bed. The preemptive RTOS we chose is uC/OS. We
chose it because it is open source and it is widely used. Also, its internals are
well-documented[16]. uC/OS can be a representative of the group of preemptive

RTOS. For the non-preemptive RTOS, we decided to make our own. It is easier



to understand and debug the RTOS if we develop it, and this also represents
about 50% of the industry, who prefer to make their own RTOS (or basically
a multi-tasking scheduler)[8]. We call our non-preemptive scheduler “NOS”, for
its simplicity. So uC/OS and NOS are the representatives of preemptive and
non-preemptive RTOS respectively. Also, they are representatives of commercial
RTOS and home-made RTOS respectively.

3. Designed a method to benchmark the performance and energy consumption
of these RTOSs. Because this includes the compromise of performance and power
consumption, there is no one absolutely correct way to say which is better. We
proposed generic metrics to evaluate these systems and hope this can be the stone
that leads to the gold mine. Please refer to section 5.4.4 for details of the metrics
we proposed.

4. Compared the performance of uC/OS with NOS in terms of period tasks
jitter and interrupt response delay. Also Compared the power consumption of
uC/0S and NOS with and without using speed-setting and voltage scaling algo-
rithms.

5. Proposed a new algorithm about speed-setting and analyzed the results.

Provided a good base for future research on voltage scaling.

1.2 Organization of The Paper

The following chapters of this paper are organized as following: Chapter 2 is
background introduction, describing what has been done in the areas that relating
to this work. Chapter 3 describes the test-bed, including a simple description
of the target processor, structure and kernel of the simulator, and some basic

peripherals that make it possible to run a real OS on the test-bed and make



it easier to debug the OS and the applications that run above the OS. Also
included in this chapter is a description of the two RTOSs we have been using
in our research work. Chapter 4 mainly focuses on the performance analysis of
the RTOSs after we systematically ran several benchmark programs on them.
It shows the difference between pre-emptive OS and non-preemptive OS and
also shows our own way to benchmark the performance of a RTOS. Chapter 5
describes the energy consumptions of NOS, including the energy consumption
without any optimization method and energy consumption with voltage scaling
algorithm. Chapter 6 gives a conclusion based on all research work we have done

and suggests some work that can be done in the future to strengthen this research.



Chapter 2

Background

2.1 Embedded Systems

An embedded system is a very concrete concept for embedded engineers, but it
is not that concrete and tangible for people out of the embedded field, even for
some computer science people. Maybe one can say that, “An embedded system is
any system that uses one or more microprocessors but does not belong to desktop
systems”, but this is still not very clear about what it really is. Here, rather than
attempting to define embedded systems, we will describe their relevant properties.

First of all, embedded systems usually implement dedicated functions such as
control of anti-blocking brakes, the instrumentation and control of an assembly
line, encoding and decoding of audio or video, hand-held network traffic monitor,
and so on. Thus, the function is well defined in advance, and the embedded
system 1is installed once and for all. Once installed, little or no changes are
allowed.

Also, embedded systems are usually required to be operational during the life
span of the host system which may range from a few years, e.g., a low end audio

component, to decades, e.g., an avionic system. Correctness of the design is a



very important point, since embedded systems often perform safety-critical tasks
in host systems such as airplanes or trucks. Hence, a malfunction might cause a
major accident.

Real time is usually another characteristic of embedded systems. Real time
means that an embedded system has to meet deadlines dictated by its environ-
ment defined by the host system. Temporal properties are relevant to system
correctness. Temporal requirements may be periodic and characterized by a fre-
quency, e.g., the sampling frequency in an audio system or a periodic observation
of the state of the controlled object. Temporal requirements may also imply a
maximal reaction time to given events, e.g. the maximal time to open an emer-
gency valve in a cooling system if overheating occurs.

Real time itself has two categories: soft real time and hard real time. Soft
real time means that a task is expected to finish before some deadline. However,
if the system, because of some unexpected reason, does not meet the expected
deadline, there will not be disastrous results, such as human beings’ lives being
threatened. An example of soft real time embedded system will be an MP3
player. The system is expected to decode the data stream within a certain time
limit, however, even if occasionally the system does not meet the deadline, the
worst result is that we hear some glitches when listening to the song. Usually
this will not lead to catastrophic results. Hard real time is the opposite of soft
deadline, i.e. it is not acceptable for the system to miss any deadline that it
is not supposed to miss. Once the system misses the deadline, the result will
be too expensive ( or too deadly) to be accepted. A good example of hard real
time system is airplane control system. No exception is allowed in such systems.

Every thing must operate exactly as it is designed. The possible results of such



Embedded Systems Desktop Systems

Dedicated Functions Generic Functions

Once Shipped, Rarely Changed Functions defined by software

Usually Real Time Usually not real time

Cost Varies Relatively fixed cost

Examples: MP3 Player, Printer | Examples: Mac, Sun workstation

Table 2.1: Comparing characteristics of embedded systems and desktop systems

system missing its deadline are disastrous and not acceptable.
Table 2.1 is a comparison of the characteristics of embedded systems and
desktop systems. Included in the table are only the major differences of these

two kinds of systems.

2.2 Energy Consumption In Embedded Systems

Energy consumption plays an important role in embedded systems. In battery-
driven systems it is critical to system design. Battery life is an obvious reason of
low power design in embedded systems; however, there are many subtle reasons
besides this, including reliability, performance and cost. As the frequency of
the clock that drives a microprocessor rockets up, the power consumption of
the chip goes dramatically up, too. For instance, the new Pentium IV has a
power consumption of 55 Watt. It needs a 450g(one pound!) heat sink and fan
unit, and needs 50Amps(ouch!) of current[6]. This imposes big challenges on

system’s reliability. Also, enormous heat dissipation will make packaging the



silicon difficult. “In some applications, the device integration density is limited
by thermal conditions, not by lithography, or processing.”[20].

Power dissipation in CMOS circuits arises from two different mechanisms:
static power, which results from resistive paths from the power supply to ground,
and dynamic power, which results from switching capacitive loads between two
different voltage states. Dynamic power is dependent on frequency of circuit
activity, since no power is dissipated if the node values do not change, while
static power is independent of frequency of activity and exists whenever the chip
is powered on. For uses where the electronics will be inactive for much of the
time (most portable applications), the static power must be made very low in the
inactive state.

Since static power consumption is typically much smaller than dynamic power
consumption, and there is not much that can be done on the software side to
reduce it[12], we will focus on dynamic power consumption from now on.

Dynamic power consumption mainly stems from charging and discharging
capacitors. In charging a load capacitor C up AV volts, and then discharging it
to its original voltage, a gate pulls C AV from the V,; supply to charge up the
capacitor, and then sinks this charge to Gnd to discharge the node. So at the
end of a cycle, the gate / capacitor combination has moved C AV of charge from
Vaa to Gnd, which uses CAV'Vy,; of energy and is independent of the cycle time.
The dynamic power of this node is the energy power cycle, times the number of

cycles it makes a second, or
P=CAV VyaF (2.1)

where « is the number of times this node cycles each clock cycle and is usually

called the activity ratio. The dynamic power for the whole chip is the sum of

10



equation 2.1 over all the nodes in the circuit[12].

From equation 2.1 it is clear what can be done to reduce the dynamic power
consumption of a system. We can either reduce the capacitance being switched,
the voltage swing, the power supply voltage, the activity ratio, or the operating
frequency. For a specific chip, the voltage swing AV is usually proportional to

Va4, so equation 2.1 will become the following:

P = CkV}aF (2.2)

where k is the ratio of AV and V.

2.3 Basic Design Methods of Low Power Sys-

tems

2.3.1 Reducing Supply Voltage

The fact that the power consumption is proportional to the square of supply
voltage is good news: great power savings are realized for small reductions in
supply voltage.

Compare a system operating at 5V supply versus 3.3V. Reducing the voltage
supply from 5 to 3.3V reduces the dynamic power consumption to (3.3/5)? of the
original, which is a power saving of 57%. Figure 2.1 shows this graphical square

relationship.
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Figure 2.1: Reducing the supply voltage from 5.0V to 3.3V results in a 57% power

saving
2.3.2 Fast Clocks

Power consumption is proportional to operating frequency, which is the oF" in
Equation 2.2. As the operating frequency goes to zero, the dynamic portion of
the power consumption also approaches zero. This situation leaves only the static
power consumption, which typically is in the micro-watt range for CMOS ICs.

Because power consumption depends heavily on clock speed, a guideline in
designing low-power embedded systems is to choose a processor speed as fast as
the application needs, and no faster. Running the clock at a frequency higher
than necessary wastes valuable energy.

Also, substantial power savings can be realized from intelligently managing
the CPU clock speed. If the CPU clock is fixed at a blazingly high speed to

accommodate a compute-intensive task(e.g., data processing), then considerable

12



power is wasted when the system performs a less CPU-intensive task(e.g., ac-
quiring data). A solution to this problem is: the scalable clock. Control the
frequency of the processor’s clock (either by software or by hardware) to match
the processing speed of the task being performed. Thus, for a minimal amount of
additional hardware and software, the programmer can lower the system power
consumption dramatically by scaling the clock based on the computational load.
Some processors, like Intel’s Mobile Pentium III and Transmeta’s Crusoe, have
their own on-chip scalable clocks. For these systems, scaling the clock can be
done by some special instructions. For those processors that do not have on-chip
scalable clocks, an external clock divider can be designed to accommodate such
need. The circuit should not output glitches when the frequency is switched, as
this causes improper operation of the microprocessor. Also, if the application
uses internal timers or counters driven by the scaled clock for precise timing,

special attention should be paid when writing such code.

2.3.3 Slowing The Clock

In many applications, the clock needs to be stopped completely, and most mi-
croprocessors have this feature. Modes that turn off the clock (referred to as
sleep, doze, snooze, shutdown or halt) are usually invoked by writing to a special
register. Normal operation is restored by a stimulus event such as an interrupt
(external, or internal if on-board peripherals are permitted to operate) or reset.

Brian Kurkoski [15] categorized three possible zero-frequency clocking modes
based on their technical differences. In Mode 1, the oscillator continues to oper-
ate, but the core is not clocked. In mode 2, the oscillator is off, but the processor

is still powered. And in mode 3, power to the processor is removed completely.
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The advantage of mode 1 is that it can respond quickly to a stimulus event,
even though current consumption is high. This is because typically in this mode
the clock itself is not stopped, but the supply is gated so as not to go into the
processor core. When needed, this gate can be immediately opened. In mode
2, current consumption is reduced to the quiescent current of the microproces-
sor and the components, but it takes much longer to restart the processor. It
is usually controlled by the reset generator, which has a 50 to 200 ms pulse.
For example, the TPS3705-50 processor supervisory circuits with power-fail from
Texas Instruments has a fixed delay time of 200ms. That is a generous amount,
of time for the oscillator to restart, but a long time for a real-time event. In
mode 3, the quiescent current of the sleeping components is eliminated entirely
by disconnecting power to the system via a switch, such as a p-channel FET.
However, some additional circuitry is required to switch power.

Modes 1 and 2 rely on the features of the microprocessor, but the power saving
mode 3 can be implemented using any microprocessor and it affects the entire
system. In modes 1 and 2, the restart depends on the microprocessor. In mode
3, the restart is implemented in hardware.

As an alternative to putting the unit into sleep mode 1, consider slowing the
clock to the tens to hundreds of kHz range. Power consumption at these clock
frequencies may be comparable to sleep mode operation and the problems of
oscillator restart time are avoided. While in slow speed mode, the microprocessor
performs a simple sampling task, like monitoring the keypad for user input or
sampling the real-time clock to wake the system at a specified time.

For a battery powered system, low power design will provide another plus:

lengthening the battery life. Tajana Simunic et al. [22] provides a battery model
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that indicates when drawing current is greater than the rated current from the
specification of the battery, the battery’s capacity will be lower. Figure 2.2 shows
that when the discharging ratio(the ratio of actual discharging current to battery
rated discharging current) is equal to 2, the battery’s capacity will become only
80% of its original capacity. An example that was given in the paper was if a
battery has a rated current of 100mA at 1V with a capacity of 100mA-Hour,
i.e. if drawing current less than or equal to 100mA, the battery’s life is 1 hour.
However, if the drawing current is 300mA, the battery life will be 12 minutes

instead of 20 minutes. Thus, with low power design the battery will run longer.

2.4 Power Modeling Tools

Now that we know power consumption is a very important issue in embedded

systems, we want to find ways to lower the power consumption of such systems.
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To do so, we must first find a way to tell how much power the target system is
consuming. The obvious way is to hook up a voltage meter and an ammeter to
measure it. Surely this will tell us something, however, once we are able to do
this, we have almost reached the final step of a product and we can do little to
improve. Most times we want to know beforehand how much power the system
is going to consume, and if it is too much, we will need to find a way (either
software or hardware) to reduce the power consumption. Also, when we have
some ideas that might work, we need something to tell us that they will work on
the real hardware. This brings us the well-known powerful tool: Emulator. By
running our software on the Emulator, the Emulator will tell us how much power
the system consumes.

Power simulation has been used in VLSI design for a long time. However, until
a few years ago, most of the power simulation is only conducted after the design
of the chip and only for packaging consideration. As more and more attention
is drawn to low power embedded chips and systems, EDA tool developers begin
to put more effort on power consumption considerations of other design phases.
Now there are power estimation tools at most levels of design. The following is

a brief summary of the major tools that are available at this time.

2.4.1 Transistor Level Tools

Tools at this level are generally very accurate and mature, and fall into two
general categories: the circuit analysis tool, like SPICE and its many variants,
and the switch analysis tools like PowerMill(Epic), ADM (Avanti/Anagram) and
Lsim Power Analyst(Mentor).

The primary advantages of transistor level tools are accuracy, within a few
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percent of silicon, and well-accepted abstraction - most IC designers understand
transistor level analysis and rely upon it. However, these tools have significant
issue in their applicability to lower power design at higher levels; capacity and
run time characteristics limit their use to small circuits, or very limited depths

of simulation vectors for larger circuits.

2.4.2 Logic Level Tools

Numerous logic level power analysis tools are currently available from a number
of vendors: DesignPower and PowerGate(Synopsys), WattWatcher/Gate(Sente),
PowerSim(System Sciences), POET (Viewlogic) and QuickPower(Mentor) among
others. Each of these tools operates on a gate level net-list, such as Verilog, and
assumes the availability of a gate level power library.

Compared to the transistor level tools, gate level tools trade off accuracy for
significant improvements in run time and capacity. For example, gate level power
simulations are generally claimed to be within 10 to 15% of the accuracy of switch

level tools, but run at least an order of magnitude faster.

2.4.3 Architecture Level Tools

The architectural level, or RT level, is the design entry point for most digital
designs today. The design decisions made at this level can have a dramatic
impact on the design’s overall power characteristics. Thus the use of tools at this
abstraction level is of the utmost importance.

WattWatcher/Architect(Sente) is the first commercially available tool operat-
ing at the architectural level. WattWatcher/Architect reads Verilog and VHDL

RT level description. It utilizes a conventional gate-level library and simulation
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data from an RTL simulation to compute a power estimate for the entire chip,
including all the peripherals.

There are several research works going on in academics at this level. Vivek
Tiwari et al.[24] have done a great job in starting a new method of doing power
estimation(please refer to section 3.4 for details). While providing reasonable
accuracy (20%), this experiment-based method is straight forward to implement,
and is also easy to glue with a simulator for doing performance analysis. N.
Vijaykrishnan et al.[26] has done research work on coming up with a simulator
that is based on a RTL library. This method combines the estimator with a
simple-scalar simulator. Also it simulates the memory and bus power consump-
tion. Another relevant architectural level power estimator is from David Brooks
and Vivek Tiwari, et al. [1]. This estimator is based on a suite of parameterizable
power models for different hardware structures and on per-cycle resource usage
counts generated through cycle-level simulation.

Similar to the comparison between transistor level tools and gate level tools,
architectural power estimation trades off accuracy for even larger improvements
in run time and capacity. Reasonable accuracy (WattWatcher/Architect claims
to be within 20% to 25% of silicon)is maintained while execution speed and
capacity are significantly enhanced, thereby enabling design space exploration

which would be too slow or tedious to do efficiently at the gate level.

2.4.4 Behavior Level Tools

Generally the least explored of the abstraction layers in terms of power, the
behavior level is currently unsupported by commercial tools. Being an active area

of academic research, power estimation at this level is typically accomplished by
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Level Accuracy Speed

Transistor - Switch 5-10% 107 v-t/min

Logic - Gate 10-15% | 10® v-t /min

Architecture - RTL 20-25% | 10° v-t /min

Behavior(speadsheet) | 50-100% minutes

Table 2.2: Power estimation tools comparison by abstraction level

using spread sheets. These spread sheets are quick and easy to use, but suffer
from a very large variance in accuracy.
Table 2.2 shows some of the key characteristics of low power design tools, by

abstraction level.

2.5 Speed Setting And Voltage Scaling

From the above discuss we know that power supply voltage is a very critical fac-
tor in determining the whole system’s power consumption. That is why when
the power consumption of Intel’s Pentium IV exceeds 50W, Intel introduces its
SpeedStep technology into the Mobile Pentium IIT microprocessors, in order to
provide a low power chip. That is also why Transmeta(CA) can be a very suc-
cessful company in its leading-edge Crusoe low power microprocessors where the
similar techniques were used to lower the supply voltage of the chip.
Microprocessor’s maximum clock speed has some relationship with the supply

voltage. Reducing supply voltage results in increased circuit delay, and to a good
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accuracy, the circuit delay is given by

tdetay = k * (Vag) | (Vaa — V2)* (2.3)

where V} is the threshold voltage, and k is a constant. With V; being a typical
value of 0.6V for CMOS circuits, we have the relationship indicated in figure
2.3. The Y axis is not absolute frequency value, instead, it is a value that is
proportional to the frequency. This graph is to show when the supply voltage
drops, the maximum processor speed will drop.

In order to achieve both low power and high performance, we need the pro-
cessor to run at low supply voltage, i.e. slow speed clock, when the processor’s
load is low, and to run at high supply voltage,i.e. high speed clock, when the
processor’s load is heavy. This inspired the voltage scaling technology.

Voltage scaling means that a processor can runs at different level of supply
voltage and clock speed. As for the optimal number of levels, there has not been a
clear research result. Intel is using 2 levels in its Mobile Pentium processor, while
Transmeta is using 32 steps in its Crusoe processor. Certain instructions can
cause the processor to jump from one level to another level. The processor needs
a certain amount of transition time before it can start running at the new level.
For Crusoe processor, the transition period length will increase as the number of
transition levels increase.

Mark Weiser et al. [27] were one of the few early groups that contributed to
voltage scaling algorithms. They used task-driven simulation to gather the power
consumption data where fine grain control of CPU clock speed was imposed. The
PAST algorithm they proposed also serves as the reference for much of the later
research work. The PAST algorithm basically predicts the processor load by

looking back at a fixed time period. If the prediction is too aggressive and the
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work is not finished in the prediction period, the rest of the work will be added
to the next prediction computation. This is a relatively simple algorithm, and it
gives out considerably good results considering the simplicity of the algorithm.
Dirk Grunwald et al. [10] implemented the PAST and other algorithms on
an experimental pocket computer that runs a complete, functional multitasking
operating system(a version of Linux 2.0.30). They used these algorithms to adjust
the processor speed to reduce the power used by the processor. Their results show
that the algorithms tested consistently failed to achieve their goal of saving power
while not causing user applications to change their interactive behavior.
Kinshuk Govil et al. [9] have proposed several variations of the PAST algo-
rithm and compared them, including PAST, FLAT,LONG_SHORT, CYCLE,PEAK
etc. They tried to find a pattern of the past power consumption and predict the
future load based on the pattern. Their result is that the PEAK algorithm, which
is a specialized version of pattern based algorithm, has the strongest performance.
Inki Hong et al. [11] developed a design methodology for the low power core-
based real-time system-on-chip based on dynamically variable voltage hardware.
They addressed the issue of how to develop effective scheduling techniques that
treat voltage as a variable to be determined, in addition to the conventional
task scheduling. They also addressed the selection of the processor core and
the determination of the instruction and data cache size and configuration. The
highlight of their work is that their proposed approach, which is a non-preemptive
scheduling heuristic way, achieved results that are close to optimal for many test

cases.
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2.6 Real Time Operating System

Real Time Operating Systems (RTOS) are widely used in the embedded system
industry. In this section, the requirement of an RT'OS is given, and some concepts

in real time systems are discussed.

2.6.1 Requirement of Real Time Operating Systems

Liu [18] proposed that a good RTOS at least offer the following things: First
an RTOS needs to offer a method to schedule tasks. The second one is tim-
ing maintenance, i.e. the RTOS needs to be responsible for both providing and
maintaining an accurate timing method. The third one is to offer user tasks the
ability to perform system calls, i.e. the RTOS offers facilities to perform certain
tasks that the user would normally have to program himself. The last thing that
an RTOS needs to offer is a mechanism for handling interrupts efficiently, in a
timely manner, and with an upper bound on the time it takes to service those

interrupts.

2.6.2 Several Concepts of Real Time Systems

Task A task, also called a thread, is a simple program that thinks it has the
CPU all to itself. Note that in desktop systems task and thread are to-
tally different concepts, but in embedded system, usually they can be used
interchangeably. The design process for a real-time application involves
splitting the work to be done into tasks responsible for a portion of the
problem. Each task is assigned a priority, its own set of CPU registers, and

its own stack area.
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Multitasking Multitasking is the process of scheduling and switching the CPU
between several tasks. Multitasking maximizes the utilization of the CPU
and also provides for modular construction of applications. One of the
most important aspects of multitasking is that it allows the application
programmer to manage complexity inherent in real-time applications. Be-
cause the complex applications are usually divided into several tasks, they

are typically easier to design and maintain using multitasking.

Context Switch When a multitasking kernel decides to run a different task,
it simply saves the current task’s context(a couple of CPU registers) in
the current task’s context storage area, typically the stack in embedded
operating systems like uC/OS. Once this operation is performed, the new
task’s context is restored from its storage area then resumes execution of

the new task’s code. Context switch adds overhead to the application.

Kernel The kernel is the part of a multitasking system responsible for the man-
agement of tasks and communication between tasks. The fundamental ser-
vice provided by the kernel is context switching, but most kernels provide
some basic facilities, like resource share protection, inter-process communi-
cation, interrupt handling etc. The use of a real-time kernel usually simpli-
fies the system design, but the price is the ROM and RAM consumed by

the kernel. Also the kernel will consume CPU time.

Priority based Scheduling Each task in the system is assigned a priority based
on the importance. With priority-based scheduling, the control of the CPU
is always given to the highest priority task ready to run. Priority based

scheduling includes static priority and dynamic priority scheduling. Static
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priority scheduling is that the priority of each task does not change during
the application’s execution. Each task is thus given a fixed priority at com-
pile time. All the tasks and their timing constraints are known at compile
time in a system where priorities are static. Dynamic priority scheduling is
that the priority of tasks can be changed during the application’s execution;
each task can change its priority at run time. This is a desirable feature to
have in a real-time kernel to avoid priority inversions. Please refer to [16]

for details on priority inversion.

Non-preemptive and Preemptive Scheduling Non-preemptive scheduling
requires that each task does something to explicitly give up control of the
CPU. This is also called cooperative multitasking. Tasks cooperate with
each other to share the CPU. A new higher priority task will gain control of
the CPU only when the current task gives up the CPU. The most important
drawback of non-preemptive systems is responsiveness. With preemptive
scheduling, the highest priority task ready to run is always given control of
the CPU. When a higher priority task is ready to run, the lower priority
task is preempted(suspended) and the higher priority task is immediately

given control of the CPU.
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Chapter 3

Test-bed Construction

Part of this project’s goal is to construct a solid embedded system test-bed for
current and future research. The test-bed should have the following features:

Accuracy — the CPU emulator inside the test-bed should be a cycle-accurate
emulator.

Real — Any binary programs, including operating system and applications
that run on the real hardware should be able to run on the simulator without
any need to change them.

Full-functional — The test-bed should support sophisticated operating system
to run on it.

Ability of logging — The test-bed should provide methods to reflect all kinds
of statistics and other information that is going on inside the chip while the code
is running.

Flexibility — New modules, like power modeling modules, or Speed setting
modules, should be able to be added easily. If some part of the chip is needed to
be excluded from the experiment, it should easily be done.

Portability — The code should be written in ANSI C.

Maintainability — The code should have good format and documentation, for
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future modification.

3.1 Brief History

This part is a brief history of the test-bed evolution. The research is not described
here.

The whole project started from scratch. Chris Collins, Eric Fiterman and
I started this in Feb. of 2000. At the end of May 2000, the test-bed ran the
first Real Time Operating System - NOS, which is our home-made operating
system. Also, we finished verifying the accuracy of the emulator inside the test-
bed by using the real MCORE evaluation board and its developing system. By
the end of May, we got another RTOS — Echidna, which is a cooperative RTOS,
running on the simulator. At that time, the test-bed was in a working-but-messy
state. In June of 2000, I started working to make this a serious embedded system
test-bed. First, part of the emulator and the object file downloading system were
rewritten to make it clean. Then during the summer, Katie Baynes and Christine
Smit joined into the group. We investigated several power modeling techniques
and added a power modeling function to the test-bed. Then a screen terminal
emulator and a display library were added by me so that the application can
dump data onto the screen. This dramatically improved the chance to port real-
life operating systems to the simulator. Also this made debugging applications
running on the top of the test-bed much easier. Then I ported a commercial
RTOS puC/OS to the test-bed. With both cooperative operating system and
pre-emptive operating system running on the test-bed, we began research on the
performance of these operating systems. This resulted in a systematic design of

logging information(please see section 3.5 for more).
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Then I added speed-setting and voltage scaling modules to the test-bed. The
functionality of the test-bed was now different from the original physical processor
functionality. I added the speed-setting and voltage scaling capability to the chip,
according to the data-sheet of other processors. This gave us a great opportunity

to look into the area of voltage scaling optimization.

3.2 The Cycle-accurate Emulator

3.2.1 Why MCORE?

MCORE was a new design of four years work targeting the area of low-power
embedded microprocessors. The current existing architectures are not suitable
for low-power applications due to their inefficiency in code density, memory
bandwidth requirements, and architectural and implementation complexity[21].
MCORE architecture was designed from the ground up to achieve the lowest mil-
liwatts per MHz. The MCORE instruction set was optimized using benchmarks
common to embedded applications coupled with benchmarks targeted specifically
for portable applications. However, due to business reason, Motorola is stopping

supporting the MCORE architecture in favor of StrongARM.

3.2.2 The Basic Structure Of MCORE Processor

The Motorola MCORE architecture is a 32-bit Load/Store architecture with a
fixed 16-bit instruction length and 32-bit data length. It has a 16 entry 32-bit
general register file, a 16 entry 32 bit alternate register file to allow fast interrupt
support, and a 13 entry control register file accessible only by the supervisor mode.

Its execution pipeline’s four stages are completely hidden from the application
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software. Most instructions execute in a single cycle with two cycle execution for
loads, stores, and taken branches and jumps. The address space is byte, halfword,
and word addressable, and allows both fast and normal interrupts, allowing those
interrupts to be either vectored or auto-vectored interrupts.

The pipeline for the MCORE consists of four states: instruction fetch, in-
struction decode/register file read, execute, and write-back. All of these stages
operate simultaneously, making single cycle instructions possible. All sixteen
general purpose registers can be used as source operands and instruction results.

The MCORE programming model is defined for two privilege modes: super-
visor and user mode. There are certain operations not available in user mode.
User programs can only access registers in the general register file, whereas super-
visor mode programs can access all registers, using control registers to perform

supervisory functions.

3.2.3 The Emulator And Its Validation

The emulator simulates the pipeline of the MCORE processor. The basic struc-
ture is that at every cycle all the pipeline stages are simulated by the code, and
the register status is kept in variables. The functionality of each instruction is
finished by calling the corresponding functions in C code during Execution stage.
This is done by using a pointer to function name, which eliminates all the over-
head if ”switch” clause is used. Figure 3.1 is a simple flow chart of the emulator
itself.

Exceptions are checked every cycle. If there is an exception, then a series of
steps are triggered, the relevant registers are copied to some shadow registers and

the pipeline is partially flushed according to the MCORE hardware specification.
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Figure 3.1: The flow chart of the emulator

After a certain number of cycles, the CPU starts fetching the instructions of the
exception handler.

The validation of the emulator was done by two steps. The first step was to
run a set of benchmark applications both on the hardware and on the emulator.
The register values were compared after the application was finished. This was
mainly for validation of the functionality of the instruction set. The second
step was to run an operating system — Echidna[23] on the emulator and on the
hardware. This was mainly for the testing of interrupts and exceptions. Also
during this step the accuracy of the emulator was determined. The cycle error of
the emulator compared to the real hardware was about 0.01%. So this emulator

is a cycle-accurate emulator.
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Figure 3.2: The structure and elements of the whole test-bed

3.3 Advanced Feature Of The Test-bed

To make the emulator a truly embedded system test-bed, which means that se-
rious operating systems should be able to run on it, and useful data can be
grabbed out of it, several parts need to be added. Following is the description of
the features, including timer, file downloading tools, display emulator and 1/0O
simulation. All these peripherals were added according the MMC2001 micropro-
cessor, which is a low-end product based on MCORE architecture. Figure 3.2 is

the organization of the whole test-bed.

3.3.1 Interrupt Controller

Following the MMC2001 processor specification, an interrupt controller was im-
plemented in the test-bed. All the external interrupts are controlled by this

controller. Each interrupt source has its own mask bit and source bit. Normal
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interrupts and fast interrupts are implemented. This interrupt controller will be
used by the PIT timer and other I/O devices. Please refer to MMC2001 reference

manual [13] for details.

3.3.2 Timer

A counting timer is an essential unit for most of the operating systems. Task
scheduling, context switching and many other system functions solely depend on
the functionality of a timer. Usually there are several timers in a microprocessor.
One of them is used by the operating system as system time tick. In MMC2001,
PIT (interval timer) timer is used for this purpose. The interval timer is a 16-bit
“set-and-forget” timer that provides precise interrupts at regular intervals with
minimal processor intervention. The timer can either count down from the value
written in the modulus latch, or it can be a free-running down-counter. This PIT

timer is implemented in the test-bed.

3.3.3 Downloading Tools

With a MCORE emulator that can execute MCORE instructions and a timer that
can do timeout, running code on the emulator is possible. However, the GNU
compiler only generates ELF format object files, which is a fairly complicated
format for execution and linking. We need a tool to extract all the executable
code from the ELF file and put it in the right place so that our emulator can run
them. Also, on real hardware, when the system power cycles, it usually gets the
code from FLASH memory, which is one kind of non-volatile memory, and then
either copies the code to RAM or just executes directly out of FLASH memory.

The FLASH memory method is implemented in this test-bed. A big all-0 file,
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Figure 3.3: The procedure from writing source code, compiling and linking, down-

loading to the virtual flash memory, to running it on the test-bed

2MBgytes for now, is dedicated as the flash memory. The flash memory address is
set, to the address where the first instruction after processor power-up is fetched.
Every time the test-bed starts, which acts like the power-cycling of real hardware
system, the emulator fetches the code from the FLASH memory and executes
out of it. Also, after power up, this FLASH memory acts like ROM, instead of
normal FLASH, which means no write is allowed to this part of the memory.
This helps the user debug the system when the code is manipulating the FLASH
while it is not supposed to do so. In order for the emulator to execute the code,
all the user needs to do is to use the provided tool to download the code to the
FLASH memory and start the emulator.

A separate C program, the download tool, is written to take the ELF file,
which is generated by the target compiler, as the input and write the executable
code to the right place in the FLASH memory. Basically, it parses the head of the
ELF file and finds the executable segments and their memory address, and then
output them to the FLASH memory file image. Figure 3.3 is the data flow from
writing a C source code, to downloading it to the virtual flash memory, to running

it on the test-bed. Note that in reality most of the RTOSs and applications are
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compiled together and then are downloaded to the memory.

3.3.4 Display Emulator

With a bare-bones CPU and the downloading tools, code is able to run on the
testbed. However, we have not yet found a way to see the result of our program.
The only way we have to inspect the execution of the code so far is to put the
emulator into debug mode so that it outputs some information, such as registers
values, at every cycle. The information is too much, and we need to spend a lot
of effort finding out what we need. We need some kind of display method so that
we can write some code in our application program to say "I am here!”. This
will greatly expedite the debugging of applications and ported operating systems.
Note that printf is still one of most powerful debugging tools for programmers.
A virtual screen is implemented in the test-bed. The idea is to allocate some
memory out of the main memory of the processor as display memory, like an
old x86 with DOS. With direct writing to the display memory, one can output
whatever she wants onto the screen. Ncurses library and pthread library in
Linux were used to develop the virtual screen. Basically after the emulator starts
running, a new display thread is created and running in parallel with the main
emulator program. The only function of the display thread is to read the display
memory and dump the data to the host machine screen as fast as possible. The
use of ncurses library makes the display very stable, without any feeling of flash.
It is not comfortable enough for a programmer to use a primitive display
method like what we have so far. It will be awkward since the user needs to
find out where the display memory is and find out what value to write there in

order to display a character. A basic library is needed. In order to prevent the
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application code from getting too big, the standard IO library is not supported.
Instead, a series of concise but useful display functions are home-made by the
author to support display, including functions to write a character, string, or
integer to the screen, also including cursor manipulation functions, like moving
the cursor to a specified place, and getting the cursor’s position, etc. With these
powerful but very small foot-print functions, user application can display almost

anything on the screen.

3.3.5 I/0 Simulation

Most embedded applications involve more or less input/output operation. Typ-
ical applications are GSM encoding/decoding algorithm, MPEG algorithm etc.
To be able to run such applications on the test-bed, we need to include the
input/output capability into the test-bed.

Most I/Os have a buffer and the physical interface. While transmitting data,
the buffer will temporarily hold the data while the physical interface transmits
them out synchronously or asynchronously. While receiving, similarly, the buffer
will serve as a temporary place for the incoming data to stay before the upper
layer driver or application retrieves the data.

Considering this generic structure of 1/0O, I/O simulation is implemented in
the simulator in this way. For simplicity, the buffer size is set to the size of the
port size. In other words, there is literally no buffer space for transmitting or
receiving more than once. While receiving, the test-bed reads the data from a file
in the host system which contains all the data. Every read size is the port size
of the input. After the read is done, an interrupt is generated to tell the system

the arrival of the data. The input can operate at the specified speed. If the data
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in the buffer is not retrieved by the software when the next data arrive, it simply
overwrites the previous data. While transmitting, every time the test-bed finds
that there is new data in the transmitting buffer, it delivers it immediately. So
the transmission is operating at ideal state, meaning that it can transmit as fast
as the processor clock speed. The transmitted data is stored to a local file in the
host system.

With this implementation, some classical embedded system applications can
be ported to run over the test-bed, including the GSM algorithm and MPEG

algorithm.

3.4 Power Consumption Model

Unlike the instruction set simulation, which can be done simply by using some
simple computation statements in the function, there is no obvious way to tell
the power and energy consumed by the system. Instead, in order to get these
numbers, we need to find out all the relevant factors and construct a mathematical
model which will approximately reflect the power and energy consumption of the
system.

Considering what we discussed in the previous chapter about the different
power models that can be used in doing this estimation, basically, for an instruc-
tion level emulator, there are two ways to do this. The first way is to construct a
library of the power consumption of all the modules in the processor. This library
can be constructed by using some low level simulation tools, like SPICE, which
can give precise power consumption numbers for a small circuit. After running
simulation for all the modules in the processor, the library is ready. Then it is

decided which modules will be involved for every single instruction’s execution.
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Then when a piece of code is executed, all the modules’ activity will be in known
state. With some calculation, the power consumption will be found.

The second way to add the power estimation function to an instruction level
emulator was first published by a Princeton group [24]. Instead of doing simula-
tion, this method is based on experiment data. The power consumption of each
single instruction is measured by using an infinite loop with only this instruction
inside. Because it is an infinite loop, a jump instruction has to be used. In order
to minimize the influence of this instruction, several hundreds of the testing in-
struction are included inside the loop. The power number will be the base power
consumption number of this specific instruction. This number multiplied by the
execution time of the instruction will serve as the basic energy consumption of
the instruction.

When a piece of code is running, all the instructions energy consumption
numbers are simply added together to estimate the total energy consumption.
However, according to the paper [1], this number will always be smaller than the
real measured number. One explanation is that during the single instruction test,
the state of all the modules inside the processor will not change as much as when
the next instruction is different from the previous one. This extra power con-
sumption is called inter-instruction overhead, which is different for different pair
of instructions, and this accounts for a big part of the processor’s overall power
consumption. Measuring all the instruction pairs overhead power consumption
is nearly impossible due to large number of pairs. It was found that this number
stays at a similar level for most instruction pairs. Therefore, a simple substitute
method is to add a constant value to all the executed instruction pairs to com-

pensate this overhead value. With this added, the simulation power consumption
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Figure 3.4: The power model for a single instruction

number is close to the measured number, and the error is within the acceptable
region.

Another factor that influence the accuracy of this method is the changing
of the operators of each instruction. Moving an all zero constant and moving
an all one constant will result in different circuit state changes, and therefore
different power consumptions. However, because the parameter of an instruction
is random, we can use an average number to represent this fluctuation. Test
results show that this method is good enough.

Validation of the power model is not an easy job, especially since we do not
have a decent energy measurement tool other than a simple digital multi-meter.
The way we validate our power model is to use a small program and let the
program run in an infinite loop, and then use the digital multi-meter to measure
the current that the board consumes. Because the multi-meter gives out an
average current value and the program only needs several millisecond to run each

iteration, the reading number will give out the average current consumption.
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With a simple multiplication with the power supply voltage, the average power
consumption is found. After several such tests and comparing the results with the
simulation results, the error is within 15%. This is acceptable error considering
that this is an architecture level tool and the primitive tools we used to measure

the power consumption.

3.5 Logging

One of the most significant advantages of emulators over real hardware is that the
emulator can expose much more information about what is going on inside the
processor than a piece of a real hardware. The exposure of all these information
is what we call logging.

Logging is different from debugging information. While both of these dump
data about the inside emulator so that the user knows what is happening, debug-
ging information is mainly used at the stage of emulator developing to make sure
it is working correctly. After knowing the correctness of the emulator, most of
this information is not very useful to the end user, i.e. a researcher that is doing
an experiment on the emulator. On the other hand, logging tells what the end
user cares about. It dumps raw data directly from the emulator, or it does some
simple calculations and gives out more relevent data. The logging information
can be tailored by the end users to include what they want to know and exclude
what they do not want.

The logging information will be output to a file in the host file system in the
specified format, so that after the simulation the user can do further processing
to these data by other programs.

A very useful way to monitor the system is to do bus monitoring. In the
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Figure 3.5: Overall structure of the test-bed

research, energy consumption of each part of the uC/OS is needed. However,
because uC/OS is a preemptive operating system, timer tick interrupts and other
interrupts can happen any time and anywhere in the code, Therefore, it is not
possible to use flags to indicate which part the program is in, because the program
can jump to another part right after the flag is set. In this case, memory bus
monitoring will be very useful. By marking the beginning memory address and
ending memory address of each section, and then monitoring the instruction
memory bus, the simulator will know precisely where the program is and thus
log the correct information. This is very difficult to do when running xC/OS on
a piece of real hardware, even with sophisticated instruments.

The logging feature in the current test-bed mainly output the performance
relevant data and energy consumption relevant data, considering our research
focuses. The details will be discussed in the following chapters. Figure 3.5 is the

overall structure of the test-bed and the position of the logging module in it.
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3.6 Running Real Time Operating Systems

We have successfully run three real time operating system on the test-bed: NOS,
Echidna and uC/OS. Since Echida is similar to NOS in many ways, this paper
does not discuss the Echida RTOS. Please refer to [23] for details of Echidan
RTOS. Following is a detailed description of NOS and puC/OS.

3.6.1 NOS

NOS represents the type of ”roll-your-own” RTOS often produced in the em-
bedded systems industry. It was designed in-house and is based entirely on
descriptions of home-grown embedded system software given by practicing en-
gineers in the embedded-systems industry [8]. NOS is a fixed-priority multi-rate
executive for periodic tasks [5] and handles interrupt-driven stimuli via masking
interrupts and polling the interrupt status registers when idle. Its main control
loop is shown in Figure 3.6. NOS’s callout queue is taken from the callout table
in UNIX [19]; events to happen in the future are placed in the queue keyed by
the time at which they are expected to execute, and the delta field in the event
structure represents the time difference between the event in question and the one
before it in the queue. The delta field of the first event represents the invocation
time relative to now. If the value is negative, the deadline for the first task (and
perhaps following tasks as well) has been missed; if the value is zero, it is time
to execute the first task; if the value is positive, the first event is to happen at
some point in the future. One nice feature of this organization is that a periodic
task can easily be created by having a function place itself back on the queue at
the end of its execution.

NOS only handles a job or interrupt if there are no jobs or interrupts waiting
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long update_timeoutq( long then )

struct event *ep;
long tnow = now();
long delta = then - tnow;

ep=(struct event *)LL_HEAD(timeoutq);
ep—>timeout += delta;
return tnow;

}

int main()
{
struct event *ep,*tp;
unsigned long time, timeout,tnow;

LL_INIT(timeoutq); LL_INIT(freelist);
init_tasks(); time = now();

while (1) {

/* Handle high—priority tasks */
LL_EACH(timeoutq, ep) {
if (ep—>timeout > 0) break;
if (ep—>priority == HARD_DEADLINE) {
tp=(struct event *)ep—>prev;
ep—>go(ep, time);
I*accumulate the negative timeout */
if (ep—>timeout < 0){
struct event * p=(struct event *)LL_NEXT(timeoutq,ep);
p->timeout += ep—>timeout;
}
ep = (struct event *)LL_DETACH(timeoutg, ep);
LL_PUSH(freelist, ep);
time = update_timeoutq(time);
ep=tp; /* Keep doing high—priority tasks */

/* Handle high—priority interrupts*/
if (Byte(MEM_IO_INTSRC)==HIGH_PRIORITY) {
handle_interrupt(Byte(MEM_IO_READ));
time = update_timeoutq(time);
continue;

/* Handle low-priority tasks*/
ep = (struct event *)LL_HEAD(timeoutq);
if (ep && ep—>timeout <= 0) {
ep—>go(ep, time);
I*accumulate the negative timeout */
if (ep—>timeout < 0){
struct event * p=(struct event *)LL_NEXT(timeoutq,ep);
p->timeout += ep—>timeout;
}
ep = (struct event *)LL_DETACH(timeoutd, ep);
LL_PUSH(freelist, ep);
time = update_timeoutq(time);

continue;

/* Handle low-priority interrupt */
if (Byte(MEM_IO_INTSRC)==LOW_PRIORITY) {
handle_interrupt(Byte(MEM_IO_READ));
time = update_timeoutq(time);
continue;
}

time = update_timeoutq(time);

return (0);

}

Figure 3.6: The main control loop of NOS, a multi-tasking non-preemptive sched-
uler. High priority tasks are handled first, followed by high priority interrupts.

Then low-priority tasks and low-priority interrupts are handled.
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at higher priority levels. Therefore, at levels beneath priority 1 (HARD jobs that
have reached their time to execute), only one job is executed before jumping back
to the top of the control loop, e.g., only one interrupt is handled before checking
the callout queue to see if any more HARD jobs are ready to run. It is a simple
fixed-priority scheduler with the expected weakness that low priority jobs will be

ignored indefinitely if there is enough work to do at a higher priority.

3.6.2 uC/OS

The pC'/OS—1I1 real-time kernel is a full-featured preemptive multitasking RTOS
[16]. It is portable, targeted at both micro-controllers and DSPs, and it currently
runs on over fifty different instruction-set architectures. It is designed to have
a small footprint: there are roughly 1700 lines of code in the OS (including
comments), and modules are only compiled into the executable if used by the
application. Multi-tasking is preemptive, The system can run up to 64 tasks,
with 8 of those tasks reserved for the kernel’s use. It provides traditional OS
services such as IPC, semaphores, and memory management, and it also provides
time-related features such as the ability to sleep until a specified time and callout
functions, in which an application can specify code to execute on task creation,
task deletion, context switch, and system timer tick. Because uC/OS — II has
no concept of a periodic task, we used two facilities within the kernel to imple-
ment periodic job invocations. Each job sleeps on a unique semaphore, and a
user-level task is attached to the clock interrupt (uC/OS — II allows user-level
code to be attached to arbitrary events). This user-level task keeps track of the
job invocation times and generates wakeup messages when the job periods are

reached.
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Chapter 4

Performance Experiments

In this chapter, experiments are conducted to benchmark the real-time attributes
of the three real time operating systems. One aspect of the real-time attributes
is, if a task is specified to run at period T, how well the OS can schedule to make
this task run on the beat. If the task is not executed on time, we call the time
error “jitter”, without regarding whether it is earlier or later. Jitter tells the
predictability of an OS, which is very important in embedded systems.

Another aspect of the real-time attribute is interrupt response time, which
means the time from the moment an interrupt is delivered to the processor, to the
moment the interrupt handling program responds. This is also a very important
factor in embedded systems.

In this chapter, the first section will describe our benchmarks and how we run

these benchmarks. The second section will discuss the experiment results.

4.1 Benchmarks

Three RTOSs were tested on the test-bed. Two sets of benchmarks were used:

periodic inter-process communication(IPC) and a 256-tap Finite Impulse Re-
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sponse filter(FIR). To add some non-determinism to the evaluation of these two
operating systems, and to offer more realistic simulations indicative of real-world
systems, two different additional tasks were created. These tasks can be run
concurrently with the above listed benchmarks to provide a background load.
These two tasks are a periodic control loop (CL) and an aperiodic inter-process

communication process(AP-IPC).

Periodic Inter-Process Communication Periodic inter-process communica-
tion (IPC) is the simplest of the benchmarks that were used to evaluate
performance. The first job grabs data off of the input I/O port and stores
it into shared memory. The second job takes that value from shared mem-
ory and writes it to the output I/O port. There is no computation, only
the movement of data. This task represents the simplest possible two-job

task possible.

Finite Impulse Response Filter The finite impulse response (FIR) filter is
the most computation intensive of the four benchmarks. The second job
runs a 256-tap filter on the data that has been collected by the first task.
For each run of the second job, the last 256 values to be inputted by the
first job are used to compute an inner product, and that value is output to

the I/O port. In other words:

Yn = b().rn + blﬂin_l + bgfL'n_Q + ...+ bq_l.’L'n_q+1 (41)
Where y,, is the output and zj, is the input. (q=256 in this case).

Background Load CL is defined as a 32Hz periodic task in this experiments.

The task itself does not do much work. Writting to a specific memory
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address to register itself is one of the few things it does. AP-IPC is the
kind of IPC that is driven by interrupts. It runs randomly, with the average
period of 10 milliseconds. Again, the main reason to use AP-IPC is to

disturb the system and observe the response of the operating systems.

In summary, the following parameters are varied when running the experi-

ment:

RTOSs: uC/OS,NOS

Periodic tasks: IPC,FIR

e Workload: 1,2,4,8tasks

Periods: 1,2,4,8,16ms

Background load: AP-IPC+CL, none

4.2 Jitter Results

Jitter measurements represent the time deltas between successive output seen
at the I/O device for a given executing task. When multiple tasks are execut-
ing simultaneously, each writes to a different I/O port, enabling the distinction
between tasks, and each task contributes equally to the data in the graphs.
With the definition of jitter, it is clear that if the first time the task is scheduled
At later than it is supposed to be, and from that time on this task is always
scheduled At later than the theoretic time, only the first time there is jitter. This
is what we want the system to be, because this way the system is predictable.

Figure4.1(a) shows this kind of performance. What we do not want to see is that
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Event

Event

(b ‘ Time
Figure 4.1: Jitter of periodic tasks

the task is sometimes on time, sometimes late, and sometimes early, like what is
shown in (b) of Figure 4.1.In this case, the system is not predictable, although it
is trying to maintain the task on time. In other words, jitter is the reflection of
the predictability of a system.

Since Chris Collins has done a great job in his thesis describing the similar
tests running NOS and Echidna, I am not going to go into details about the
comparison of these two OSs. Please refer to his thesis [3] for details. In the

following discussion, the main focus will be on comparing the results of NOS and

uCJO0S.

4.2.1 Low System Load

Let’s look at Figure 4.2 about the performance of these two OSs when system load
is low. The X axis is the error between the supposed scheduling time and actual

scheduling time. This is what we called Jitter. The Y axis is the probability of
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Figure 4.2: Jitter graphs: With relatively low load, both uC/OS and NOS per-
formed fairly well. While uC/OS tried to stick to 0 with positive and negative

jitter, NOS just simply scheduled tasks later.

48



the jitter. The best case will be 100% time the jitter is 0. When running IPC
without background noise(including CL and AP-IPC), not surprisingly, both of
the OSs performed pretty well. However, NOS is a little better than uC/OS in
that when the running period was lowered to 1ms, uC/OS occasionally(with less
than 1% probability) scheduled tasks earlier. When the running interval went
from 2ms to 1ms, this probability increased, although by not much. With NOS,
the graph is very clean. Every thing happens just on time.

Now let’s take a look at Figure 4.2 to see what happened when the background
load was added. Apparently this made a big difference on both systems. Look
at NOS first. With 16ms running interval and 1 task, the system is on time 55%
of the time, and the rest of the time it is a little bit later. Similar is the case of
2 tasks. However, as the task number increased to 8, more than the 45% of time
tasks are late, with maximum delay of 1ms. The strange thing is that about half
of the time the system is on time and half of the time it is not. This has to be
caused by the background load.

When examining the background load, we found that the CL task was running
at 32Hz, which is exactly half speed of the 16ms-interval task. That means every
other time the target task will be disturbed by the background task, and thus
half of tasks were late.

As the interval time strays from 31ms(the period of 32Hz), the background
load has less impact on the system performance. This is shown in the Figure
4.2. When the interval is 1ms, the background load’s periodic impact is almost
gone(less than 3%), while there is still some influence when the interval is 2ms.
Notice that 100Hz AP-IPC did not have a big impact on system performance.

With pC/OS, it’s a similar story. The 16ms-interval tasks were greatly af-
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fected by the background load. As the interval decreased, the impact decreased
too. However, there was always a small portion of time that the tasks were not

on time.

4.2.2 High System Load

When the system load went high, e.g. running FIR instead of IPC as the target
task, let’s examine this comparison again. Please see Figure 4.3 for the experi-
ment results.

First, without background load, both systems performed relatively well when
the interval was long(16ms). As the interval decreased, unable to finish all the
tasks on time, NOS just pushed all the system work late(the ’x’ in Figure 4.3).
Note that the running time of 8 FIR tasks is more than 1 ms, simply because
the running time of 1 FIR task is more than 1/8 ms. In other words, the system
is overloaded when running 8 FIR tasks in 1 ms interval. NOS’s performance is
very stable and predictable. On the other hand, uC/OS successfully scheduled
part of the 8 tasks on time, with the price of the rest of the tasks being late.
These are just two different ways of dealing with the system being overloaded.
Each of them applies to some specific situations.

When background load was added, from the experience of IPC, we expected
some disturbance. And that happened. The 16ms interval tasks were greatly
affected, both NOS and pC/0OS. When we looked at the 16ms interval NOS
graph, the system performance was very bad, though the system should be able
to do a better job. Neither system predictability nor the real-time feature was
there. Only half of the time that tasks happened on time. The background

load accounts for most of this bad performance. As the interval decreased, the
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performance got better.

4.2.3 Observations

The following things were observed in this experiment:

1. Without background load and with reasonable system load , both NOS
and pC'/OS performed fairly well, with good predictability and real-time feature.

2. When being driven with high load, uC/OS tries to maintain part of the
tasks on time, while NOS keeps all of the tasks late while providing very good
predictability.

3. Background load will couple with the application task and greatly affect
the performance of the system. The affect will be worst when the background

noise has similar frequency as the application tasks.

4.3 Delay

Delay is another indication of a real-time system’s performance. Our delay num-
bers represent the time between an AP-IPC interrupt and the moment that the
I/O system sees the corresponding output from the AP-IPC task invoked as a
result of the interrupt. Thus, the delay measures the response time of the system
in terms of when the first reaction takes place.

The pC/OS kernel handles interrupts preemptively, while NOS use a polling
technique. What NOS does is that the hard-time task has highest priority. If
there is hard-time task ready to run, the CPU always runs that first. The high
priority interrupt will be handled when there is no hard-time task ready to run.

Thus, when the CPU is heavy-loaded with hard-time tasks, the response time
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might be very bad. This can be clearly seen in Figure 4.4.

Figure 4.4 is the delay times for both uC/OS and NOS. These represent the
range of CPU load from very light(1 IPC task, 16ms period) to very heavy(4
FIR tasks, 1ms period). As expected of a preemptive OS, uC/OS kernel handles
interrupts with absolute precision that is independent of application load. The
NOS’s performance is interesting here. When the system load is light, it has
very fast response time, even faster than the preemptive uC/OS kernel. This
is because NOS is a cooperative OS and when a task switches, there is no state
that needs to be saved. As the system load increases, the average response time
of the NOS system increases, and the response time spreads out along the time
axis randomly. When the system load goes very high, as shown in Figure 4.4, the

response time becomes unpredictable and thus unacceptable.
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Chapter 5

Power Consumption and Speed-setting

In this chapter, the experiments and simulations that were conducted to bench-
mark the power consumption of NOS and uC/OS are presented. First the break-
down charts of the RTOS’s power consumption are shown to provide some clues
as to which part of the OS is consuming how much power. Then the pros and
cons of some obvious ways to lower power consumption are discussed. After that,
focus is placed on a new technique that microprocessors just started to support
and how this is going to help lower the power consumption of the system. Also

an algorithm to utilize this technique is proposed and discussed.

5.1 Power And Time Consumption Ratio

The first thing we did after the power model was operational is to measure the
CPU usage breakdown. Before we began to analyze the data, we found out that
in our experiments, when no power-saving mode instruction is used, the power
consumption ratio and the time consumption ratio of a piece of code are very close
to each other. Please see Figure 5.1 for the data. Apparently, although each

instruction consumes different energy, due to the large number of instructions
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CPU usage breakdown when running 1,2,4,8 IPC tasks
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Figure 5.2: Power consumption breakdown of NOS and uC'/OS with IPC load

each section has(the section here means kernel part of the system, interrupt
handling part of the system, user application part of the system, etc. ), this
effect is compromised and it leads to the very close power and time consumption
ratio. Also, this observation is supported by the data in paper [4], where the two
graphs that the author gives are very close to each other. However, the author,

R.P.Dick et al. , did not mention any thing about this.
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5.2 Power Consumption Break-down

In order to see the whole picture of how OS power consumption is distributed
during different running loads, we ran NOS with loads ranging from very light to
very heavy. We will see how it handled all these loads.

Figure 5.2 shows the energy consumption breakdown of NOS and uC/OS
when the system is on relatively light load (running IPC). These are the kinds of
situation when the tasks are running frequently but the tasks themselves are not
very time-consuming. Obviously, when IPC is running at 16ms period, almost no
computation load exists, and running an OS is overkill. uC/OS spends most of
the time doing kernel activity, while NOS is much more efficient in this case. The
kernel power consumption of NOS scales with application load, but this is not
the case with uC/OS. In the case of 2ms period, the energy consumption of the
NOS kernel increased by about ten times from 1 task to 8 tasks, but the uC'/OS
kernel energy consumption even dropped a little bit when the load increased (see
Figure 5.3). This is a very interesting phenomenon.

Figure 5.3 are the breakdown graphs when FIR tasks run. The FIR task is
the kind of task that consumes significant CPU time to do computation. Here
uC/OS is clearly showing that when the load increases, the kernel spends less
time on its own activity. Also, interrupts account for a considerable part of the
system energy consumption. Semaphores are used to do the periodic calling of
each task, since that uC/OS does not support periodic tasks by itself.

Several results can be seen in the data:

e The systems consume an enormous amount of energy doing nothing, as rep-
resented by the idle components. This is because neither NOS nor uC'/OS

has an intelligent sleep mechanism that can use less power when there is
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uC/OS CPU usage breakdown with 1,2,4,8 FIR tasks of 16ms NOS energy consumption breakdown with 1,2,4,8 FIR tasks of 16ms
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nothing to do; though the MCORE has such a facility (a doze mode that
can be awakened by a timer interrupt), the system just does not use it.
If implemented, this would save considerable energy resources in theory.
Note, however, that there is very little idle time as the system is pushed
up to but not beyond its limits, which is where embedded system engineers
would like their systems to be, as this makes most effective use of the CPU

resources.

e The kernel overhead in NOS scales with the application workload , while
the kernel components in the other RTOSs are more constant. The more
sophisticated RTOS does a better job of ensuring that all computations are
deterministic in the time and energy it takes to perform them, which gives
more predictable system behavior. The cost is obviously a higher starting

point for energy consumption.

e If user applications are not very heavy-duty, using an operating system
like NOS gives the system much more potential for power saving. This is
because of the simplicity of NOS. Running a complicated RTOS could be

an overkill in some cases.

5.3 Low Power-consumption States

From the data in Figure 5.2 and Figure 5.3, it is clear that there are many
occasions where the system has a considerable amount of idle time . Without
doing anything during this idle time, the system will just sit there spinning,
waiting for next task to be ready. Apparently this is not very energy efficient,

and we need to do something to utilize this idle part.
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The first thing that comes to most people’s mind is to use the power-saving
modes that the processor provides. Most modern processors provide at least two
kinds of power-saving modes. One is not-very-deep sleep, or doze. Usually this
mode just stops clocking the core of the processor, while all the other parts of
the processor are still working, including the clock itself. Once the processor is
awakened, usually by an external interrupt, the processor simply starts clocking
the core again. The advantage of this method is that it takes a very short period
for the processor core to recover. For example, the Z180 processor from Zilog can
recover from the lightest sleep mode within only 1.5 clocks[14]. The disadvantage
of this method is that since only the core is stopped during sleeping time, while
the oscillator is still running, limited energy consumption is saved. Jeff Scott et
al. mentioned in their paper [21] that the clcok activity itself consumes about
35% of core’s power.

The other power-saving mode is the deep sleep mode, or stop. In this mode,
most parts on the processor chip are stopped, with only some essential parts,
like the time-of-day timer, still running. When the system is awakened by the
timer interrupt or an external interrupt, it needs a relatively long period of time
to warm up before it is able to stably fetch and execute instructions. Usually
this involves the physical oscillator stabilizing period, so it could be long. For
example, in the new Z180 processor from Zilog, the wake-up time from deepest
sleep mode is 2!7 clock cycles. If the system clock is 20MHz, this will more than
6 milliseconds! Obviously, unless the system is known to be idle for a long time,
this method does not fit our needs.

Therefore, there is no simple way for us to utilize the idle part of the system.

In the next section, we will talk about a new technique that the hardware supports
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to enable the software to utilize the idle time more efficiently.

5.4 Speed-setting And Voltage Scaling

In this section, speed-setting technology will be discussed. An algorithm that
utilizes this feature is proposed and the consequent power consumption and per-
formance results are discussed. The first part of this section is dedicated to a
general discussion of the desirability of speed-setting algorithms. The second part
discusses the new algorithm and the simulation results. The last part gives out

some possible future research directions.

5.4.1 Desirability of Speed-setting

From the discussion in the background chapter it is clear that the power con-
sumption of a chip is proportional to the clock rate that drives it. Therefore, by
slowing down the clock rate, the power consumption of the chip should be low-
ered proportionally. However, when talking about energy consumption, which is
proportional to the time that the task executes, the energy consumption of exe-
cuting the task does not change. Let’s look at the following example. Suppose
the original task needs n cycles to get completed, and the original clock frequency

iS ferock-S0 the time the task get completed is n % 1/ fuocr sSeconds. Thus We have:

Power = KV, feock (5.1)

and

Energy = KVdefclockn * 1/fcloclc (52)
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which can be simplified as:
Energy = KV2n (5.3)

where K is a coefficient, and V, is the supply voltage.

Therefore, theoretically simply slowing down the clock speed will just lower
the power consumption while keeping the energy consumption unchanged.

Is this the case in real life? Is this true for the whole system, instead of just
for one task?

The assumption we made above is that during the n cycles of execution time,
the CPU was never idle, and we only care about the n cycles. With this as-
sumption, the above statement, i.e., by only scaling down clock speed the energy
consumption for executing this task is not changed, is true.

However, from the perspective of the whole system’s view, the assumption
is hard to maintain. The whole system has to have some time (possibly to a
large degree, for example, 30% of total time) to be idle. In an embedded system,
the maximum schedulable usage of CPU for RMA (Rate Monotonic Algorithm)
scheduling is 70%. This means that when the system CPU usage is less than
70%, by using RMA it is guaranteed to be schedulable. When the CPU usage
exceeds 70%, RMA may not be able to schedule it. Therefore, as a rule of the
thumb, most embedded systems have at least 30% CPU idle time, if not more,
although it might not be evenly distributed.

With consideration of idle time, the above statements then will not necessarily
be true. Let’s examine Figure 5.4.Part (a) is that the system is running at full-
speed clock when there is something to do. When the task is done, the system
will immediately go to sleep. When there is job to do again, the system will go

back to work immediately. Part (b) is the power consumption situation when
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Figure 5.4: Four possible cases with ideal low-power mode and speed-setting. (a)
the CPU runs at high speed with ideal sleeping mode. (b) the CPU runs at high
speed with no sleeping. (c) the CPU runs at low speed with ideal sleeping mode.

(d) the CPU runs at low speed with no sleeping.
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the system is running at full-speed clock rate all the time, no matter the CPU is
busy or idle. Part (c) is that the system is running at a partial-speed clock with
an ideal stop function like in part (a). Part (d) is that the system is running at a
partial-speed clock all the time, no matter the CPU is busy or not. Part (a) and
(c) are ideal situations, while part (b) and (d) are realistic situations for many
embedded systems.

One assumption for this figure is that the system has enough idle time so that
even when the CPU slowed down from (a)(b) to (c)(d), it is still able to finish all
its jobs. In other words, after slowing the CPU, like in part (c), the shaded area
will not overlap.

From Figure 5.4 we know that the energy consumption of part (a) and part
(c) are the same, and they consume the smallest amount of energy among these
four options. However, from the discussion of previous sections in this chapter
we know that deep sleep mode is very expensive in terms of recovering time. It
might take up to several milliseconds. Also during the wakeup period, the power
consumption might have glitch, i.e. a moment that the power consumption is
greater than normal running state. With this in mind, stopping and restarting
the processor while running a system is not a good choice unless the software
knows that the system will be idle for a relatively long time. For instance, there
is only 1 task running periodically and the period is 5ms. The execution time
of the task is 1ms. That means the 80% of the CPU time is idle. However, the

wakeup time of deep sleep mode for a 20MHz processor is
217 % 1/20, 000, 000 = 6.55ms (5.4)

If the CPU sleeps after the 1ms task execution, it will not be able to wake up

until 7.55ms. It will miss the next starting point of this task. This makes part(a)
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and part(c) not eligible for most real-life embedded systems. Another case is that
when, due to some reason, like the system is using a polling mechanism instead
of interrupts, the system just can not go to sleep during idle time.

In the above cases, only two choices are left, which are part(b) and part(d).
And clearly part (d) is consuming less energy than part(b) and therefore is a
better choice. Again let’s do the numbers. If we slow down the CPU to 25% of
original speed in the above example, the power consumption of the CPU will be
25% of original one. Now the task takes 4ms to complete instead of 1ms, but it
is still able to finish the task before the start of next period task. This way, all
the work are finished as before, just a little slow, and the energy consumption is
only a quarter of original value. Of course, this is based on the assumption we
made above. If the CPU is fully used, there will be energy difference no matter
we slow down the CPU or not.

The point of this subsection is to state that even the simple speed-setting
technology ( instead of doing speed-setting and voltage scaling at the same time)
will benefit a real embedded system in most cases. The negative effect of adopting
speed-setting technology is the system response time. With full-speed clock run-
ning, the system can respond to an interrupt at full speed. With a partial-speed
clock, the interrupt response time will be lengthened correspondingly.

To give itself more strength, speed-setting enabled the technique called voltage
scaling. According to our discussion in the background chapter, when the clock
speed goes lower, the processor supply voltage could be dropped correspondingly.
Because power consumption has a square relationship with supply voltage, this
will provide a quadratic drop of power consumption, hence energy consumption.

Based on speed-setting technology, this saving almost comes for free. That’s why
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speed-setting and voltage scaling is now becoming a very promising area.

5.4.2 Test-bed Modification

The target test-bed was modified to accommodate this new technology. Because
MCORE itself does not have a speed-setting function, we borrowed these data
from other chips like Transmeta’s Crusoe.

The modified processor can run at speed of 20MHz down to 2MHz, with 36
averaged steps between. A special register is dedicated to change the speed of the
processor. After a new speed number is written to the register, a certain amount
of time will elapse before the processor can run at the new speed. During this
transition period, no instruction is executed. The transition period depends on
the steps the processor jumped. The bigger the step, the longer it takes. Also
the energy consumption of the transition period is dependent on the transition
steps.

When the processor is running at 20MHz, the power supply voltage is 3.3V.
When the processor speed drops to 2MHz, the power supply will drop to 1.1V,
according the relationship of these two factors discussed in the background chap-
ter. The power supply voltage of all the clock steps in between will be determined

similarly.

5.4.3 Group Scheduling Algorithm

Several groups have been working on coming up with scheduling algorithms to
utilize the speed-setting and voltage scaling. Most of them did the system load
prediction based on the past record, like what has been used in branch prediction

in computer architecture design. The PAST algorithm[27], which is one of earliest
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and well-known algorithms, does the prediction at fixed periodic moments. The
PEAK algorithm [9] uses the same basic idea with more effort on how to make
good predictions.

Group scheduling algorithm is different from the above algorithms in that the
prediction of future system load is not purely based on the history. Instead, it
utilizes all the information that NOS provides about each and every task plus
some degree of prediction to calculate the future system load and corresponding
processor speed. Among NOS kernel data structures, there is a timeout queue
to keep track of the tasks. Each task will insert (or append) itself into(onto) the
timeout queue according to the next time execution time. Please refer to the test-
bed chapter for a detailed description. By this way the OS will be able to foresee
the possible system load in the near future. In fact, the timeout queue only
provides the information of which task is going to be executed at which moment,
but has no clue of how long each task is going to take, which is necessary to
calculate the system load.

The group scheduling algorithm uses a system timer to keep track of the
history execution time of each task, and predicts the next execution time based
on these history data. Combining the prediction execution time of each task and
the timeout queue information, the group scheduling algorithm will calculate the
next step processor speed. This speed will be used to execute all the tasks in
the timeout queue. The next prediction will not be made until all the predicted
tasks get executed.

Please see Figure 5.5 for a simple example. In this example, at time t0,
there are three tasks in the timeout queue, with their own timeout value and

predicted execution time value. The algorithm predicts the future system load
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Figure 5.5: At moment t0, the system has 3 tasks to schedule, with known

starting moments

by calculating the ratio of free time to busy time during a time period of t0 to t6,
and then sets the processor speed to the corresponding speed.In this example, at

moment t0, the algorithm will set the processor speed to

Speed = FullSpeed - (Atg; + Atys + Atgs)/Atgo (5.5)

The system will run at this speed until task 3 finishes and then another prediction
and speed-setting will be made.

The execution time of a task is predicted by using the sliding windows algo-
rithm, i.e.

tnewt = (ktpast + tcurrent)/(k + 1) (56)

When the system first starts, it runs at full speed. The prediction can only
be done when all the tasks have ran at least once.

This algorithm has several features that other algorithms do not have. First,
the prediction is not done exactly periodically, instead, it speed-sets several tasks
each time. This makes sure that speed-setting is not done too often. Usually it is

not desirable to do more than one time speed-setting during the execution of one
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Figure 5.6: Power consumption results with and without speed-setting. (a) is low
load and no speed-setting. (b) is low load and speed-setting. (c) is heavy load

and no speed-setting. (d) is heavy load and speed-setting

task[11]. Second, this algorithm uses the information that the operating system
provides, and this will make the algorithm more accurate.

With no doubt, this algorithm has its own limitations. It needs the OS to
provide some information about the tasks. Some OSs simply do not have this in-
formation. For example, running a periodic task in uC'/OS by using semaphores,

the OS will not be able to know the future execution time of the task.
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5.4.4 Experiment Results

Figure 5.6 is the energy consumption graph with and without using speed-setting
algorithm, under light load and heavy load, respectively. Obviously when the sys-
tem is in light load, the processor has plenty of idle time, so that its speed is set to
minimum to lower the power consumption. As a result, the energy consumption
is much lower than without doing speed-setting. Please note that because the
user application has very short execution time, even when the processor is slowed
down, it still does not eat much of the processor resource. Therefore, there is still
much idle space.

When the system load goes heavy, it is a different story. Because of heavy load,
the processor can not be slowed down very much. Therefore, the energy saving
is not as dramatic as in light load. In this case, the system tries to maintain a
minimum processor idle time. Because of irregularity of processor time use, there
is still a small amount of idle time.

With the energy saving graph shown, it is necessary to take a look at the per-
formance impact brought by the speed-setting. Figure 5.7 is the jitter graph with
and without speed-setting, with light load and heavy load respectively. Figure5.8
is the delay graph in the above situations. We can see that the jitter graph is not
greatly changed by the introduction of speed-setting. That means most tasks can
still make their time on the beat, as they do without speed-setting. However, the
delay graph shows a big difference before and after speed-setting. This is mainly
because the response time is directly related to the processor speed. While slow-
ing down the processor speed by the factor of 10 will give us dramatic power

saving, we need to pay the price of 10 times slower interrupt response time.
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Figure 5.7: Jitter results of NOS with and without speed-setting. (a) is light load

and no speed-setting. (b) is light load and speed-setting. (c) is heavy load and

no speed-setting. (d) is heavy load and speed-setting.
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5.5 Metrics of Evaluating Embedded Systems

There is a basic question on evaluating embedded systems: the metrics. If algo-
rithm A can bring down the energy consumption by a factor of 2, and increases
the response time by a factor of 1.5, while algorithm B can lower the energy con-
sumption by a factor of 3 and increase the response time by a factor of 2, which
one is better? The answer depends on which metric one is going to use. If one
does not care about response time, algorithm B will be a better choice. However,
if one cares about both of them, the winner could be either of them, depending
on what the evaluation metric is.

We suggest a generic way to evaluate such systems. Our metric is

PenaltyScore = Energy™ Per formance™ (5.7)

Where the PenaltyScore is the comprehensive number that reflects the overall
performance of the system.

As we have discussed before, the performance of an embedded system is di-
vided into two parts in this thesis: jitter and response delay. The bigger the
jitter, the worse the performance. So is response delay. From equation 5.7 we
know that the bigger the Penalty Score is, the worse the system is. That is how
we got the name for Penalty Score.

The response delay can be accurately represented by the average value of the
delay data , i.e. the mean of the delay data. The jitters can be represented by
the standard deviation of the jitter data. Please note that by measuring only the
standard deviation of the jitter, we are ignoring the mean, which is the average
lateness of all tasks. The assumption is that the system is on-time on average,

i.e., the average jitter is equal to 0. This is to measure the predictability of the
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Excellent(1) | Good(2) | Okay(3) | Bad(4) | Really bad(5)

Jitter 0-0.02 0.02-0.05 | 0.05-0.1 | 0.1-0.2 Above 0.2

Delay 0-0.5 0.5-1.2 1.2-3 3-6 Above 6

Table 5.1: The grouping standard for Jitter and Delay

system.

Since the jitter numbers are standard deviations and the delays numbers are
means, and they have different ranges and different changing rates , it is not
disirable to just multiply them together to form the metric. For example, for the
system with light load and no speed-setting, the delay number is 0.007. With
speed-setting, the delay number is 5.74. If we simply use Energy X Delay as the
metrics, the speed-setting needs to lower the energy consumption to 0.007/5.74 =
0.0012 of original energy consumption to be able to compete. This is not very
reasonable. I borrowed the idea of non-linear mapping from fuzzy logic[25] to
divide both jitter and delay into 5 categories: 1 is very good, 3 is okay, 5 is very
bad. And 2 and 4 are between for middle cases. The border numbers for this
specific system are set as in Table 5.1. The numbers in Table 5.1 are set according
to the experimental numbers and experience we had. They can be changed to

adapt different situations.

If we simply take the response delay to represent the Performance part, when
m=1, n=0, equation 5.7 is an energy-only standard. When m=1,n=1, it is an
energy-delay standard [12].

Now let’s compare the system performance before and after speed-setting and

voltage scaling by using four different standards that origin from equation 5.7.
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Figure 5.9: Overall performance of NOS with different evaluation metrics.
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Workload /speed-setting | Energy | Delay/Category | Jitter/Category
Light/No 268.76 0/1 0.007/1
Light/Yes 55.62 0/1 5.74/4
Middle/No 269.1 0/1 0.04/1

Middle/Yes 56.4 0.03/2 4.4/4
Heavy/No 263.4 0/1 0.484/1
Heavy/Yes 251.57 0.02/2 0.942/2

Table 5.2: The performance and energy data of NOS under different workload

Definations of the four metrics:

EnergyDelay : PenaltyScore = Energy x Delay (5.8)
EnergyJitter : PenaltyScore = Enerqgy x Jitter (5.9)
EnergyJitter Delay : PenaltyScore = Energy x Jitter X Delay (5.10)

EnergyEnergyJitter Delay : PenaltyScore = \/Energgﬂ x Jitter x Delay
(5.11)
The X axis of the graph is the system load with and without the speed-
setting. We collected the data under light, middle and heavy loads. The light
load is running 1 IPC task with 16ms period. The middle load is running 2 FIR

tasks with 16ms period. The heavy load is running 4 FIR tasks with 2ms period.

Table 5.2 shows the data we collected. Obviously, with different evaluation
metrics, we have different results regarding whether it is good to do speed-setting.

With energy jitter metrics, doing speed setting is not very promising. Only when
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the system had light load has the speed-setting done a little better. With both
middle and heavy load, it was outperformed by the original system. However, if
we use the other three metrics, the with-speed-setting system outperformed the
original system. Only under heavy load has the system been outperformed by
the original system.

From Figure 5.9 we can get two points:

1. Speed-setting itself is worth a try when the system load is not very high.
With heavy load, the system does not have much free CPU time to offer, and
therefore, the introduction of speed-setting might impact the performance of the
system much more than the gain of the energy consumption.

2. The metrics of evaulating an embedded system will determine whether
an algorithm is good. Although the energy delay standard is now the main
one being used, my personal point of view is that there is never “the” standard
that meets every person’s requirements. Some systems need to stress more on
performance than energy, and some systems more on energy than performance.
People should be able to tailor their own standard based on the specific case of

their own embedded systems.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this paper, the construction of a full-featured embedded system test-bed was
discussed. This test-bed is based on a cycle-accurate Motorola MCORE processor
emulator that is equipped with functions like speed-setting and voltage scaling ,
peripherals like interrupt controller, timer, flash memory and display, and features
like memory bus monitoring and power consumption modeling. This test-bed will
provide a great research base for embedded processor architecture research and
embedded operating systems research.

A widely-used public-domain preemptive real time operating system puC/OS
was ported to the test-bed, and different kinds of benchmarks were used to test
the performance of this OS against the performance of a simple home-made non-
preemptive multi-tasking scheduler NOS. Task scheduling jitters and interrupt
response delay were used as the criteria of the performance test. With light load,
both operating systems had low jitters rates. With heavy load, NOS schedules
tasks by a fixed late period all the time, while uC/OS schedules part of the tasks

on time, and the rest of the tasks later. Periodic background noise couples with
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the foreground tasks, and the impact is very obvious when the frequency is close.
The interrupt response delay for uC/OS is fixed all the time, as expected from a
preemptive operating system, while the response delay of NOS heavily depends
on the system load. When lightly loaded, NOS has shorter response time than
uC'/OS because of its simplicity and non-preemptivity. When heavily load, NOS
has response time evenly distributed on the time line, but puCos is still short.

Power consumption breakdown data were achieved for both NOS and uC/OS.
When the load is light, NOS kernel consumes less energy than uC/0OS. When
heavily load, uC/OS consumes less energy than NOS. The kernel power con-
sumption of uC/OS is less dependent on the system load than NOS.

Group Scheduling algorithm of speed-setting is discussed. This algorithm
takes advantage of the task information provided by NOS to do the speed-setting.
The speed-setting is done dynamically according to the system load. More than
80% of the energy can be saved when the system load is light, but only 5-10=% is
saved when load is heavy. Also, performance of the system in terms of task execu-
tion jitter and interrupt response delay are discussed for speed-setting. It turned
out that the jitter performance is not heavily influenced by the speed-setting,
but the delay performance is. A generic metric of evaluating the overall system
performance in terms of both computing performance and energy consumption

is proposed.

6.2 Future Work

More work on speed-setting and voltage scaling needs to be done, including com-
paring the group scheduling algorithm with other algorithms that have been

proposed by other fellow researchers.
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Also serious embedded system benchmarks like GSM encoding/decoding algo-
rithms, MPEG decoding algorithms, etc. would be very helpful in benchmarking
the real time operating systems.

Another interesting research is to benchmark different architectures, like a
DSP processor and MCORE RISC processor, by running the same operating

system and benchmark-applications.

81



1]

2]

3]

[4]

[5]

[6]

BIBLIOGRAPHY

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. The 27th Annual

International Symposium on Computer architecture, 2000.

Rata Yu Chen, Mary Jane Irwin, and Raminder S. Bajwa. An architectural
level power estimator. Proceedings of the 1998 Power Driven Microarchitec-

ture Workshop, 1998.

Christopher M. Collins. An evaluation of embedded software behavior using

full-system software emulation. Master’s thesis, University of Maryland,

College Park, 2000.

R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha. Power
analysis of embedded operating systems. 37th Design Automation Confer-

ence, June 2000.

D.Kalinsky. A survey of task schedulers. Embedded Systems Conference,

September 1999.

Processor Emporium(UK). Intel pentium 4 to ship in october.

http://www.baznet. freeserve. co.uk/x86n67.htm, 2000.

82



[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Jerry Frenkil. Issues and directions in low power design tools: An industrial
perspective. Proceedings of the 1997 international symposium on Low power

electronics and design, 1997.

J. Ganssle. Conspiracy theory, take 2. The Embedded Muse newslesster”,
March, 22 2000.

Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithms
for dynamic speed-setting of a low-power cpu. Proceedings of Internactional

Conference on Mobile Computing and Networking, 1995.

Dirk Grunwald, Philip Levis, and Keith I. Farkas. Policies for dynamic clock
scheduling. 4th Symposium on Operating System Design and Implementa-

tion, October 2000.

Inki Hong, Darko Kirovski, Gang Qu, and Mani B. Srivastava. Power op-
timization of variable voltage core-based systems. Proceedings of the 35th

annual conference on Design automation conference, 1998.

Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-power dig-

ital design. IEEE Symposium on Low Power Electronics, 1994.
Motorola Inc. MMC2001 Reference Manual. Motorola Inc., 1998.

Zilog Inc. Z80185/z80195 preliminary datasheet. Technical report, Zilog
Inc., 2000.

Brian  Kurkoski. Design embedded systems for low power.

http://www.edtn.com/embapps/emba002.htm, 2001.

Jean J. Labrosse. MicroC/0S-II, The Real-Time Kernel. R&D Books, 1998.

83



[17]

18]

[19]

[20]

[21]

22]

[23]

[24]

Steve Leibson. The shift from speed to power dissipation. Microprocessor

Report, October 2000.

J.W.S. Liu and et al. Perts: A prototyping environment for real-time sys-

tems. Proceedings IEEE Real-Time Systems Symposium, 1993.

M.J.Bach. The Design of the UNIX Operating System. Prentice-Hall Inc.,
1986.

Alex Pike, Steve Jacobs, and Mike Sickmiller. Thermal simulation of a
unique ultra-thin semiconductor packaging architecture for improved power
dissipation. The 33rd International Symposium on Microelectronics, August

2000.

Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer. Designing the
low-power mcore architecture. Proceedings IEEE Power Driven Imcroarchi-

tecture Workshop, 1998.

Tajana Simunic, Luca Benini, and Giovanni De Micheli. Energy-efficient de-
sign of battery-powered embedded systems. Proceedings 1999 International

Symposium on Low Power Electronics and Design, 1999.

D.B. Stewart, R. A. Volpe, and P. K. Khosla. Design of dynamically recon-
figurable real-time software using port-based objects. IEEE Transactions on

Software Engineering, December 1997.

Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Poweranalysis of embedded
software: A first step towards software power minimization. IEEE Transac-

tions on VLSI Systems, December 1994.

84



[25] Texas A&M  University. Introduction  to  fuzzy logic.
http://www.cs.tamu.edu/research/CFL /fuzzy.html, 1997.

[26] N. Vijaykrishnan, M.Kandemir, M.J.Irwin, H.S.Kim, and W. Ye. Energy-
driven integrated hardware-software optimizations using simplepower. The

27th Annual International Symposium on Computer architecture, June 2000.

[27] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling
for reduced cpu energy. Proceedings of the First Symposium on Operating

Systems Design and Implementation., 1994.

85



