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ABSTRACT
Combining ideas from several previous proposals, such as
Active Pages, DIVA, and ULMT, we present the Memory
Arithmetic Unit and Interface (MAUI) architecture. Be-
cause the “intelligence” of the MAUI intelligent memory sys-
tem architecture is located in the memory-controller, logic
and DRAM are not required to be integrated into a sin-
gle chip, and use of off-the-shelf DRAMs is permitted. The
MAUI’s computational engine performs memory-bound SIMD
computations close to the memory system, enabling more ef-
ficient memory pipelining. A simulator modeling the MAUI
architecture was added to the SimpleScalar v4.0 tool-set.
Not surprisingly, simulations show that application speedup
increases as the memory system speed increases and the
dataset size increases. Simulation results show single-threaded
application speedup of over 100% is possible, and suggest
that a total system speedup of about 300% is possible in a
multi-threaded environment.

General Terms
Performance
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1. INTRODUCTION
While processor performance has increased by about 58%

annually since 1994, memory system performance has not
increased as quickly as the processor’s performance. Dy-
namic Random Access Memory (DRAM) latency has de-
creased by only about 7% annually, and DRAM bandwidth
has increased about 15% annually. The performance gap
between the memory system and the processor has become
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a performance bottleneck to total computer system perfor-
mance. The memory-processor performance gap is increas-
ing as time progresses, making the performance bottleneck
worse [8].

Intelligent memory systems show promise in overcoming
the memory system performance bottleneck by building com-
putational ability into the memory system. Several intelli-
gent memory systems have already been proposed, such as
Active Pages [14], the Data IntensiVe Architecture (DIVA)
[7], Intelligent RAM (IRAM) [17], the User-Level Memory
Thread (ULMT) architecture [19], and others [3, 4, 6, 11,
16, 20, 21].

Many of these intelligent memory system architectures
have shown impressive application speedup in simulation.
In particular, The Active Pages project can improve perfor-
mance by a factor of about 1000 times [14], a Vector IRAM
(VIRAM) architecture can provide a 100% speedup [5], and
the ULMT can provide up to a 58% speedup for some ap-
plications, despite only acting as a prefetching device [18].
Despite impressive simulation studies, none of the proposed
intelligent memory system architectures has gained popular
support for consumer computer systems. Except for ULMT,
perhaps this is due to the expense of integrating logic and
DRAM onto a single silicon die instead of using commodity
DRAM.

This paper presents a new intelligent memory system ar-
chitecture: the Memory Arithmetic Unit and Interface (MAUI)
architecture. The MAUI architecture combines traits from
the Active Pages, DIVA, and ULMT architectures to create
a new computational model. The MAUI architecture mi-
grates computational power into the memory system, but
does not require logic and DRAM to be integrated onto a
single silicon die. The MAUI architecture integrates addi-
tional computational power onto the same chip as the mem-
ory controller.

The MAUI architecture is presented in Section 2. Section
3 discusses the details of an augmented memory system ver-
sion of the SimpleScalar v4.0 simulation environment used to
test the performance of the MAUI architecture and presents
simulated performance results for the MAUI architecture.
Section 4 presents conclusions.

2. THE MAUI ARCHITECTURE
Similar to the Active Pages and DIVA architectures, MAUI

memory operations are explicitly invoked by the host pro-
cessor, meaning that the processor’s instruction set is aug-
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mented to include MAUI instructions. The MAUI architec-
ture performs vector operations on arbitrary size vectors.
These computations include addition and multiplication of
two vectors, scaling of a single vector, and data movement.
Other, more complicated operations could be possible. How-
ever, other memory bound operations, such as pointer chas-
ing, searching, and sorting are not presented in this paper.
By providing the host processor with explicit control of spe-
cialized memory operations, the MAUI architecture resem-
bles both the Active Pages and DIVA architectures1. While
this paper only presents MAUI vector operations, more com-
plicated and useful operations could be possible.

The placement of computational power within the mem-
ory controller decreases latency and increases bandwidth to
memory when compared to the host processor. Addition-
ally, the expression of massive Instruction Level Parallelism
(ILP) allows for more efficient access to memory and reduced
cache overhead. By avoiding the integration of processing
logic and DRAM onto a single chip, the MAUI architecture
is made less expensive than the Active Pages, DIVA, and
IRAM architectures by using current processing technolo-
gies and conventional consumer DRAM chips.

2.1 MAUI Software Interface
Conventional memory systems support only two commands

from the processor, read and write2. The MAUI architecture
introduces a number of new memory system commands, or
MAUI commands. The MAUI augmented memory system
supports Single Instruction, Multiple Data (SIMD) type vec-
tor operations. It is important to note that data movement
is a very simple vector operation.

The MAUI commands are broken into two groups: setup
commands and execution commands. Setup commands spec-
ify the size, source addresses, and destination addresses for
the subsequent execution commands. Execution commands
start the memory system computation. The MAUI architec-
ture supports several integer computations, including addi-
tion and multiplication of two vectors and the scaling of a
single vector.

For instance, implementing a block copy using MAUI com-
mands requires the use of four commands to the MAUI
The first three commands are maui-LD-size, maui-LD-a,
and maui-LD-c, which setup the MAUI with the correct
source and destination addresses and size of the memory
block which will be copied. The command maui-ADD-scalar
is used to copy data by setting the scaling value to zero: this
is the execution command to begin copying the data. Fig-
ure 1 shows the pseudo-C code for a block copy function
named bcopy implemented with the four previously men-
tioned MAUI commands.

Although MAUI operations can take a significant amount
of time to complete, and the latency of a MAUI operation
is generally not known at issue time, the MAUI hardware
allows the program to assume that the MAUI operation fin-
ishes instantly. The MAUI architecture ensures that any
subsequent memory accesses, whether they are traditional
memory system commands or other MAUI commands, will
neither read stale data nor overwrite MAUI operands before

1Note that it is easy to implement the MAUI instructions
via I/O operations, which would be orthogonal to the in-
struction set.
2Even prefetching requests represent a special category of
read commands.

/* Function to copy a block of n bytes

from src to dst */

void bcopy(void *src, void *dst, int n){

maui-LD-size(n);

maui-LD-a(src);

maui-LD-c(dst);

maui-ADD-scalar(0);

}

Figure 1: A MAUI implementation of bcopy.

the MAUI architecture has a chance to use them. The log-
ical ordering of memory accesses and MAUI operations is
maintained automatically by the MAUI architecture while
allowing independent memory accesses to proceed and com-
plete before the MAUI operation has completed.

2.2 MAUI Hardware
The MAUI architecture builds an intelligent memory sys-

tem with only minor modifications to the processor. The
MAUI architecture also leaves the DRAM system completely
unchanged, so the MAUI enhanced memory system can use
any consumer DRAM system. Major modification occurs
only at the memory controller. The MAUI architecture
is split into two components, the Memory Arithmetic Unit
(MAU) and the Memory Arithmetic Unit Interface (MAUI).
The MAU performs all data computations while the MAUI
controls the data flow, computes addresses, generates mem-
ory read and write requests, and enforces the logical ordering
of memory accesses. The MAUI also includes a cache and
registers to hold the source and result data for the compu-
tations.

2.2.1 The MAU

The Active Pages project demonstrated that the perfor-
mance gain in using intelligent memory system architec-
tures is due mostly to Instruction Level Parallelism (ILP)
[15]. To exploit available ILP, the MAUI architecture per-
forms vector computations on vectors as wide as a cache-
line. With the SimpleScalar architecture, the MAU supports
two thirty-two byte vector operands. That means that the
MAU performs eight integer arithmetic operations in par-
allel. Future possibilities for operations include searches,
scatter-gather operations, pointer chasing, or other memory
access bound operations which express significant ILP.

As the MAU is located on the same chip as the memory
controller, it is limited to the same process technology, clock
cycle, and power requirements as the memory controller.
Fortunately, this limitation is mitigated by the fact that
the MAU has a more efficient connection to main memory
than the host processor and the SIMD nature of the vector
operations it supports allows for significant exploitation of
ILP.

2.2.2 The MAUI

The MAUI controls memory computations and acts as
the intelligent memory system’s interface to the rest of the
computer system. The MAUI the heart of the MAUI in-
telligent memory system computational model. The MAUI
coordinates its caches, includes dedicated registers to hold
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the source and destination addresses, block size, and other
run time information, performs address computation, and
issues read and write requests to the DRAM system. The
MAUI is also responsible for supplying the MAU with vec-
tor operands from memory. Lastly, the MAUI is responsible
for ensuring the the logical ordering of traditional memory
accesses and MAUI operations. While enforcing logical or-
dering, the MAUI also allows non-MAUI memory operations
to “leap-frog” long latency MAUI instructions and complete
before the MAUI instructions are finished. A block level
schematic of the MAUI architecture is shown in Figure 2.
Notice that all of the data flow in the MAUI architecture
passes through the MAUI.

Figure 2: The block diagram of the MAUI architec-
ture.

MAUI commands are divided into setup and execution
commands. The setup commands are used to load the source,
destination, and size registers within the MAUI. The source
registers shown in Figure 2 are registers A and B. These
registers hold the beginning address of the source vectors.
That means the source vectors occupy the memory ranges
of A to A+size−1 and from B to B+size−1. The beginning
address for the destination vector is held in the register C,
meaning that the destination vector occupies the memory
range from C to C+size−1. The MAUI needs to be setup
before any execution command is issued.

Once the MAUI is setup with valid source and destina-
tion vectors, the processor may issue a MAUI execution
command. When the MAUI receives an execution com-
mand, it begins the execution of that command. Generally,
the MAUI begins the execution of the command by issuing
read requests to main memory. When the data comes back
from memory, it is stored in the MAUI cache until there are
enough operands to perform some arithmetic in the MAUI
cache. Once the required operands have been fetched from
memory they are transferred to the MAU, which performs
the actual arithmetic. Then, the result from the MAU’s op-

eration is sent back to memory with a write request to main
memory. As an example of how the MAUI coordinates the
data flow during the execution of a MAUI command, Fig-
ure 3 graphically details the execution of a maui-ADD( )
command and how the data flows through the MAUI archi-
tecture.

To maximize the performance of the MAUI augmented
memory system, non-MAUI memory operations are permit-
ted to reorder with MAUI memory operations. However,
the reordering cannot violate the logical ordering of mem-
ory operations and reorder dependent memory operations.
To that end, one very important responsibility of the MAUI
is to maintain the logical ordering of memory commands
while allowing subsequent, independent memory operations
to complete without waiting for the completion of the MAUI
operation.

To maintain the logical ordering of traditional memory ac-
cesses and MAUI operations, the MAUI architecture intro-
duces the concept of locking memory. The MAUI maintains
two types of memory locks, Read and Write locks. A Read
lock is placed on MAUI source addresses, or those mem-
ory locations that the MAUI needs to read. A Write lock
is placed on MAUI destination addresses, or those memory
locations that the MAUI needs to write to. A Read lock pre-
vents later memory operations from modifying the data, but
allows the data to be read by the host processor. A Write
lock prevents later memory operations from modifying or
reading the data. So, the Read lock prevents the processor
from modifying data that the MAUI hardware has not read
yet, and the Write lock prevents the processor from reading
stale data that the MAUI hardware has not yet over-written.

To enforce correctness, the MAUI stalls those memory
commands which violate either the read or write locks. The
MAUI rechecks stalled memory commands to see if they
can be executed each time the MAUI completes any op-
eration. When the MAUI is idle, memory commands are
never artificially stalled. Because the MAUI must be able
to stall memory commands that are not MAUI commands,
the MAUI observes every command that enters the memory
controller.

2.3 Possible Drawbacks

One possible performance pitfall for the MAUI augmented
memory system is the cost of maintaining cache coherence.
By operating on data within the memory system, we run
the risk of changing data that is also stored in the proces-
sor’s cache, introducing the cache coherence problem that
is present in any system with more than one processing
element. The MAUI architecture takes cues from the Ac-
tive Pages project in solving the cache coherence problem.
The Active Pages project showed that using software driven
cache coherence results in similar performance to hardware
driven cache coherence [12]. Because software driven cache
coherence results in a more simple hardware implementa-
tion, hardware cache coherence is not explored for the MAUI
architecture. However, hardware cache coherence has strengths,
such as a reduction to the cache-processor bandwidth used.
Quantifying the effect of software versus hardware driven
cache coherence within this architecture is left to future
work.

Another issue is introduced when examining the nature
of virtual memory. When a virtual virtual memory is trans-
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Figure 3: Illustration of the MAUI add operation. The MAUI has already been setup with the vector size
and the source and destination addresses.

lated to physical addresses, it is clear that a contiguous seg-
ment of virtual memory does not always translate to a con-
tiguous segment of physical memory [8]. The existence of
virtual memory does not align well with the assumptions the
MAUI makes. The MAUI has access only to the physical
addresses, and expects the source and destination vectors
to have consecutive addressing. Therefore, when a vector
crosses a page boundary it is possible for the parts of the
vectors that fall in different pages to be mapped to non-
consecutive physical memory pages. At best, this consti-
tutes a security hole. To exploit the security hole, a mali-
cious program would only have to issue a MAUI command to
a portion of memory to which it should not have access, then
read or modify data. At worst, reading or modifying unex-
pected data can cause monumental system failure. MAUI
instructions issued could modify data that the programmer
did not intend, causing the entire system to crash.

When the MAUI commands are issued, the program issu-
ing the MAUI commands needs to know, at the time of issue,
that the commands are correct and will not step into parts
of memory that are not intended. In order to ensure cor-
rectness, the program would need to know the exact virtual
address mapping on the system. However, it is unreason-
able to expect the programmer to know the virtual address
mapping and validate the correctness before runtime. The
operating system usually manages virtual memory, so an
obvious solution to the virtual memory problem is to have
the operating system handle the correctness of MAUI com-
mands. Therefore, the programmer would issue an operating
system call asking to perform the MAUI vectors operation.
The operating system would then check to see if the source
or destination vectors cross page boundaries. If the vectors
do cross page boundaries, they would be split up into sepa-

rate MAUI instructions, and issued to the MAUI hardware.
Unfortunately, operating system calls may entail significant
overhead, canceling out any performance advantage from
using MAUI operations. As the largest performance gains
are for large problem sizes, it is expected that the operat-
ing system call overhead will be small compared to the total
running time in these cases. Other, more complicated solu-
tions could be devised, such as having the MAUI hardware
keep track of the virtual memory mapping. However, other
solutions are not explored in this paper.

3. MAUI SIMULATION
The simulation environment used to simulate MAUI per-

formance is based on the popular simulation environment,
SimpleScalar [1]. SimpleScalar was chosen for simulation be-
cause it already possesses a detailed simulation of caches and
out-of-order execution. Additionally, Dr. Bruce Jacob and
David Wang of the University of Maryland’s Electrical and
Computer Engineering Department have created a highly
detailed, DRAM-based memory system enhancement to the
Micro-Architectural Simulation Environment (MASE) por-
tion of SimpleScalar v4.0.

The MAUI architecture calls for additional instructions to
be added to the host processor’s instruction set. For Sim-
pleScalar, the addition of new instructions is facilitated by
using the “annote” field that is available for any instruc-
tion in the SimpleScalar Portable Instruction Set Architec-
ture (PISA). As of this time, no MAUI enabled compiler
has been developed. Therefore, benchmarks written for the
MASE simulator that take advantage of the MAUI architec-
ture were hand optimized and written partially in assembly
language [22].
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The processor configuration used in each simulation is
noted in Table 1. Every simulation used the same proces-
sor configuration, unless otherwise noted. In all simulations,
performance speedup is calculated as:

percent-speedup =

„
sim-cyclenon−MAUI

sim-cycleMAUI

− 1

«
∗100%, (1)

where sim-cyclenon−MAUI is the number of processor cycles
SimpleScalar reported that the benchmark took to complete
using only the processor and sim-cycleMAUI is the number
of processor cycles SimpleScalar reported that benchmark
took to complete when using the MAUI hardware.

General
Issue Width 4 micro-ops/cycle
Instruction Fetch Queue Size 16
Load Store Queue Size 8
Reorder Buffer Size 16
Number of Reservation Stations 16
Branch Predictor Type/Size Bimodal/2048 entries

Functional Units
Number of Integer ALU’s/Latency 4 / 1 cycle
Number of Multiply/Dividers 1

Multiply Latency 7 cycles
Divide Latency 12 cycles

Number of Memory Ports 2
Number of Floating Point(FP) Units 1

FP Add latency 4 Cycles
FP Multiply Latency 4 Cycles
FP Divide Latency 12 Cycles

Cache Configuration
Level 1 Data Cache Size 16 KByte

Associativity 4 way
Block Size 32 Bytes
Latency 1 cycle

L1 Instruction Cache Size 16 KByte
Associativity Direct Mapped
Block Size 32 Bytes
Latency 1 cycle

L2 unified Cache Size 256 KByte
Associativity 4 way
Block Size 32 Bytes
Latency 6 cycles

Table 1: Simulated processor configuration.

Three benchmarks were written to test the performance of
a MAUI enhanced architecture. The first two benchmarks,
MAUI-one and MAUI-two, are “artificial,” in that they do
not necessarily reflect the behavior of real-world applications
and were written specifically to test the MAUI architecture.
MAUI-one performs a single vector operation, while MAUI-
two performs two independent vector operations.

MAUI-one tests how well the MAUI architecture can per-
form a single vector operation. Assuming that the MAUI
optimized version of MAUI-one performs virtually all of the
benchmark’s execution using the MAUI hardware, the per-
cent speedup due to MAUI optimization approximates the
speedup due to MAUI optimization for a single vector oper-
ation. Therefore, MAUI-one’s simulations can provide cues
to which vector operations should be off-loaded to the MAUI
hardware for performance gains.

MAUI-two tests how well the MAUI hardware and the
processor are able to exploit parallelism when both are per-
forming memory intensive tasks. Because the two datasets
used in MAUI-two are completely independent, the MAUI
optimized version of MAUI-two should be able to have the
processor and the MAUI hardware execute in parallel, while
simultaneously stressing the memory system.

The final benchmark, Stream tests the performance of
the memory system by performing vector additions, multi-
plications, scaling, and multiplication-accumulation on ex-
tremely large vectors [13]. The purpose of the Stream bench-
mark was to test how the MAUI enhanced intelligent mem-
ory system affects total memory system performance. In the
MAUI optimized version of Stream, several operations were
performed using the MAUI hardware, while other operations
remained within the processor.

Stream was simulated with a single combination of pro-
cessor speed, memory bus speed, problem size, and memory
system type. Processor speed was set to 2000 MHz, mem-
ory type was chosen as DRDRAM, memory bus speed was
chosen as as 800 MHz, and the problem size was chosen to
be two million integers per array. A large problem size of
two million integers is standard for the implementation of
the Stream benchmark, to stress the memory system accord-
ingly.

The Stream benchmark uses over 7MB of memory per ar-
ray, so no single vector used in the Stream benchmark can
fit in the caches. By making Stream’s dataset too large to fit
in the cache, Stream provides an indication of total memory
system performance. There are many real-world examples
of programs whose datasets are 7MB or larger, and whose
operations fit well into a vector computing paradigm; exam-
ples include audio and image processing, video compression
and decompression, and scientific computing and visualiza-
tion [9].

3.1 Simulation Results
Simulations of MAUI-one showed that the speedup due

to the MAUI architecture is dependent on memory system
type, memory bus speed, processor speed, problem size, and
cache configuration. Figure 4 illustrates the effect memory
performance has on the speedup due to the MAUI archi-
tecture. Specifically, as the memory bandwidth increases,
the speedup due to the MAUI architecture increases. Note
that for the memory systems shown in Figure 4, memory
bandwidth, from smallest to largest, is SDRAM 100 MHz,
SDRAM 133 MHz, DDR-SDRAM 166 MHz, DDR-SDRAM
232 MHz, DRDRAM 400 MHz, and DRDRAM 800 MHz.
The trend illustrated in Figure 4 is repeated for each com-
bination of processor speed and problem size.

Figure 4: Graph illustrating the effect memory con-
figuration has on the speedup due to the MAUI ar-
chitecture for the MAUI-one benchmark simulated
with a processor speed of 1700 MHz and a problem
size of 32,000 integers per array.
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Figure 4 illustrates how, as the memory system perfor-
mance increases, the speedup due to optimization for the
MAUI architecture increases. Intuitively, this performance
trend makes sense. Recall that because MAUI architecture
is located within the memory system, its performance is lim-
ited by the memory system performance. That means that
for a 100 MHz SDRAM system, the MAU and MAUI are
only operating at 100 MHz.

The effect of processor speed on the speedup due to the
MAUI architecture is shown in Figure 5. Figure 5 shows
that, as the processor speed increases, the percent speedup
due to optimization for the MAUI architecture decreases.
Again, this intuitively makes sense. For faster processors,
the arithmetic performed by the MAUI becomes compara-
tively more expensive.

Figure 5: Graph illustrating the effect processor
speed has on the speedup due to the MAUI archi-
tecture for the MAUI-one benchmark.

The effect problem size has on the speedup due to the
MAUI architecture is shown in Figure 6. Examining Figure
6, one can deduce that, as the problem size increases, the
percent speedup due to optimization for the MAUI archi-
tecture also increases. The general reason for the speedup
of MAUI-one was that the MAUI instructions allow for the
expression of a large amount of memory operation ILP di-
rectly in the code. Expressing this ILP greatly increases the
efficiency of memory accesses. By not bring this data into
the cache, there is also significantly lower cache overhead.
A lower cache overhead would have an even larger impact
on more complex benchmarks, by allowing the non-MAUI
portions of the benchmark to occupy more of the cache.

For smaller datasets, the data is loaded into the cache
by the initialization, and the data remains there for the en-
tire simulation. MAUI-one shows no speedup for these small
problem sizes because when the dataset fits in the cache, the
processor has a faster connection to the dataset than the
MAUI hardware has to main memory. When the dataset
grows so that it no longer fits in the cache, the processor
must access main memory, and its efficiency in accessing
memory significantly decreases. The largest problem size
simulated had 100,000 integers per array, meaning that the
total size of memory utilized was slightly more than 1MB.
Data sets this large and larger are present in many multi-
media applications, as well as scientific simulations and vi-
sualization applications. Once the dataset no longer fits in
the cache, we see that speedup saturates, and we expect the
performance of MAUI operations to be similar for datasets
larger than 1MB.

Figure 6: Graph illustrating the effect problem size
has on the speedup due to the MAUI architecture
for the MAUI-one benchmark.

As with the MAUI-one benchmark, the speedup due to
MAUI optimizations for the MAUI-two benchmark is depen-
dent on memory system configuration, processor speed and
problem size. Figure 7 shows the effect memory configura-
tion has on the speedup due to MAUI optimizations; as the
memory systems’ possible bandwidth increases, the speedup
due to MAUI optimizations increases. The reason for this
performance trend is identical to the reason why the memory
system affects the speedup due to MAUI optimizations for
the MAUI-one benchmark: because the MAUI architecture
is located in the memory system, its performance is limited
to be the same as the memory system. Again, note that for
the memory systems shown in Figure 7, possible memory
bandwidth, from smallest to largest, is SDRAM 100 MHz,
SDRAM 133 MHz, DDR-SDRAM 133 MHz, DDR-SDRAM
166 MHz, DDR-SDRAM 266 MHz, DDR-SDRAM 333 MHz,
and DRDRAM 800 MHz.

Figure 7: Graph illustrating the effect memory con-
figuration has on the speedup due to the MAUI ar-
chitecture for the MAUI-two benchmark.

Figure 8 shows the effect processor speed has on the speedup
of MAUI-two due to MAUI optimizations. The trend shown
in Figure 8 is the same as the trend shown in Figure 5, illus-
trating the effect processor speed has on the speedup of the
MAUI-one benchmark. As the processor speed increases,
the speedup due to MAUI optimization decreases. The rea-
son for this trend is that as the processor’s performance
increases, performing arithmetic with the MAUI hardware
becomes relatively more expensive.
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Figure 8: Graph illustrating the effect processor
speed has on the speedup due to the MAUI archi-
tecture for the MAUI-two benchmark.

Simulations show that the speedup due to MAUI opti-
mization for MAUI-two are also dependent on problem size.
The trend for MAUI-two is very similar to that shown in
Figure 6 for MAUI-one: as the problem size increases, the
speedup due to MAUI optimization increases. The effect
problem size has on the speedup of MAUI-two is shown in
Figure 9.

Figure 9: Graph illustrating the effect problem size
has on the speedup due to the MAUI architecture
for the MAUI-two benchmark.

There is one significant difference when comparing the ef-
fect problem size has on the speedup due to MAUI optimiza-
tion for MAUI-one (Figure 6) to the effect problem size has
on the speedup due to MAUI optimization for MAUI-two
(Figure 9). Looking at Figure 9, notice that for 166 MHz
DDR-SDRAM the speedup shows a noticeable decline when
the problem size reaches about 20,000 integers per array.

Remember that the MAUI optimized version of the MAUI-
two benchmark performs two vector additions, one in mem-
ory and the second in the processor, while the unoptimized
version performs all the vector operations using the proces-
sor. For the MAUI optimized version of MAUI-two, when
the problem size grows to 20,000 integers per array, the data
set the processor is working on can no longer comfortably
fit in the cache. Notice the point where the data set can no
longer fit comfortably in the cache is the same problem size
for which the MAUI-one benchmark experiences the perfor-
mance “knee”. However, for MAUI-two this translates to a
decline in the speedup, instead of the increased speedup, as
is seen in the MAUI-one benchmark. Once the processor’s
dataset can no longer fit in the cache, the processor and

the MAUI hardware begin competing for access to memory.
Because both the processor and the MAUI hardware are ac-
cessing memory in parallel, each now has only access to half
the available memory bandwidth. There is still a signifi-
cant speedup however, because of the significant amount of
parallel execution. The percent speedup decline starting at
about 20,000 integers per array is not as significant for the
800 MHz DRDRAM curve shown in Figure 9 because the
bandwidth available for that memory system type is signif-
icantly greater than that of 166 MHz DDR-SDRAM.

The speedup of the MAUI-two benchmark is due to ex-
ploiting parallelism. Performing the vector operations of
MAUI-two in parallel falls short of a two processing ele-
ment perfect parallel execution speedup by only about 20%.
The 20% parallel execution overhead would be expected to
shrink if the operations performed by the processor did not
compete with the MAUI hardware for memory access.

The results of simulations of MAUI-one and MAUI-two
indicate that higher-performance memory and a lower per-
formance processor and cache result in a higher perform-
ing MAUI architecture. Therefore, to simulate Stream, the
memory system was chosen to be DRDRAM running at
800 MHz, the highest performing, real-world memory sys-
tem supported by SimpleScalar v4.0. The processor’s fre-
quency was chosen to be 2 GHz, which being neither labo-
riously slow nor as fast as is currently available, appears to
be a good choice to parallel real-world, mid-range consumer
computer systems. The problem size for Stream was set to
twenty-million integers per array. At twenty-million integers
per array, the problem size follows common practice for the
original Stream benchmark [13].

Simulating the Stream benchmark showed a 121.5% speedup
due to MAUI optimization. Figure 10 compares the speedup
of MAUI-one, MAUI-two, and Stream for identical memory
configurations and processor speeds. There are two reasons
for Stream’s speedup. First, three vector operations are per-
formed with the MAUI hardware. As shown in simulations
of MAUI-one, each of these vector operations can complete
about twice as fast as the corresponding vector operations
in the unoptimized version of Stream.

The second reason for the 121.5% speedup of Stream is
because the final vector operation is performed using the
processor, in parallel with the MAUI processor. Although
the final vector operation performed by the processor and
the preceding MAUI operation both operate on the same
data, the MAUI hardware allows significant execution over-
lap. The processor is permitted to start execution of the
final vector operation before the preceding maui add is fin-
ished. Therefore, while the processor is executing the be-
ginning of the final vector operation, the MAUI hardware is
executing the end of the preceding vector operation. This
parallelism means that the final vector operation is mostly
overlapped with the preceding vector operation. If it were
completely overlapped, then the speedup due to MAUI opti-
mization would be expected to be about 166%. At 121.5%,
the simulated speedup is significantly less than 166% be-
cause the final vector operation takes longer than the pre-
ceding maui add operation, and the final vector operation
competes for memory bandwidth with the MAUI.

Simulations of Stream show how, by combining paral-
lel execution between the processor and the MAUI hard-
ware and by off-loading memory bound operations to the
MAUI enhanced memory system, the speedup of memory-
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Figure 10: Graph comparing the speedup of MAUI-one, MAUI-two and Stream due to MAUI optimizations.

bound benchmarks can exceed that predicted by the sim-
plistic MAUI-one and MAUI-two benchmarks.

4. CONCLUSIONS
Intelligent memory systems represent one architectural

feature that shows promise in overcoming the performance
bottleneck associated with memory accesses. Any intelligent
memory system builds computational ability into the mem-
ory system. Intelligent memory systems typically fall into
one of two categories: either they migrate computational
power into the DRAM system, or they migrate DRAM into
the main processor [2].

This paper has presented a new intelligent memory sys-
tem architecture which takes a slightly different approach.
The MAUI architecture integrates additional computational
power into the same chip as the memory controller. The
MAUI architecture combines traits from the Active Pages,
DIVA, and ULMT architectures to create a new computa-
tional model. Like the Active Pages and DIVA architectures,
the MAUI architecture migrates computational power into
the memory system, and the MAUI hardware is explicitly
controlled by the application running in the host processor.
Like the ULMT architecture, but unlike the Active Pages
and DIVA architectures, the MAUI architecture does not re-
quire logic and DRAM to be integrated onto a single silicon
die. The MAUI architecture integrates additional computa-
tional power onto the same chip as the memory controller.
The MAUI architecture is split into to separate parts: the
Memory Arithmetic Unit (MAU) and the Memory Arith-
metic Unit Interface (MAUI). The MAU performs the ac-
tual arithmetic performed by the MAUI architecture, while
the MAUI coordinates the data flow through the MAUI ar-
chitecture.

Because the MAU is located on the same chip as the mem-
ory controller, it has a higher bandwidth, lower latency con-
nection to memory. Additionally, because the MAUI hard-
ware is a separate processing element from the processor,

further application speedup is possible by exploiting paral-
lelism. However, recent trends place the memory controller
onto the same die as the processor, canceling the bandwidth
and latency advantage for the MAUI hardware. The MAUI
architecture still has value, by expressing significant ILP
directly in the code. Expressing the ILP in the code al-
lows for more efficient access of memory and reduced cache
overhead. Furthermore, some recent architectures, such as
the Cell processor, are shrinking their instruction window
in favor of more computational parallelism [10]. The MAUI
architecture can provide architectures resembling the Cell
processor the opportunity to hide memory latency without
the pipelining and other overheads associated with large in-
struction windows.

Simulations have shown that the performance of the MAUI
hardware increases as the memory system’s performance in-
creases, the problem size increases, and the processor speed
decreases. Using a 2GHz processor coupled with 800 MHz
DRDRAM enables around an 80% speedup for both MAUI-
one and MAUI-two. A system of this nature is fairly similar
to modern desktop computers. Performing three of Stream’s
vector operations using the MAUI hardware resulted in a
121% speedup over a normal organization. Stream exploited
both the fact that the MAUI performs vector operations
faster than the processor, as well as some parallelism, Stream
performed better than what was predicted from the MAUI-
one and MAUI-two simulations.

Unfortunately, the overhead associated with managing vir-
tual memory and using the MAUI architecture was not ex-
plored in this paper. For the large problem sizes that ex-
perience significant speedup using the MAUI architecture,
the context switch overhead is expected to be significantly
less than the time required to perform the MAUI operation.
Therefore, it is expected that the operating system overhead
for MAUI calls would have a negligible impact on perfor-
mance for most problem sizes that exhibit a performance
increase.
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There are a number of possible real-world applications
that may benefit from MAUI hardware. Examples include
audio and image processing, video compression and decom-
pression, and scientific computing and visualization. Fur-
thermore, the operating system may need to copy large sec-
tions of data from one place to another in memory. One
example occurs in a in a cluster environment. In this partic-
ular parallel architecture, remote messages are copied into
buffers within a particular process. Copying data within
memory is one domain where the MAUI architecture can
benefit the operating system.

Further application speedups could be expected in a mul-
tiprogrammed computer system. For instance, assume that
a computer system is running three separate applications
that, without using the MAUI-hardware, take the same amount
of time to complete. If two of the applications are memory-
bound and the third is not, total running time could be
reduced to 1/3 of the original running time. A 300% in-
crease in total system performance can be realized because,
as indicated by the simulations of MAUI-one, MAUI-two,
and Stream, the first two memory-bound applications could
run about 100% faster on the MAUI hardware. Then, the
final application could be executed in parallel with the first
two memory-bound applications. An illustration showing
how the MAUI architecture could increase total system per-
formance by 300% on a multiprogrammed computer system
is shown in Figure 11.

Figure 11: Illustration of how the MAUI architec-
ture could increase total system performance by up
to 300% on a multiprogrammed computer system.
In this example, Program 1 and 2 are both memory-
bound programs that take the same amount of time
to complete as Program 3 when executed by the pro-
cessor, but each take half that time when executed
by the MAUI architecture.

4.1 Future Work
There is still room for significant research with the MAUI

project. First, the MAUI architecture operates only within
a very constrained SIMD paradigm. Additional support
for more general purpose vector processing would make the

MAUI architecture significantly more powerful. Future pos-
sibilities for operations include searches, scatter-gather oper-
ations, pointer chasing, or other memory bound operations
which express significant ILP.

The second research direction would be to quantify the
effect of the operating system on MAUI performance. If the
operating system signifies significant performance overhead,
other methods of managing the nature of virtual memory
would need to be explored. These may include exposing the
nature of virtual memory to the MAUI hardware, possibly
by having the operating system post changes to the virtual
memory to hardware.

The next direction is for further research into which ap-
plications the MAUI hardware would be most useful. For
instance, operating systems are now designed assuming that
copying large sections of memory is a time intensive task,
and so those operations are avoided. However, the MAUI
hardware not only speeds up these block copies, but also
provides a separate computational engine to perform them,
freeing the processor to perform other tasks. The availabil-
ity of a MAUI enhanced memory system may significantly
change the way that operating systems are designed and im-
plemented. Lastly, increased software support for the MAUI
architecture, such as a MAUI aware compiler, will simplify
the creation of MAUI optimized software.
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