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ABSTRACT

Cycle-accurate DRAM models are prevalent in today’s computer
architecture simulations. However, cycle-accurate models by design
are time consuming and not scalable. In this paper, we present a
statistical approach of DRAM latency modeling. Unlike previous
works, our approach converts DRAM latency modeling into a clas-
sification problem and employ machine learning models such as
decision tree and random forest to solve the classification prob-
lem. We propose 4 basic DRAM latency classes to simplify and
parameterize the classification, and extract features that help classi-
fication from memory request streams on the fly. We use synthetic
traces to train the statistical model and test the model on real-world
benchmarks in both accuracy and speed against a cycle-accurate
simulator. The results show our statistical models improves the
DRAM simulations speed by up to 400 times with 98% average
classification accuracy for all the benchmarks we have tested.
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1 INTRODUCTION

Architecture simulation is a vital method for designing and eval-
uating computer systems. Memory system simulation, especially
cycle-accurate memory system simulation, is an important part
of an accurate architecture simulation framework as it provides
fine grained information about memory systems. However, the
cycle-accurate model by design is time-consuming, and it limits the
scalability of the simulation frameworks as the targeted systems
nowadays are growing much larger in scale.
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Modern architecture simulators, especially CPU simulators, adopts
a variety of techniques to address the scalability problem. SST,
Graphite [12] and Gem5[1] Timing CPU Model employs One-IPC
model, meaning that every instruction is one cycle in the pipeline.
Sniper[3] and ZSim[17] use abstract models for IPC which allows
them to simulate out-of-order pipelines with relatively fast speed.
In addition to speeding up simulation, another benefit of using
abstract model is that CPU cores and caches can be simulated in
parallel, allowing multi-core even many-core systems to be simu-
lated efficiently.

Following the suit of abstract CPU models, we propose an ab-
stract, statistical DRAM model to boost the DRAM timing simula-
tion speed at the cost of modest inaccuracy. The statistical model
is based on the fact that while there can be tens or even hundreds
of unique latency values of DRAM requests, most of them can
be neatly classified into only a few latency categories. We proto-
type a statistical model utilizing decision tree and random forest
as classifiers, and test the model’s accuracy and performance with
real-world benchmarks. The benchmark results show our prototype
statistical model achieves the goal of speeding up DRAM timing
simulation significantly while retaining much of the accuracy of a
cycle-accurate model.

The main contributions of this work can be summarized as fol-
lows:

e We propose turning DRAM timing modeling into a classifi-
cation problem. The latency classes we propose are generic
and apply to almost all commodity DRAMs.

e We exploit the temporal and spatial locality within memory

request streams and extract high quality features from these

localities that help the training and inference flow.

Our flow of model training and feature extraction is highly

parameterized and generic, meaning that the training only

needs to be done once, and the model will work with all
kinds of workloads. It also means applying different DRAM
profiles to our model is made trivial.

o Our evaluation shows the statistical models are 5 to 400 times

faster than state-of-the-art cycle-accurate DRAM simulator,

with a 0.98 average classification accuracy across all the
workloads.

Our model is able to provide an atomic interface, meaning

that the latency of a memory request can be returned by our

model immediately upon inquiry. This enables the statistical
model to be integrated in parallel, scalable simulation frame-
works without introducing much synchronization overhead.

2 RELATED WORK

Before cycle-accurate simulators were widely adopted, researchers
applied simplistic models for DRAM simulations. For example, the
fixed-latency model assumes all DRAM requests take the same
amount of time to finish, which completely ignores scheduling and
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queuing contentions that may cause significantly longer latency.
There are also queued models that account for the queuing delay,
but they fails to comply with various DRAM timing constraints.
Previous studies such as [18] have shown that such simplistic mod-
els suffer from low accuracy compared to cycle-accurate DRAM
models.

Then came along cycle accurate DRAM models, such as [4, 7,
9, 16, 20] and DRAMSsim3. These cycle-accurate DRAM simulators
improved DRAM simulation accuracy, some are also validated by
hardware models, but as we have shown, they started to lag the
simulation performance.

Other than cycle-accurate models, there are also event based
models such as[6, 8]. Event based models do not strictly enforce
DRAM timing constraints, and can accelerate the simulation if the
events are not frequent. But just as [8] pointed out, when memory
workloads gets more intensive, memory events will be as frequent
as every cycle, and therefore will undermine the advantage of the
event-based approach.

Finally, there are analytic or statistical DRAM models such as
[5, 21]. [5] presents a DRAM timing parameter analysis but does
not provide a simulation model. The model in [21] provides pre-
dictions on DRAM efficiency instead of per-access timing infor-
mation. [19] built a decision tree that classifies memory requests
into conditional probability distributions but still needs a differ-
ent scheduling algorithm to help producing the memory latency.
Our work differentiates these previous work by treating DRAM
timing modeling as a classification problem and classify each mem-
ory request into pre-defined latency classes instead of generating
a conditional probability distribution. The latency classes comes
from the understanding of how DRAM timing works instead of
pure observation. We also do not treat memory controller as a black
box, but instead extract high quality features from request streams
that help the machine learning model “understands” the targeted
controller model.

3 PROPOSITIONS

Different from analytic models that provide a high level analysis,
which we discussed in Section 2, the statistical models here mean
to provide an on-the-fly DRAM timing for each request based on a
“trained” statistical or machine learning model.

The foundation of why such a statistical model would work on
DRAM is that:

e DRAM banks only have a finite number of states.

e The timing of each DRAM request has already been largely
dictated by the DRAM states when it arrives at the controller.

e Our observation shows most DRAM request latencies fall
into a very few latency buckets, indicating that this behavior
is likely the result of the previous two points.

And we will expand each of the claims one by one as follows.
DRAM banks only have a finite number of states: a DRAM
bank can be modeled as a state machine: it can be in idle, open,
refreshing, or low power states. Although there are typically thou-
sands of rows that can be opened or closed, what matters to a
specific request to a bank is whether the row of that request is open
or not, so it will reduce to 2 states in this regard. Similarly, while
there can be multiple banks in a rank and even multiple ranks in a
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channel, but for each request there is only a subset of these states
that really matter to the timing of that request. Also, the queuing
status when a new request arrives can also be accounted as states.

The timing of each DRAM request has already been largely
dictated by the DRAM states when it arrives at the controller:
intuitively speaking, when a request arrives at the DRAM controller,
there are very limited actions that the controller can take. It can
either A) process this request, whether because it is prioritized
by the scheduler, or just because there are no other requests to
be processed at the time, or B) hold the request whether because
there is contention, other events are happening such as the cur-
rent rank/bank is refreshing. Most of the scenarios here can be
represented as a “state” like we previously discussed.

Our observation shows most DRAM request latencies fall
into very few latency buckets, meaning that they are likely
to be predictable: we ran cycle-accurate simulations on a set of
12 real world benchmarks, and discovered that although every
benchmark has a long tail latency that stretches to over 400 cycles,
(likely the result of having to wait for a refresh which is 420 cycles
in this case), the latency of more than 90% of the requests are limited
to just quite a few latency buckets.

This distribution fits into a statistical or machine learning model
very well: the majority of the cases are predictable while the corner
cases are there to optimize. With a statistical or machine learning
model, we cannot handle 100% of the requests accurately like cycle
accurate simulator. However, if we can accurately predict, for in-
stance, 90% of the requests at the cost of a fraction of simulation
time, then the trade-off may be worth the accuracy loss in scenarios
where simulation speed is a limiting factor.

4 PROPOSED MODEL
4.1 Classification

It is clear now that the latency distribution for most memory re-
quests is concentrated in a very small range. But there can still be
tens of numeric values in that small range. These numeric values
create noises to prevent the model from converging. For example,
some requests have the latency of 20 cycles, which is exactly the
minimum cycles it takes to complete a row buffer hit. But requests
of 21, 22, 23, and all the way to 30 cycles also represents row buffer
hit conditions, because if it is not a row buffer hit, then the mini-
mum latency will be 20 + tRCD, which is well over 30 cycles. All
the variations of 20+ cycles are caused by reasons such as bus con-
tention, or rank switching, but they are still essentially row buffer
hits, and therefore they should all be classified as one category
instead of 10 individual numbers.

As we stated in Section 3, the dominating factor of the latency
of a memory request is the DRAM states. For instance, a row buffer
hit results in 20 cycles latency; a request to an idled bank takes
35 cycles; a row buffer miss takes 50 cycles; a request blocked by
refresh operations can take 400 cycles. These are far more influen-
tial than one or two cycles of bus contention. Plus, these smaller
numbers are very specific to the DRAM protocol and are thus not
portable/universal. Therefore we propose to classify requests into
these collective categories as opposed to individual values.
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Based on how DRAM works, we propose the following latency
classes and their corresponding latency number in DRAM timing
parameters:

e idle: this class of latency occurs when the memory request
goes to an idle or precharged DRAM bank, requires an acti-
vation (ACT), and then read/write.

e row-hit: this class of latency occurs when the memory re-
quest happens to goes to a DRAM page that was left open
by some previous memory requests.

e row-miss this class of latency occurs when the memory
request goes to the a DRAM bank that has a different page
opened by previous memory requests. Therefore, to complete
this request, the controller must precharge the bank, then
activate, and then read/write.

e refresh this class of latency occurs when the memory re-
quest is delayed by a refresh operation. Depending on whether
the request comes before the refresh or during the refresh,
the latency in this class may vary.

We do not seek to reproduce the exact latency as cycle accu-
rate simulation, but extrapolate an appropriate latency number
based on DRAM timing parameters. We will further explain this in
Section 4.2.

4.2 Latency Recovery

Once we have latency classes in hand, combined with DRAM timing
parameters, we can recover their latency into approximate DRAM
cycles. By doing this we can avoid relying on any specific numbers
but rather have a portable generic model. For example, we can
simply plug in a DRAM profile with timing parameters to obtain
latency numbers for that profile, and if we want latency numbers
for a different profile, we simply plug in another DRAM profile
without having to retrain the whole model.

We specify how we recover a latency cycle number from each
latency class as follows:

e idle: the minimum latency of this class is a row access fol-
lowed by a column access. In DRAM parameters it is typ-
ically tRCD + tCL + BL/2. Note there are some variances.
For instance, read or write operations may have different
tRCD, tCL values, and for GDDR the burst cycles can be
BL/4 as well.

e row-hit: the minimum latency of this class is simply the
time of a column access. In DRAM parameters it is typi-
cally tCMD + tCL + BL/2. Again, there are protocol specific
variances like the idle class.

e row-miss: the minimum latency of this class is a full row
cycle. In DRAM parameters it is typically tRP+tRCD+tCL+
BL/2.

o refresh: We use a refresh counter similar to the refresh coun-
ters in DRAM controller, to provide timestamps of when each
rank should refresh. We only use the timestamps as refer-
ences to determine whether a request arrives right before a
refresh or during a refresh. If the request comes right before
the refresh, then we estimate the latency as tRFC + tRCD +
tCL+BL/2.1If the request arrives during the refresh cycle, e.g.
n cycles after the reference refresh clock (n < tRFC), then
we estimate the latency as tRFC—n+tRCD +tCL+BL/2. For
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example, the refresh counter marks cycle 7200, 14400, .etc as
refresh cycles for rank 0, and if a request arrives at cycle 7201,
then it will be regarded as arriving during a refresh. Now
by no means our reference refresh timestamps can matches
precisely the real refresh cycle in a cycle accurate simulation,
but it is a good approximation for the impact of refresh.

Op | Addr | Cycle
R [0x120| 200

Op Row |Cycle
0x345 | 123
R 0x110 | 166

Request|

Configuration

Y
Address Refresh

Mapping Counter ‘L ]
* Bank Q (0)
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A
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same-row-last | near-ref| ...
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Figure 1: Feature extraction diagram. We use one request as
an example to show how the features are extracted.

4.3 Dynamic Feature Extraction

To train a statistical or machine learning model, we need “features”
that provides distinctive information about the latency classes.

As we know, the latency of each memory request is largely
dependent on the DRAM states, which are the results of previous
memory requests. For example, a previous request opened a page
when the DRAM bank was idle, then a following request that goes
to the same bank same row can take that advantage. So the features
we are looking for here should come from the address streams,
especially the previous requests, and we need to be able to extract
features dynamically from these address streams.

There are two aspects of extracting features from address streams,
temporal features and spatial features. Temporal features reflect
the potential dependency between requests. For example, a previ-
ous request that is 5 cycles ahead should have more impact on the
timing of the current request than another previous request 5000
cycles ahead. The difficulty is how to translate the timing intervals
into useful features. Again we cannot rely on specific values be-
cause there would be too many features to be useful. But instead,
we use generic DRAM parameters to classify how far or near is a
previous request. For example, we consider a request “near” if it
was arrived within ¢RC cycles, the intuition is that in tRC cycles,
which represents the full row cycle, the DRAM can be activated
and then precharged by a request, which renders that DRAM state
unchanged to a following request outside of tRC cycles. Another
line we draw here is the “far” line, which uses the number of tRFC,
which is the number of cycles it takes to do a refresh. It may imply
areset state for the DRAM.
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Table 1: Features with Descriptions

Feature Values Description Intuition
hether the last t
WhELIEL the fast reques key factor for the most
same-row-last 0/1 that goes to same bank has the same row
. recent bank state
(as this one)
. whether the last request to the relevancy of the last request
is-last-recent 0/1
same bank added recently (tRC) to the same bank
. whether the last request to the relevancy of the last request
is-last-far 0/1
same bank added long ago (tRFC) to the same bank
op 0/1 operation(read/write) for potential R/W scheduling
last-op 0/1 operation of last request to the same bank for potential R/W scheduling
ref-after-last /1 whether there is a refresh since refresh reset the
last request to the same bank bank to idle
. . latency can be reall
near-ref 0/1 whether this cycle is near a refresh cycle eney , y
high if it’s near a refresh
. . if there is same row
. number of previous requests with
same-row-prev int request then OO0
same row to the same bank .
may be possible
number of requests added recently contention/queuing
- t-bank int .
numstecent-bank - 1n to the same bank in the bank
. number of recent requests added .
num-recent-rank  int contention
recently to the same rank
. number of recent requests added .
num-recent-all int contention

recently to all ranks

Spatial features need to reflect the structures of DRAM, in par-
ticular, banks and rows, because the state of each bank is the most
determining factor for the incoming DRAM request. For example,
if we are trying to predict the timing of one request, the previous
requests that go to the same bank weigh more than the previous
requests go to any other banks. And same as temporal features, we
don’t need to identify each bank and row by their specific bank
number, but instead we identify them by “same row”, “same bank”,
“same rank”(but different bank), or “different rank”. We can evaluate
a request with previous requests on these fields easily once they
have their physical addresses translated to DRAM addresses(rank,
bank, row, column). And to simplify and facilitate feature extraction,
we maintain a request queue for each bank and put requests into
each bank queue after the address translation. Unlike the queues
in DRAM controllers, this bank queue is not actively managed and
is strictly FIFO with a maximum length imposed for performance
optimization.

Combining the temporal features with spatial features, we can
have features coded with both temporal feature and spatial feature.
For instance, num — recent — bank feature counts the number of
previous requests that go to the same bank and that are recent. We
propose a list of features in Table 1; these features can give hints
on the possible state that the DRAM banks are in and how DRAM
controllers can make scheduling decisions etc.

The feature extraction using one request as an example is shown
in Figure 1.

4.4 Model Training

Having the features and classes ready, we now put pieces together
and build the training flow shown in Figure 2. We use synthetic
traces as training data, and use a cycle accurate DRAM simulator,
DRAMsim3, to provide ground truth. The beauty of using synthetic
traces is that we can use a small amount of synthetic traces to
represent a wide range of real world workloads. For example, we
can control the inter-arrival timings of the synthetic traces to reflect
to intensity of workloads; we can also generate contiguous access
streams and random access streams and interleave them to cover
all types of memory access patterns of real workloads. Plus, we
also don’t have to worry about the contamination of testing dataset
when we test the model with real workloads.

We run the synthetic traces through DRAMsim3 with a DRAM
configuration file as usual. To mark the ground truth, we modified
DRAMsim3 so that it generates a trace output that can be used
for training. Because the DRAMsim3 knows exactly what happens
to each request inside its controller, it can precisely classify the
requests into any of the categories we proposed in Section 4.1. And
once the requests are classified, we run them through the feature
extraction to obtain features. Finally, we run the features along
with the classes into a model to obtain a model.

There are many machine learning models that can potentially
handle this particular classification problem and we are not going
to test every one of them as it is out of the scope of this thesis. In
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Figure 2: Model Training Flow Diagram

this study we start with simple and efficient models like decision
tree[15] and random forest[11] for this study:

e These models are simple, intuitive, and explainable, which
is quite important for prototyping work like this: it helps to
be able to look at the model to examine and debug.

o The an ensemble tree model mimics how a DRAM controller
works naturally, but instead of doing it in a series of cycles,
the decision tree makes the decision instantly.

o The simplicity of these models makes both training and in-
ference fast, the later is crucial for simulations performance.

As far as hyperparameter tuning goes, while decision tree model
is relatively simple, there are still many hyper-parameters to tune.
Luckily the model is not hard to train, and it does not take much
time to go through many parameters. We tried several different
approaches(including brute force), and they all work decently. But
what we have found that produced best accuracy is Stratified K-
fold Cross Validation[10]. Stratification samples help reduce the
imbalance of classes in our training dataset, especially the refresh
class that is much rarer than other classes. K-fold Cross Validation
divides the training data sets into k folds, and for each fold, uses it as
test set and the rest k — 1 folds as training sets.. This further reduces
the bias and overfitting of the model. The details of hyperparameter
training can be found later in Section 5.1.

same-row-last | near-ref| ... | last-op
Front End = " Feature 1 o o
(trace or > Redues Extraction
CPU sim)
cycle| addr | op | [Configuration Features
0 |oxiF[R| |(tRC, tRFC..)
O
s
Num Cycles Latency
(30) « Recovery

Figure 3: Model Inference Flow Diagram

4.5 Inference

Inference is relatively straightforward, as shown in Figure 3. How-
ever, one thing to note is that, if we are to compare the inference
results to the results of cycle accurate simulation, we have to use
the same DRAM configuration profile as the cycle accurate sim-
ulation. Otherwise we are not required to use the same DRAM
configuration profiles.

In implementation, the entire inference process only takes one
function call combining the request cycle, address, and operation
(read/write), and the inference function returns the number of
cycles that the request is going to take to complete.

This is great relief from the cycle accurate interface where the
frontend has to always stay synchronized with the DRAM model.
It allows much more flexible integration into other frameworks.

4.6 Other Potential Models

The innovation of this work is to translate what is an essentially
time-series problem into a non-time-series problems. We are aware
of that there are models that work on time-series problem. Some of
the temporal features in the data are easy to extract, whereas if we
use models to automatically extract features, it will be costly when it
comes to training. Additionally, our approach preserves portability
and model reusability when it comes to different DRAM profiles,
which we believe is not easy to preserve in other models. That being
said, we certainly look forward to other efficient implementations
of this problem.

5 EXPERIMENTS & EVALUATION
5.1 Hyperparameters

We use the Scikit-learn[14] package to train our model, which con-
tains a set of tools and models that are readily available. The hyper-
parameters we use for training the decision tree model is shown in
Table 2. We use the StratifiedShuf fleSplit module to conduct a
grid search on the these hyperparameters to find the best fitting
model.

On top of these hyperparameters, we also use k — fold = 5 for
K-fold cross validation. The end result is that there are a total of
5400 X 5 = 27000 models to train. Fortunately, each model trains
quickly and the training can be distributed to multiple cores/threads
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Table 2: Hyperparameters explored for the decision tree model.

Hyperparameter Values Explanation
max-depth None, 3, 5, 8, 10 I\:[ax de’?th of any patb in the decision tree

(“None” means unlimited)

Min number of samples needed to create a leaf node
min-samples-leaf 5, 20, 20, 30, 0.1, 0.2 . v P .

in the tree. Float number means ratio.
min-samples-split 5. 10, 20, 0.05, 0.1 Min number of samples to create a split in the tree.

Float number means ratio.

Min weighted fraction of the sum total of weights
required to be at a leaf node.

Max number of features to consider. Auto means
square root of number of features.

random state 1,3,5 Help train reproducible model.

min-weight-fraction-leaf 0, 0.05, 0.1

max-features auto, 0.2, 0.5, 0.8

in parallel. It takes less than a minute to train and evaluate all 27000

models using a 4-core desktop CPU. Decision Tree Random Forest
The best hyperparameters are automatically selected based on num_recentrank e num_recent_all
accuracy. The values of the “best” hyperparameters are listed in ref_after_last C near_ref

near_ref -9
- 8.8%

7.5%

Table 3. The best accuracy is 96.76% (for all cross-validation data). .8"/:{ s Jast for others
- others

Table 3: Hyperparameter Values of Best Accuracy

ref_after_last

same_row_last

Hyperparameter Value same_row_last
max-depth None
min-samples-leaf 20
min-samples-split 5
min-weight-fraction-leaf | 0 Figure 4: Feature importance in percentage for decision tree
max-features 0.8 and random forest
random state 3
test benchmarks with different memory characteristics. These SPEC
As for the hyperparameters of random forest model, the default benchmarks are bwaves_r, cactuBSSN_r, deepsjeng_r, fotonik3d_r,
parameters provided by Scikit-learn package works out of the box, gee_r, Ibm_r, nab_r, mcf r, x264_r, and xalancbmk_r. We also in-
trains in seconds, and produces an accuracy as good as the decision clude STREAM, which is very bandwidth sensitive, and ram_lat, an
tree model. Therefore we did not explore the hyperparameters of LMBench-like memory benchmark that is latency sensitive. These
random forest model. benchmarks will show us the full spectrum of memory characteris-

tics and behaviors.
5.2 Feature Importance

We analyze the trained models and see how they treat the features 5.4 Accuracy
differently. To better visualize the importance of features, we clip We run all the benchmarks mentioned in Section 5.3 with cycle
the least important features into one category(“others”), and plot accurate, out-of-order Gem5 CPU along with DRAMsim3, and this
the pie chart as Figure 4. will provide us the golden standard for our accuracy tests. A ad-
The two models handles different features differently, with the dress trace for each of the benchmark is generated as the input to
two most important features the same: same —row —last and re f — the statistical models, this allows the statistical model and cycle
afterr — last, contributing to more than 50% combined. It can also accurate model to have exactly the same inputs to work with. For
be seen that the distribution of importance is more balanced in the each request we also record its latency class and latency value in
random forest model than the decision tree model. cycles labeled by DRAMsim3 so that we can use it for comparison

with the statistical models.
Note that there are two aspects of accuracy, classification accu-

5.3 Benchmarks

To comprehensively test the trained model, we evaluate our model racy, which represents how many requests the statistical model
against cycle-accurate DRAMsim3 with memory traces of real- can correctly classify according to the cycle accurate models; and
world benchmarks. We use a subset of SPEC CPU2017 benchmarks latency accuracy, which is the numeric latency values of the request

[2] that are most representative according to [13], this allows us to produced by the statistical models.
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First we look at classification accuracy for decision tree and
random forest models, as shown in Figure 5 and Figure 6.

Classification Accuracy ~ W Average Latancy Accuracy

1.04

0.8 1

0.6

0.4

0.2
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Figure 5: Classification accuracy and average latency accu-
racy for decision tree model on various benchmarks.

Classification Accuracy B Average Latancy Accuracy

1.0+

0.8

0.6

0.4

0.2

0.0-

< < > & 1
< N O DS Q7 s s A </ NS
o S &L S 9 & > N
5\"'/&5'7 Q‘f\z @&* g"/ X & <& & (}« (}b/ (&0
o & 67‘0 P +,b\'z>

Figure 6: Classification accuracy and average latency accu-
racy for random forest model on various benchmarks.

As can be seen in Figure 5 and Figure 6, overall the predictors pro-
duces great classification accuracy across all benchmarks for both
models. The average classification accuracy is 97.9% for decision
tree and 98.0% for random forest. In most cases the classification
accuracy even exceeds our training accuracy. This is because our
training traces generally contain more address patterns than most
real-world workloads, and is thus harder to work with. Also note
that the accuracy between random forest and decision tree models
is almost indistinguishable, the largest difference being a mere 0.4%
for Ibm benchmark, in all other cases the difference is often 0.1% to
0% difference. This shows signs of our model converging.

Being able to correctly classify the latency categories is the im-
portant first step. The next step is to verify that our latency recovery
model can also reproduce the latency value in cycles according to
the DRAM configuration profile. Our model translate the latency
class for each memory request to a numeric value in DRAM cycles,
and we compare these numeric latency values against our cycle
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Figure 7: Simulation speed relative to cycle accurate model,
y-axis is log scale.

accurate model baseline. To put into perspective of the classification
accuracy, we again use the cycle accurate numbers as the baseline
and plot the average latency value from our statistical models nor-
malized to the cycle accurate model as the accuracy measurement.
We call this measurement “Average Latency Accuracy”. The average
latency accuracy are plotted side by side with classification accu-
racy in both Figure 5 and Figure 6. The average relative latency
for both decision tree model and random forest model are 0.969
comparing to cycle accurate base with worst case 0.94 for stream
and ram_lat benchmarks. We also have a discussion on how to
further reduce the latency accuracy in Section 5.6.

5.5 Performance

We now compare the simulation performance. The simulation time
of each model is measured as the total time it takes to process all
input memory requests. We use the inverse of simulation time as
simulation speed, and plot the simulation speed normalized to the
cycle accurate simulations, as shown in Figure 7. Note that we have
2 implementations of our statistical models, the first one being a
pure Python implementation from end to end, and the other one
is a hybrid Python and C++ implementation where the feature ex-
traction part of the program is implemented in C++ and the rest of
the model is implemented in Python. These two implementations
produces the same results in terms of accuracy but only differs in
simulation speed. Therefore, there are 3 datapoints for each bench-
mark in Figure 7, with one representing cycle-accurate DRAMsim3,
the other 2 representing 2 implementations of the statistical model.

It can be seen that our prediction model runs 5x to 400x faster
than DRAMsim3 (with the C++&Python implementation). The sim-
ulation speed of an inference model is solely dependent on the
number of requests, because the work to predict each request is the
same. In contrast, there are many more factors for cycle accurate
simulations: first off, each cycle has to be simulated even if there is
no memory request at all; the memory address patterns, which alter
the behavior of scheduler, also impact the simulation performance.
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Figure 8: Simulation time vs. number of memory requests
per simulation.

To demonstrate linearity of inference models, we sort the bench-
marks by the number of memory requests they generate, and plot
the simulation time over the the number of requests as in Figure 8.
Both implementations of the decision tree model exhibit almost
strictly linear performance. We can conclude that the time com-
plexity of our model is O(n) where n is the number of requests, and
hence O(1) for each request.

5.6 Multi-core Workloads

Previous experiments show our proposed model can successfully
model DRAM timings for single core workloads, no matter the
memory activity intensity. The success is based on the premise
that the high accuracy classification can translate to high accuracy
latency prediction because the variances are low in each class. While
this might be true for single core workloads, multi-core workloads
may break the assumption.

Table 4: Randomly mixed multi-workloads.

Mix Benchmarks
stream, xalancbmk_r, Ibm_r, bwaves_r
bwaves_r, mcf _r, lbm_r, fotonik3d_r
deepsjeng_r, bwaves_r, gcc_r, fotonik3d_r
xalancbmk_r, x264_r, bwaves_r, gcc_r
mcf_r, stream, ram_lat, [bm_r

RlWIN = o

To validate how well our model holds against scaling workloads,
we amplify the workload by randomly mixing 4 traces of different
workloads together to reflect intensive multi-core memory activi-
ties, and we use the same methodology to evaluate the accuracy.
The mix of benchmarks is shown in Table 4.

It can be seen, in Figure 9, that our model still demonstrate very
high classification accuracy with 0.99 for each mix, but the average
latency sees a decrease down to 0.88 in the worst case (mix 4).
The accuracy disparity between classification accuracy and latency
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Figure 9: Classification accuracy and average latency accu-
racy for randomly mixed multi-workloads.

accuracy is due to the long gap between the latency category edges.
For instance, in the DDR4 configuration we tested, the row — hit
class is 22 cycles while the next near class, idle, is 39 cycles, leaving
17 cycles in between.

To further quantify this effect, we breakdown each latency class
to those whose actual (cycle accurate simulated) latency matches
exactly with their predicted latency; and those whose actual latency
is more than their predicted latency, which we name as “Class+”.
For instance, the in the DDR4 configuration, row—hit class translate
to 22 cycles, while row—hit+ class represents those requests that are
“row hit” situations but with more than 23 cycles due to contention.
Figure 10 shows the breakdown of such classes for each mix. Each
bar in the graph represents the percentage of the total requests
for each class. Note that the predicted latency of refresh classes is
a variation itself so it does not accompany a “+” class like others.
It can be seen that for mixes that have higher latency accuracy
such as Mix2 and Mix3, the percentage of the “+” classes are much
smaller, typically less than 10 percent combined. The opposite can
be observed from other mixes such as 0, 1 and 4, where the “+”
classes contribute to more than 20% of the total requests, resulting
the inaccuracy in their latencies. Further looking into the specific
benchmarks in each mix, we can confirm that the mixes with higher
percentage of “+” all consist of more than 2 memory intensive
benchmarks, whereas the mixes with lower percentage of “+” have
at most 1 memory intensive benchmark.

One way to combat the extra latency introduced by contention
is to train the model with more latency classes, i.e., filling the
latency gap between current classes with more latency classes.
This may increase the training efforts but should reduce the latency
discrepancy between our statistical model and cycle accurate model.

6 DISCUSSION

6.1 Implications of Using Fewer Features

In the early stage of prototyping the machine learning model, we
did not obtain results as good as Section 5.4. However, these results
are still valuable in providing insights to the future improvement of
the model. Therefore, we document the early prototype and results
in this discussion.

One early prototype we had did not have the FIFO queue struc-
ture, but instead only keeping the latest previous memory request
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Figure 10: Request percentage breakdown of latency classes and their associated contention classes for randomly mixed multi-
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workloads. “+” classes are the contention classes apart from their base classes.

to the same bank, i.e. effectively a depth = 1 queue. This only allows
us to extract features such as same-row-last, is-last-recent, is-last-far,
op, and last-op. We only trained decision tree for for evaluation,
and the classification accuracy and average latency accuracy for
each of the benchmarks we tested are shown in Figure 11.

Classification Accuracy ~ mEE Average Latancy Accuracy
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Figure 11: Classification accuracy vs average latency accu-
racy of an early prototype of a decision tree model.

As can be seen in Figure 11, the classification accuracy ranges
from 0.5 to 0.94, with an average of 0.74; perhaps surprisingly, the
average latency accuracy is better on numbers: ranging from 0.91
to 1.25, with an average accuracy of 1.07, or an absolute 10% error.
In some benchmarks, classification accuracy can be 40 to 50 percent
off while latency difference is much smaller. The reason behind this
is that, with only the last request to the same bank being recorded,
the model tends to predict more requests as row-hit or row-miss
than it should, whereas in reality, a lot of these requests should be
idle. Coincidentally, with the DDR4 DRAM parameters, the average
latency of row-hit, 22 cycles, and row-miss, 56 cycles, is 39 cycles,
which is the idle latency. Therefore, while lots are latency classes are
mis-predicted, the average latency numbers are not too far off. This
presents a good reason that we should examine both classification
accuracy and latency accuracy instead of focusing solely on one
measurement.

The lack of tracking for previous requests beyond one entry,
and no account for refresh operations are the primary reasons for

low classification accuracy. Tracking for previous requests beyond
one entry allows the scheduler to make out-of-order scheduling
decisions. Another wildcard that we did not anticipate is the role of
refresh. Although there are typically only less than 3% of memory
requests are directly blocked by DRAM refresh operations, the sub-
sequent impact of refresh is larger: each DRAM refresh operation
resets the bank(s) to idle state, which leads to the next round of
requests to these banks to have idle latency. When there are not
many requests issued to the refresh-impacted banks in between two
refreshes, the refresh operation will render a much larger impact.

6.2 Interface & Integration

Traditionally, the cycle accurate DRAM simulator interface is
“asynchronous”, meaning that the request and response are sep-
arated in time: the CPU simulator sends a request to the DRAM
simulator without knowing at which cycle the response comes
back; while waiting for the memory request to finish, the CPU
simulators has to work on something else every cycle; finally, when
the DRAM simulator finishes the request, it calls back the CPU
simulator, who processes this memory request and its associated
instructions. This asynchronous interface only works in cycle accu-
rate simulator designs, as the CPU simulator has to check in with
the DRAM simulator every cycle to get the correct timing of each
memory request.

The statistical model, however, brings an “atomic” interface to
the simulator design, meaning that upon the arrival of each request,
the timing of this request can be provided back to the CPU simu-
lator immediately with high fidelity. This will enable much easier
integration into other models than cycle accurate models. For ex-
ample, when integrated into an event-based simulator, the response
memory event can be immediately scheduled to the future cycle
provided by the statistical model, and no future event rearranging
is needed.

Furthermore, the atomic interface provided by the statistical
model will benefit parallel simulation framework. Because in a par-
allel simulation framework, simulated components interacting with
each other generate synchronization events across the simulation
framework, and frequent synchronization will negatively impact
the simulation performance. The statistical model only needs to be
accessed when needed, thus reducing the synchronization need to
a minimum.
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7 CONCLUSION & FUTURE WORK

In this paper, we proposed and implemented a novel machine learn-
ing based DRAM latency model. The model achieves highest accu-
racy among non-cycle-accurate models, and performs much faster
than a cycle accurate model, making it a competitive offering for
cycle accurate model replacement.

The model still has room to improve as future works. First off,
if the entire flow can be implemented in C++, we can expect more
performance gain without any impact on classification accuracy.
Secondly, introducing more latency classes can bridge the gap be-
tween latency accuracy and classification accuracy for memory
intensive workloads. Or rather, more latency classes can be con-
structed to model the working mechanisms of more sophisticated
controller/scheduler designs beyond our currently modeled out-of-
order open-page scheduler, providing more flexibility to the model.
Finally, we only trained and tested decision tree and random forest
models for the purpose of prototyping, and we realize that there are
lots of alternative machine learning models that could also work
for this problem, so it may be worth exploring other models in the
future.
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