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ABSTRACT
To feed the high degrees of parallelism in modern graphics proces-
sors and manycore CPU designs, DRAM manufacturers have cre-
ated new DRAM architectures that deliver high bandwidth. This pa-
per presents a simulation-based study of the most common forms of
DRAM today: DDR3, DDR4, and LPDDR4 SDRAM; GDDR5 SGRAM;
and two recent 3D-stacked architectures: High Bandwidth Memory
(HBM1, HBM2), and Hybrid Memory Cube (HMC1, HMC2). Our
simulations give both time and power/energy results and reveal
several things: (a) current multi-channel DRAM technologies have
succeeded in translating bandwidth into better execution time for
all applications, turning memory-bound applications into compute-
bound; (b) the inherent parallelism in the memory system is the
critical enabling factor (high bandwidth alone is insufficient); (c)
while all current DRAM architectures have addressed the memory-
bandwidth problem, the memory-latency problem does still remain,
dominated by queuing delays arising from lack of parallelism; and
(d) the majority of power and energy is spent in the I/O interface,
driving bits across the bus; DRAM-specific overhead beyond band-
width has been reduced significantly, which is great news (an ideal
memory technology would dissipate power only in bandwidth, all
else would be free).

CCS CONCEPTS
• General and reference → Performance; • Computer sys-
tems organization → Architectures;
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1 INTRODUCTION
In response to the still-growing gap between memory access time
and the rate at which processors can generate memory requests [46,
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60], and especially in response to the growing number of on-chip
cores (which only exacerbates the problem), manufacturers have
created several new DRAM architectures that give today’s system
designers a wide range of memory-system options from low power,
to high bandwidth, to high capacity. Many are multi-channel inter-
nally. This paper presents a simulation-based characterization of
the most common DRAMs in use today, evaluating each in terms
of its effect on total execution time and power dissipation.

We have updated DRAMsim2 [50] to simulate nine modern
DRAM architectures: DDR3 [24], DDR4 [25], LPDDR3 [23], and
LPDDR4 SDRAM [28]; GDDR5 SGRAM [29]; High BandwidthMem-
ory (both HBM1 [26] and HBM2 [27]); and Hybrid Memory Cube
(both HMC1 [18] and HMC2 [19]). The DRAM command timings
are validated, and the tool provides power and energy estimates
for each architecture. To obtain accurate memory-request timing
for a contemporary multicore out-of-order processor, we integrate
our code into gem5 and use its DerivO3 CPU model [3]. To high-
light the differences inherent to the various DRAM protocols, we
study single-channel (and single-package, for those that are multi-
channeled within package) DRAM systems. Doing so exposes the
fundamental behaviors of the different DRAM protocols & architec-
tures that might otherwise be obscured in, for example, extremely
large, parallel systems like Buffer-on-Board [9] or Fully Buffered
DIMM [14] systems.

This study asks and answers the following questions:

• Previous DRAM studies have shown that the memory over-
head can be well over 50% of total execution time (e.g.,
[10, 11, 53]); what is the overhead today, and how well
do the recent DRAM architectures combat it? In particular,
how well do they address the memory-latency and memory-
bandwidth problems?
As our results show, main memory overheads today, for
single-rank organizations, are still 42–75% for nearly all ap-
plications, even given the relatively modest 4-core system
that we study. However, when sufficient parallelism is added
to the memory system to support the bandwidth, which can
be as simple as using a dual-rank organization, this overhead
drops significantly. In particular, the latest high-bandwidth
3D stacked architectures (HBM and HMC) do well for nearly
all applications: these architectures reduce the memory-stall
time significantly over single-rank DDRx and LPDDR4 ar-
chitectures, reducing 42–75% overhead down to less than
30% of total execution time. These architectures combine
into a single package all forms of parallelism in the memory
system: multiple channels, each with multiple ranks/banks.
The most important effect of these and other highly parallel
architectures is to turn many memory-bound applications
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to compute-bound applications, and the total execution time
for some applications can be cut by factors of 2–3x.

• Where is time and power spent in the DRAM system?
For all architectures but HBM and HMC, the majority of time
is spent waiting in the controller’s queues; this is true even
though theworkloads represent only a small number of cores.
Larger systems with dozens or hundreds of cores would
tend to exacerbate this problem, and this very phenomenon
is seen, for example, in measured results of physical KNL
systems [48]. For HBM and HMC systems, the time is more
evenly distributed over queuing delays and internal DRAM
operations such as row activation and column access.
Power breakdowns are universal across the DRAM architec-
tures studied: for each, the majority of the power is spent
in the I/O interface, driving bits over the bus. This is an
extremely good thing, because everything else is overhead,
in terms of power; this result means that one pays for the
bandwidth one needs, and the DRAM operations come along
essentially for free. The most recent DRAMs, HMC espe-
cially, have been optimized internally to the point where the
DRAM-specific operations are quite low, and in HMC rep-
resent only a minor fraction of the total. In terms of power,
DRAM, at least at these capacities, has become a pay-for-
bandwidth technology.

• Howmuch locality is there in the address stream that reaches
the primary memory system?
The stream of addresses that miss the L2 cache contains a
significant amount of locality, as measured by the hit rates
in the DRAM row buffers. The hit rates for the applications
studied range 0–90% and average 39%, for a last-level cache
with 2MB per core. (This does not include hits to the row
buffers when making multiple DRAM requests to read one
cache line.) This relatively high hit rate is why optimized
close-page scheduling policies, in which a page is kept open
if matching requests are already in the controller’s request
queue (e.g., [30, 47]), are so effective.

In addition, we make several observations. First, “memory latency”
and “DRAM latency” are two completely different things. Memory
latency corresponds to the delay software experiences from issuing
a load instruction to getting the result back. DRAM latency is of-
ten a small fraction of that: average memory latencies for DDRx
and LPRDDRx systems are in the 80–100ns range, whereas typi-
cal DRAM latencies are in the 15–30ns range. The difference is in
arbitration delays, resource management, and whether sufficient
parallelism exists in the memory system to support the memory
traffic of the desired workload. Insufficient parallelism leads to long
queuing delays, with requests sitting in the controller’s request
buffers for tens to hundreds of cycles. If your memory latency is
bad, it is likely not due to DRAM latency.

This is not a new concept. As has been shown before [10], more
bandwidth is not always better, especially when it is allocated
without enough concurrency in the memory system to maintain
it. Execution time is reduced 21% when moving from single-rank
DDR3 channels to dual-rank channels. Execution time is reduced
22% when moving from a single-channel LPDDR4 organization
to a quad-channel organization. Execution time is reduced 25%
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Figure 1: Top: as observed by Srinivasan [54], when plotting
system behavior as latency per request vs. actual bandwidth
usage (or requests per unit time), three distinct regions ap-
pear. At low bandwidth usage, latency is nearly constant. As
bandwidth usage increases, the latency increases linearly.
In high-performance systems, the maximum sustainable
bandwidth is usually 75–80% of the maximum theoretical
bandwidth. As an application’s request rate approaches this
value, the requests are arriving so frequently it strains the
system’s capacity, and latencies grow extremely high, ex-
tremely quickly. Bottom: when a second memory system
with a much higher maximum bandwidth is evaluated run-
ning the same workload, the second system (bottom graph)
will exhibit constant latency in regions where the lower-
bandwidth system (top graph) experiences linear or even ex-
ponential latency.

for some apps when moving from a 4-channel organization of
HBM to an 8-channel organization. And when one looks at the
reason for the reduction, it is due to reduced time spent in queues
waiting for memory resources to become free. Though it may sound
counter-intuitive, average latencies decrease when one allocates
enough parallelism in the memory system to handle the incoming
request stream. Otherwise, requests back up, and queuing delays
determine the average latency, as we see in DDRx, LPDDR4, and
GDDR5 based systems. Consequently, if one’s software is slow due
to latency issues, consider improving your NoC, or increasing the
number of controllers or channels to solve the problem.

Second, bandwidth is a critical and expensive resource, so its allo-
cation is important. As mentioned above, having enough bandwidth
with parallelism to support it can reduce execution time by 2–3x
and turn some previously memory-bound apps into compute-bound
apps. This is a welcome result: one can bring value to advanced
processor-architecture design by simply spending money on the
memory system. Critical rule of thumb to note: multicore/manycore
architectures require at a minimum ∼1GB/s of sustained memory
bandwidth per core, otherwise the extra cores sit idle [54].
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Third, for real-time systems, Hybrid Memory Cube is quite in-
teresting, as it provides highly deterministic latencies. This char-
acteristic of HMC has been noted before [46] and is due in part
to the architecture’s extremely high bandwidth, which pushes the
exponential latency region out as far as possible (see Figure 1 for
an illustration). However, high bandwidth alone does not provide
such determinism, otherwise we would see similar deterministic
latencies in HBM systems, which we do not. The effect is due not
only to bandwidth but also to the internal scheduling algorithms of
HMC, which use a close-page policy that does not opportunistically
seek to keep a page open longer than required for the immediate
request. While this may sacrifice some amount of performance, it
provides predictable latencies and keeps the internal DRAM power
down to a level below that of all other DRAM architectures studied,
including power-optimized LPDDR4.

The following sections providemore background on the topic, de-
scribe our experimental setup, and compare & contrast the various
DRAM architectures.

2 RELATEDWORK
Many proposals have quantified the performance benefits of having
a lower latency or higher bandwidth main memory. For instance,
[35, 39, 42, 52] showcase the performance improvement obtainable
by having a good fraction of memory requests served from on-
package memories such as HBM.

Some studies [32, 33, 45] propose main memory system designs
with alternative but not yet mainstream technologies such as Phase
Change Memory (PCM) and Spin-Transfer Torque Magnetic Ran-
dom Access Memory (STT-MRAM). These contrast the trade-offs
between the emerging memory technologies and traditional DDR
memory.

Some papers study the system-level performance impact caused
by inadequately provisioned memory systems. Wang et al. [59]
show the importance of providing proportionate and sufficient
memory bandwidth for multi-threaded applications running on
large multi-core systems. Subramanian et al. [55] measure the per-
formance degradation caused due to interference in application
memory access streams. Liu et al. [37] propose OS level techniques
to mitigate performance degradation caused by memory interfer-
ence in multi-core systems. Shingari et al. [51] and Narancic et
al. [41] discuss the memory system behavior in the context of mo-
bile workloads and LPDDR memory. Lee et al. [34] discuss the
memory bandwidth challenges in implementing security features
in multi-core processors. Abts et al. [1] discuss the impact of the
physical location of the memory controllers on a multi-core chip
on memory access latencies.

Designing memory schedulers that are fast and fair has long
been an active area of research. Rixner et al. [47] perform an expan-
sive design-space exploration of scheduling heuristics, analyzing
various request reordering and scheduling strategies, row buffer
open/close policies, etc. Yuan et al. [61] describe a similar study in
the context of a GPU memory system. Kaseridis et al. [30] demon-
strate a best-of-both-worlds heuristic that blends open page and
close page, keeping pages open slightly longer than close-page, but
not much longer. Cooper-Balis [8] and Chatterjee et al. [6] both
argue for shortening the size of the DRAM row buffers to reduce
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Figure 2: Stylized DRAM internals, showing the importance
of the data buffer between DRAM core and I/O subsystem.
Increasing the size of this buffer, i.e., the fetchwidth to/from
the core, has enabled speed increases in the I/O subsystem
that do not require commensurate speedups in the core.
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Figure 3: DRAM read timing, with values typical for today.
The burst delivery time is not drawn to scale: it can be a very
small fraction of the overall latency.Note: though precharge
is shown as the first step, in practice it is performed at the
end of each request to hide its overhead as much as possible,
leaving the array in a precharged state for the next request.

memory power. Li et al. [36] propose prioritizing memory requests
corresponding to cache lines shared by multiple cores. Chatterjee et
al.[7] showcase the importance of prioritizing the memory requests
from a GPU warp and to serve them together. Several proposals
[5, 16, 63] discuss strategies to reduce the performance and energy
impact associated with DRAM refresh.

Memory-system energy consumption is a growing concern in
today’s datacenters, as characterized in [56, 57]. Zhang et al. [62]
further demonstrate the scale of this problem and propose ideas to
partially power-off a part of the DRAM main memory to reduce
standby power.

This paper revisits earlier comparative studies of DRAM archi-
tectures (e.g., [11, 12, 44]) and is the first to pit today’s DRAMs
(LP/DDR, GDDR, HBM, HMC) against each other.

3 BACKGROUND
Dynamic Random Access Memory (DRAM) uses a single transistor-
capacitor pair to store each bit. A simplified internal organization
is shown in Figure 2, which indicates the arrangement of rows and
columnswithin the DRAMarrays and the internal core’s connection
to the external data pins through the I/O subsystem.
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The use of capacitors as data cells has led to a relatively complex
protocol for reading and writing the data, as illustrated in Figure 3.
The main operations include precharging the bitlines of an array,
activating an entire row of the array (which involves discharging
the row’s capacitors onto their bitlines and sensing the voltage
changes on each), and then reading/writing the bits of a particular
subset (a column) of that row [20].

Previous studies indicate that increasing DRAM bandwidth is
far easier than decreasing DRAM latency [4, 10–12, 20], and this is
because the determiners of DRAM latency (e.g., precharge, activa-
tion, and column operations) are tied to physical constants such as
the resistivity of the materials involved and the capacitance of the
storage cells and bitlines. Consequently, the timing parameters for
these operations are measured in nanoseconds and not clock cycles;
they are independent of the DRAM’s external command and data
transmission speeds; and they have only decreased by relatively
small factors since DRAM was developed (the values have always
been in the tens of nanoseconds).

The most significant changes to the DRAM architecture have
come in the data interface, where it is easier to speed things up by
designing low-swing signaling systems that are separate from the
DRAM’s inner core [44]. The result is the modern DDR architecture
prevalent in today’s memory systems, in which the interface and
internal core are decoupled to allow the interface to run at speeds
much higher than the internal array-access circuitry. The organiza-
tion first appeared in JEDEC DRAMs at the first DDR generation,
which introduced a 2n prefetch design that allowed the internal
and external bandwidths to remain the same, though their effective
clock speeds differed by a factor of two, by “prefetching” twice
the number of bits out of the array as the number of data pins on
the package. The DDR2 generation then doubled the prefetch bits
to 4x; the DDR3 generation doubled it to 8x, and so on. This is
illustrated in Figure 2, which shows the decoupling data buffer that
lies between the core and I/O subsystem. The left side of this buffer
(the core side) runs slow and wide; the right side (the I/O side) runs
fast and narrow; the two bandwidths are equal.

This decoupling has allowed the DRAM industry to focus heav-
ily on improving interface speeds over the past two decades. As
shown in Figure 3, the time to transmit one burst of data across the
bus between controller and DRAM is measured in cycles and not
nanoseconds, and, unlike the various operations on the internal
core, the absolute time for transmission has changed significantly
in recent years. For instance, asynchronous DRAMs as recent as
the 1990s had bus speeds in the range of single-digit Mbps per pin;
DDR SDRAM appeared in the late 1990s at speeds of 200 Mbps per
pin, two orders of magnitude faster; and today’s GDDR5X SGRAM
speeds, at 12 Gbps per pin, are another two orders of magnitude
faster than that. Note that every doubling of the bus speed reduces
the burst time by a factor of two, thereby exacerbating the already
asymmetric relationship between the data-access protocol (opera-
tions on the left) and the data-delivery time (the short burst on the
right).

The result is that system designers have been scrambling for
years to hide and amortize the data-access overhead, and the prob-
lem is never solved, as every doubling of the data-bus speed renders
the access overhead effectively twice as large. This has put pressure
in two places:

• The controller design. The controller determines howwell
one can separate requests out to use different resources (e.g.,
channels and banks) that can run independently, and also
how well one can gather together multiple requests to be
satisfied by a single resource (e.g., bank) during a single
period of activation.

• Parallelism in the back-end DRAM system. The back-
end DRAM system is exposed as a limitation when it fails
to provide sufficient concurrency to support the controller.
This concurrency comes in the form of parallel channels,
each with multiple ranks and banks.

It is important for system design to balance application needs with
resources available in the memory technology. As previous research
has shown, not all applications canmake use of the bandwidth that a
memory system can provide [49], and even when an application can
make use of significant bandwidth, allocating that resource without
requisite parallelism renders the additional bandwidth useless [10].
In simpler terms, more does not immediately translate to better.
This paper studies which DRAM architectures provide more, and
which architectures do it better. The following sections describe
the DRAM architectures under study in terms of their support for
concurrency and parallel access.
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Figure 4: DDR SDRAM Read timing.

3.1 DDRx SDRAM
As mentioned above, the modern DDRx SDRAM protocol has be-
come widespread and is based on the organization shown in Fig-
ure 2, which decouples the I/O interface speed from the core speed,
requiring only that the two bandwidths on either side of the inter-
nal data buffer match. One of the distinguishing features of DDRx
is its data transmission, which occurs on both edges of a data clock
(double data rate, thus the name), the data clock named the DQS
data-strobe signal. DQS is source-synchronous, i.e, it is generated
by whomever is driving the data bus, and the signal travels in the
same direction as the data. The signal is shown in Figure 4, which
presents the timing for a read operation.

In our simulations, we use a DIMM organization as shown in
Figure 5(a): a 64-bit data bus comprising eight x8 DRAMs.

3.2 LPDDRx SDRAM
Low Power DDR SDRAMmakes numerous optimizations to achieve
the same bandwidth as DDRx, in the same multi-drop organizations
(e.g. multi-rank DIMMs), but at a significantly reduced power cost.
Optimizations include removing the DLL, strict usage of the DQS
strobe, and improved refresh.
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Figure 5: DRAM bus/interface organizations simulated in this study.

Another optimization for LPDDR4 is that each device is not
only internally multi-banked, it is internally multi-channel[28].
Each device has two control/address buses, two data buses, and
the specification describes the Quad-Die Quad-Channel Package:
it has four dies and four separate buses, each 16 bits wide, with
16 bits coming from each of two devices in an overlapped, dual-
rank configuration. This is an incredible amount of parallelism in a
small, low-power package and approaches the parallelism (if not
the bandwidth) of HBM.

In our simulations, we model LPDDR4 in two different ways that
are common: first, we use a DIMM like that in Figure 5(a). Second,
we simulate the the Quad-Die, Quad-Channel Package shown in
Figure 5(b).

3.3 GDDR5 SGRAM
The DDRx standards have provided high bandwidth and high ca-
pacity to commodity systems (laptops, desktops), and the LPDDRx
standards have offered similar bandwidths at lower power. These
serve embedded systems as well as supercomputers and data cen-
ters that require high performance and high capacity but have strict
power budgets.

The GDDRx SGRAM standards have been designed for graph-
ics subsystems and have focused on even higher bandwidths than
DDRx and LPDDRx, sacrificing channel capacity. SGRAMs are not
specified to be packaged in DIMMs like the DDRx and LPDDRx
SDRAMs. Each SGRAM is packaged as a wide-output device, typ-
ically coming in x16 or x32 datawidths, and they often require
significant innovations in the interface to reach their aggressive
speeds.

For example, GDDR5 runs up to 6Gbps per pin, GDDR5X is
available at twice that, and the protocols require a new clock domain
not seen in DDRx and LPDDRx standards: Addresses are sent at
double-data-rate on the system clock, and the data strobe now runs

a higher frequency than the system clock, as well as no longer
being bi-directional. This has the beneficial effect of eliminating
the dead bus cycle shown in Figure 4 as the “DQS hand-off,” as the
strobe line need not idle if it is never turned around. Instead of
being source-synchronous, the data strobe is unidirectional and
used by the DRAM for capturing data. For capturing data at the
controller side during data-read operations, the controller trains
each GDDR5 SGRAM separately to adjust its data timing at a fine
granularity relative to its internal clock signal, so that the data for
each SGRAM arrives at the controller in sync with the controller’s
internal data clock.

In our simulations, we use an organization as shown in Fig-
ure 5(c): a 64-bit data bus made from four x16 GDDR5 chips placed
side-by-side.

3.4 High Bandwidth Memory (HBM)
JEDEC’s High Bandwidth Memory uses 3D integration to package
a set of DRAMs; it is similar to the DIMM package shown in Fig-
ure 5(d) in that it gathers together eight separate DRAM devices
into a single parallel bus. The difference is that HBM uses through-
silicon vias (TSVs) as internal communication busses, which enables
far wider interfaces. Whereas a DDRx-based DIMM like that in
Figure 5(a) gangs together eight x8 parts (each part has 8 data pins),
creating a bus totaling 64 bits wide, HBM gangs together eight x128
parts, creating a bus totaling 1024 bits wide. This tremendous width
is enabled by running the external communications over a silicon
interposer, which supports wire spacing far denser than PCBs. This
approach uses dollars to solve a bandwidth problem, which is al-
ways a good trade-off. JEDEC calls this form of packaging “2.5D
integration.”

The 8 channels of HBM can operate individually or cooperatively.
HBM2 standard also introduced pseudo-channel, which further
divide one channel into two pseudo channels.
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In our simulations, we use the organization as shown in Fig-
ure 5(d): a 1024-bit data bus that is subdivided into four, eight,
channels or sixteen pseudo-channels (8 for most studies). HBM1
gives 128GB/s total bandwidth; HBM2 gives 256GB/s total band-
width.

3.5 Hybrid Memory Cube (HMC)
Hybrid Memory Cube is unique in that, unlike all the other DRAM
architectures studied herein, the DRAM interface is not exported;
instead, HMC packages internally its own DRAM controllers. As
shown in Figure 5(e), it includes a 3D-integrated stack of DRAMs
just like HBM, but it also has a non-DRAM logic die at the bottom
of the stack that contains three important things:

(1) A set of memory controllers that control the DRAM. HMC1
has 16 internal controllers; HMC2 has up to 32.

(2) The interface to the external world: a set of two or four high-
speed ports that are independent of each other and transmit
a generic protocol, so that the external world need not use
the DRAM protocol shown in Figure 3. Link speed and width
can be chosen based on needs.

(3) An interconnect that connects the I/O ports to the controllers.
Communication is symmetric: requests on any link can be
directed to any controller, and back.

For most of the studies, we use two 15Gbps link configurations
of HMC and HMC2 (120GB/s total bandwidth), because that is
sufficient for the needs of the workload. At the end of the paper, we
present a stress-test that significantly increases thememory-request
rate, at which point we study 4-link and higher speed configurations
as well.

4 EXPERIMENTAL SETUP
We run a newly updated version of DRAMsim [50, 58] within the
gem5 simulator. The following sections elaborate.

Table 1: Gem5 Setup

CPU Gem5 DerivO3 CPU model,
x86 architecture, 4-core

Core 4GHz, Out-of-order, 8-fetch, 8-issue,
192 reorder buffer entries

L1 I-Cache per-core, 32KB, 2-way associative,
64 Byte cache line, LRU

L1 D-Cache per-core, 64KB, 2-way associative,
64 Byte cache line, LRU

L2 Cache shared, MOESI protocol, 8MB,
8-way associative, 64 Byte cache line, LRU

Workloads bzip2, gcc, GemsFDTD, lbm, mcf, milc,
soplex, STREAM, GUPS, HPCG

4.1 Simulation Setup
We configure gem5 to simulate an average desktop processor: x86-
based, 4-core, out-of-order. The detailed configuration is in Table 1.

From several suites, we select benchmarks to exercise the mem-
ory system, including those from SPEC2006 [17] that are memory-
bound according to [22]. These benchmarks have Cycles per Instruc-
tion (CPI) ranging from 2 to 14, representing moderate to relatively
intensive memory workloads. We also simulate STREAM and GUPS
from the HPCC benchmark suite [38]. STREAM tests the sustained
bandwidth, while GUPS exercises the memory’s ability to han-
dle random requests. Finally we use HPCG [13], high-performance
conjugate gradients, which represents memory-intensive scientific
computing workloads. We ran four copies of each workload, one on
each core of the simulated processor. Gem5 is configured to run in
system-emulation mode, and all the benchmarks are fast-forwarded
over the initialization phase of the program, and then simulated
with the DerivO3 Gem5 CPU model for 2 billion instructions (500
million per core).

4.2 DRAM Simulator Overview
An updated version of DRAMsim2 models the new memory tech-
nologies studied herein.

As with DRAMsim2 [50], the simulator is validated against Ver-
ilogmodels for correctness. The following subsections provide some
details of the simulator’s inner workings.

Scheduling and Page Policy: A First-Ready–First-Come-First-
Served (FR-FCFS) [47] scheduling policy combined with Minimalist
Open-Page policy [30] is used in the memory controller design.
FR-FCFS can reduce the latency and improve throughput by sched-
uling overlapped DRAM commands while Minimalist Open-Page
prevents row-buffer starvation and thus improves fairness. We ap-
ply this scheme to all memory controllers except for HMC, because
HMC only operates in strict close-page mode.

DRAM Address Mapping: To reduce row buffer conflicts and
exploit parallelism among DRAM banks, we interleaved the DRAM
addresses in the pattern of row-bank-bankgroup-column (from MSB
to LSB). For configurations with multiple channels or ranks, we
also interleaved the channel/rank bits in between the row-address
bits and bank-ad-dress bits. Note that DDR3 has no bank group, and
so this is ignored. Another exception: HMC enforces a close-page
policy that does not take advantage of previously opened pages,
and thus putting column address bits on the LSB side would not
be beneficial. Therefore we adopt the address-mapping scheme
recommended by the HMC specification, which is row-column-
bank-channel (from MSB to LSB).

HMC Interface: Different from all other DRAMprotocols, HMC
uses high-speed links that transmit a generic protocol between the
CPU and HMC’s internal vault controllers.

The packets are broken down to flits to be sent across the internal
crossbar, which has two layers: one for requests and another for
responses, to avoid deadlocks.

Refresh Policy: All of the DRAM protocols simulated in this
work use a per-rank auto-refresh scheme—that is, a refresh com-
mand is issued automatically by the controller to all the banks
within a rank at the specified rate.

DRAM Parameters:
Several of the most important parameters are listed in Table 2,

including tRCD, tRAS, tRP, and tCL/CWL.
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Table 2: DRAM Parameters

DRAM
Type Density Device

Width Page Size # of Banks
(per rank) Pin Speed

Max.
Bandwidth [3]

tRCD
(ns)

tRAS
(ns)

tRP
(ns)

CL/CWL
(ns)

DDR3 8Gb 8 bits 2KB 8 1.866Gbps 14.9GB/s 14 34 14 14/10
DDR4 8Gb 8 bits 1KB 16 3.2Gbps 25.6GB/s 14 33 14 14/10
LPDDR4 6Gb 16 bits 2KB 8 3.2Gbps 25.6GB/s -[5] -[5] -[5] -[5]

GDDR5 8Gb 16 bits 2KB 16 6Gbps 48GB/s 14/12[4] 28 12 16/5
HBM[1] 4Gbx8 128 bits 2KB 16 1Gbps 128GB/s 14 34 14 14/4
HBM2[1] 4Gbx8 128 bits 2KB 16 2Gbps 256GB/s 14 34 14 14/4
HMC[1] 2Gbx16 32 bits 256 Bytes 16 2.5Gbps[2] 120GB/s 14 27 14 14/14
HMC2[1] 2Gbx32 32 bits 256 Bytes 16 2.5Gbps[2] 320GB/s 14 27 14 14/14
[1] HBM and HMC have multiple channels per package, therefore the format here is channel density x channels.
[2] The speed here is HMC DRAM speed, simulated as 2.5Gbps according to [49]. HMC link speed can be 10–30Gbps.
[3] Bandwidths for DDR3/4, LPDDR4 and GDDR5 are based on 64-bit bus design; HBM and HBM2 are 8×128 bits wide;
Bandwidth of HMC and HMC2 are maximum link bandwidth of all 4 links. We use 2 links 120GB/s in most simulations.
[4] GDDR5 has different values of tRCD for read and write commands.
[5] We are using numbers from a proprietary datasheet, and they are not publishable.

Most of the parameters are based on existing product datasheets
or official specifications. Some parameters, however, are not publicly
available—for example, some timing parameters of HBM and HMC
are not specified in publicly available documentation. Previous
studies [31, 49] have established reasonable estimations of such
parameters, and so we adopt the values given in these studies.

5 EVALUATION
The following sections present our results and analysis.

5.1 Overall Performance Comparisons
Figure 6 shows performance results for the DRAM architectures
across the applications studied, as average CPI. To understand the
causes for the differences, e.g. whether from improved latency or
improved bandwidth, we follow [11] and [4]: we run multiple sim-
ulations to distinguish between true execution time and memory
overhead and distinguish between memory stalls that can be elimi-
nated by simply increasing bandwidth and those that cannot.

The tops of the orange bars indicate the ideal CPI obtained with
a perfect primary memory (zero latency, infinite bandwidth). The
remaining portion above the orange bars is the overhead brought
by primary memory, further broken down into stalls due to lack
of bandwidth (red bar) and stalls due to latency (green bar). For
example, the best CPI that could be obtained from a perfect mem-
ory for STREAM, as shown in Figure 6, is 4.3. With DDR3, the
DRAM memory contributes another 4.6 cycles to the execution
time, making the total CPI 8.9. Among these 4.6 cycles added by
DDR3, only 0.3 cycles are stalls due to lack of memory bandwidth;
the remaining 4.3 cycles are due to memory latency.

The first thing to note is that the CPI values are all quite high.
Cores that should be able to retire 8 instructions per cycle are seeing
on average one instruction retire every two cycles (bzip2), to 30
cycles (GUPS). The graphs are clear: more than half of the total
overhead is memory.

As a group, the highest CPI values are single-rank (DDR3-1,
DDR4-1) or single channel (LPDDR4-1) configurations . Single rank

configurations exposes the tFAW protocol limitations [20, 21], be-
cause all requests must be satisfied by the same set of devices.
Having only one rank to schedule into, the controller cannot move
to another rank when the active one reaches the maximum acti-
vation window; thus the controller must idle the requisite time
before continuing to the next request when this happens. The ef-
fect is seen when comparing DDR3-1 to DDR3, an average 21%
improvement from simply using a dual-rank organization; or when
comparing DDR4-1 to DDR4, an average 14% improvement from
simply moving to dual-rank from single-rank.

LPDDR4-1 and LPDDR4 has the same bandwidth, but different
configurations (64×1 vs 16×4 buses). There is a 22% improvement
when using the quad-channel configuration, indicating that using
more parallelism to hide longer data burst time works well in this
case.

From there, the comparison is DDR3 to LPDDR4 to DDR4, and
the improvement goes in that direction: LPDDR4 improves onDDR3
performance by an average of 8%, and DDR4 improves on LPDDR4
by an average of 6%. This comes from an increased number of
internal banks (DDR4 has 16 per rank; LPDDR4 has 8 per rank but
more channel/ranks, DDR3 has only 8 per rank), as well as increased
bandwidth. The reason why LPDDR4, having more banks, does not
outperformDDR4 is its slower DRAM timings, whichwas optimized
for power but not performance.

Next in the graphs is GDDR5, which has almost twice the band-
width of DDR4 and LPDDR4, but because it is a single-rank design
(GDDR5 does not allow multi-drop bus configurations), it behaves
like the other single-rank configurations: DDR3-1, DDR4-1, and
LPDDR4-1, which is to say that it does not live up to its potential
under our testing setup.

The best-performing DRAM architectures are HBM and HMC:
the workloads are split roughly evenly on which DRAM is “best.”
One may be not impressed by the performance improvement here:
though HBM and HMC have maximum bandwidths of 128GB/s and
120GB/s, roughly 8 and 13 times more than single-rank DDR3, they
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Figure 6: CPI breakdown for each benchmark. Note that we use a different y-axis scale for GUPS. Each stack from top to bottom
are stalls due to bandwidth, stalls due to latency, CPU execution overlapped with memory, and CPU execution.

only achieve improvements of 2–3x over DDR3. Indeed, the perfor-
mance improvement is less than the bandwidth increase; however,
the total memory overhead decreases by a more significant amount,
from being much more than half of the total CPI to accounting for
less than 30% of the total CPI in many cases.

The net result is that the most advanced DRAMs, HBM and
HMC, which combine all of the techniques previously shown to
be important (multiple channels, and multiple ranks and/or banks
per channel, and extremely high bandwidth), outperform all other
DRAM architectures, often by a factor of two. The difference comes
from virtually eliminating DRAM overhead, and the result is that
half of the benchmarks go from being memory-bound to being
compute-bound.

Lastly, it is clear from Figure 6 that the performance improvement
brought by HBM and HMC is due to the significant reduction of
latency stalls. In the following section, we break down the latency
component to understand better.

5.2 Access Latency Analysis
Average memory latency is broken down in Figure 7, indicating the
various operations that cause an operation not to proceed immedi-
ately.

Note that row access time varies with the different row buffer
hit rates. In the worst case, where there is no row buffer hit, or the
controller uses a close page policy (such as HMC), the row access
time would reach its upper bound tRCD. Note also that the highly
parallel, multi-channel DRAMs not only overlap DRAM-request
latency with CPU execution but with other DRAM requests as well;
therefore, these averages are tallied over individual requests.

At first glance, the reason HBM and HMC reduce the average
access latency in Figure 6 is that they both tend to have shorter
queuing delays than the other DRAMs. The reduced queuing delay

comes from several sources, the most important of which is the
degree of parallelism: HMC has 16 controllers internally; and HBM
is configured with eight channels. This matches previous work [10],
which shows that high bandwidth must be accompanied by high
degrees of parallelism, andwe also see it when comparing LPDDR as
a DIMM (single-channel) with LPDDR in the quad-channel format:
both have exactly the same bandwidth, but the increased parallelism
reduces execution time significantly.

HBM and HMC also have additional parallelism from integrating
many more banks than DDR3 and DDR4: they have 128 and 256
banks per package respectively, which is 8/16 times more than a
DDR3 DIMM. Thus, potentially 8 times more requests can be served
simultaneously, and the queuing delay for requests to each bank is
reduced.

Further latency reduction in HMC is due to the controllers at-
tached to it. In contrast with HMC, HBM can exploit open pages.
In benchmarks such as milc, HPCG, gcc, STREAM and lbm, the
row access time for HBM is reduced significantly, while HMC has
the same constant row access time. Compared to DDR3, DDR4
and GDDR5, which also utilize open pages, HBM has more banks,
meaning more potentially opened pages and thus higher row buffer
hit rates, which further reduces the access latency. This happens
in STREAM and lbm, where HBM has noticeably lower row access
time than DDR3, DDR4 and GDDR5. This can be verified by looking
at the row buffer hit rates shown in Figure 11.

Note that HMC exhibits a stable average access latency. From
Figure 7 we see its average latency around 40ns, ranging from 39ns
for soplex to 52ns for STREAM. The average is 41ns with a standard
deviation of 3.9ns . HBM has the same average latency of 41ns , but
a higher standard deviation of 8.6ns . This implies the behavior of
HMC is more predictable in access latency, and it can be potentially
useful in real-time systems, due to the deterministic nature of its
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close-page scheduling policy coupled with sufficient parallelism.
Also note that the average latency of HMC is nearly pushed to its
lower limit, as the row access and column access times contribute
most of the latency. Queuing time can be improved by increasing
parallelism, but improving row and column access time requires
speeding up the internal DRAM arrays.

For further insight, we look at the access-latency distributions
for several DRAMs, to give an idea of the quality of service and
fairness of the DRAM protocols and DRAM-controller schedulers.
Figure 8 shows probability densities for GUPS running on HMC,
HBM, DDR4, and DDR3. The x-axis gives latency values; the y-axis
gives the probability for each; and the area under each curve is the
same. Thus, HMC, which spikes around 35ns, has an average that
is near the spike, and the other DRAMs have average latencies that
can be much longer.

5.3 Power, Energy, and Cost-Performance
There are two major parts of a DRAM device’s power: DRAM core
power and I/O power. We use Micron’s DRAM power model [40] to
calculate the core power; we estimate I/O power based on various
sources [2, 15, 43] and assume the I/O power for each DRAM is a
constant while driving the bus.

Figure 9 shows the power estimation for a representative group
of the benchmarks. I/O power tends to dominate all other fields. The
high-speed interfaces of HBM and HMC are particularly power-
hungry, driving the overall power dissipation of DRAM system
upwards of 10W. HMC has the highest power dissipation, though its
DRAM core only dissipates a small portion of its power. GDDR5 also
has very high I/O power dissipation, considering its pin bandwidth
is less than half that of HBM (48GB/s vs 128GB/s). DRAM-core
power varies from application to application. HMC is still very
steady, whereas others that adopt open-page policies see varying
DRAM-core power. For instance, the core power of HBM can vary
from 2 Watts to 5 Watts, with activation power the most significant
variable.

Energy. Power is not the only story: energy-to-solution is an-
other valuable metric, and we give the energy for GUPS in the
far right graph. While the power numbers range from min to max
over a factor of 7x, the energy numbers range only 3x from min to
max, because the energy numbers represent not only power but
also execution time, which we have already seen is 2–3x faster
for the highest-performance and hottest DRAMs. Here we also
see the effect of the single-rank vs. dual-rank systems: The single-
rank configurations (DDR3-1, DDR4-1) have lower power numbers
than the corresponding dual-rank configurations (DDR3, DDR4),
because they have fewer DIMMs and thus fewer DRAMs dissipat-
ing power. However, the dual-rank configurations require lower
energy-to-solution because they are significantly faster.

Power-Performance. Combining power with CPI values from
earlier, we obtain a Pareto analysis of performance vs power, as
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Figure 9: Average power and energy. The left three figures show the average power breakdown of 3 benchmarks. The rightmost
figure shows the energy breakdown of GUPS benchmark.
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shown in Figure 10. We add a few more simulation configurations
that were not presented in previous sections: HBM2 running in
pseudo channel mode (16 channels), labeled HBM2-PSEUDO; HBM2
configured as 4 channels, each 256 bits, labeled HBM2-4CHAN ;
and HMC2 which has 32 internal channels. Note also that, while
HMC dissipates twice the power of HBM, HMC2 dissipates little
more than HMC since they’re configured using same links, whereas
HBM2 dissipates noticeably more power than HBM.

In the graphs, the x-axis is CPI, and the y-axis is average power
dissipation. By Pareto analysis, the optimal designs lie along a wave-
front comprising all points closest to the origin (any design that is
above, right of, or both above and to the right of another is “domi-
nated” by that other point and is thus a worse design). The LPDDR4
designs are Pareto-optimal for nearly all applications, because no
other design dissipates less power; and the HBM2-PSEUDO design

is Pareto-optimal for nearly all applications, because it almost al-
ways has the lowest CPI value. HBM2-PSEUDO is a design from
the HBM2 specification in which the 8-channel HBM2 is divided 2
pseudo channels each; as we have been discussing, this significant
increase in parallelism is the type that one might expect to make
HBM2 perform even better, and these results show that, indeed, it
does.

Some interesting points to note: The improvements in design
from 4-channel HBM2 to 8-channel to 16-channel almost always
lie on a diagonal line, indicating that the 16-channel design dom-
inates the others. HBM1 is almost always directly below HBM2,
indicating that it has roughly the same performance but dissipates
less power—this suggests that the 4-core processor is not fully ex-
ercising this DRAM, which we show to be the case in the following
section. HMC1 and HMC2 have a similar vertical alignment, which
suggests precisely the same thing. Comparing HBMs and HMCs,
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Figure 11: Row buffer hit rate. HMC is not shown here be-
cause it uses close page policy. GUPS has very few “lucky”
row buffer hits.

they have similar CPI performance on these workloads, but HMCs
tend to consume more power than HBMs in most cases. GDDR5 is
almost always dominated by other designs (it is above and further
to the right than many other DRAM designs), which indicates that
its cost-performance is not as good as, for example, HBM1 (which
exceeds it in performance) or DDR4 (which is more power-efficient).
The relationship between DDR3 and DDR4 organizations is almost
always a horizontal line, indicating that DDR4 improves perfor-
mance significantly over DDR3, and a modest decrease in power
dissipation.

While the power ranges from 2Watts to 14 Watts for each bench-
mark, the changes in CPI are usually less significant (discussed in
Section 5.1). Thus, to deliver the significant degree of performance
improvement one would expect of high performance DRAMs like
HBM and HMC, a disproportional amount of power is paid. Only
in extremely memory-intensive cases, like GUPS and STREAM and
manycore CPUs with high core counts (as we estimate in the next
section), is the power-performance justified by using stacked mem-
ories like HBM and HMC. On the other hand, switching from DDR3
to DDR4 always seems to be beneficial in terms of both power
and performance. LPDDR4 not surprisingly has the lowest power
consumption and, in its quad-channel configuration, comparable
performance to DDR4.

5.4 Row Buffer Hit Rate
The row buffer is the set of sense amps holding the data from an
opened DRAM row. Accessing the data in a row buffer is much
faster than accessing a closed row; therefore, most DRAM controller
designers exploit this to improve performance. The only exception
in the DRAMs studied in this work is HMC, which embraces a
close-page design.

Figure 11 shows the row buffer hit rate for each application.
GUPS has a near-zero row-buffer hit rate due to its completely ran-
dom memory access patterns. Other than GUPS, the row buffer hit
rates range from 13% to 90%, averaging 43% (39% if GUPS included).
HBM and HBM2 have higher row hit rates than other DRAMs in
most cases, because they have many more available rows. Note
that high row buffer hit rate alone does not guarantee better per-
formance. For example, DDR3 has highest row buffer hit rate in
GemsFDTD benchmark, but the high row buffer hits only reduce
the row access latency (which can be seen in Figure 7), but it also
has much higher queuing delay as a result of having fewer banks.

5.5 High Bandwidth Stress Testing
Our studies so far are limited by the scale of the simulated 4-core
system and only extract a fraction of the designed bandwidth out
of the high-end memories like HBM and HMC. When we observe
average inter-arrival times for the benchmarks (average time in-
terval between each successive memory request), they are more
than 10ns for most benchmarks—i.e., on average, only one memory
request is sent to DRAM every 10ns . This does not come close to
saturating these high-performance main memory systems.

Therefore, to explore more fully the potentials of the DRAM
architectures, we run two contrived benchmarks designed to stress
the memory systems as much as possible:

(1) We modify STREAM to use strides equal to the cache block
size, which guarantees that every request is a cache miss.

(2) We use Cray’s tabletoy benchmark. It generates random
memory requests as fast as possible and stresses the memory
system significantly more than GUPS, which is limited to
pointer-chasing. If the average latency for the DRAM is
30ns, GUPS only issues an average of one request per 30ns.
Tabletoy issues requests continuously.

(3) Lastly, we scale the cycle time of the processor to generate
arbitrarily high memory-request rates.

In addition, we use higher-bandwidth HMC configurations. In the
previous experiments, we used 2-link configurations for HMC and
HMC2 at 120GB/s, because 4-link configurations would have been
overkill. For the stress-test study, we upgrade links for both HMC
and HMC2 for a maximum of 240GB/s and 320GB/s, respectively.

This should present two extremes of high-bandwidth request
rates to the DRAM system: one sequential, one random, and as the
request rates increase, these should give one a sense of the traffic
that high-core-count manycore CPUs generate.
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Figure 12: Tabletoy (random), left; STREAM (sequential),
right. 64 bytes per request.

Figure 12 shows the results. The left-hand graph shows a random
request stream; the right-hand graph shows a sequential stream.
The x-axis is the frequency of requests being sent to the memory
in log scale. Each request is for a 64-byte cache block. The request
rate ranges from 100ns per request to more than 10 requests per
ns . In the left-hand graph, one can see that all the traditional DDR
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memories are saturated by 3ns per request. HBM and HBM2 reach
their peak bandwidths at around 1 to 2 requests per ns , getting
32GB/s and 63GB/s respectively. HMC and HMC2 reach their peak
bandwidth at the rate of 4 to 5 requests per ns , reaching 121GB/s
and 225GB/s. The difference between HMC and HMC2 here is the
number of vaults (channels) they have, 16 vs 32. The effective pin
bandwidth of each vault is 10GB/s, meaning that both HMC and
HMC2 reach about 75% of the peak internal bandwidths.

Looking at the sequential results in the right-hand graph, the
high-speed DRAMs, e.g. GDDR5, HBM and HBM2, gain signif-
icantly more bandwidth than they do with the random stream.
HMC and HMC2 only changes slightly, once again shows its steady
performance regarding different types of worklaods.

The stress tests explain the bandwidth/latency relationship ex-
plained at the beginning of the paper in Figure 1. As the request rate
is increased, the DRAMs go through the constant region into the
linear region (where the curves start to increase noticeably; note
that the x-axis is logarithmic, not linear). Where the stress test’s
bandwidth curves top out, the DRAM has reached its exponential
region: it outputs its maximum bandwidth, no matter what the
input request rate, and the higher the request rate, the longer that
requests sit in the queue waiting to be serviced.

The stress-test results show that any processing node with nu-
merous cores is going to do extremely well with the high-end,
multi-channel, high-bandwidth DRAMs.

6 CONCLUSIONS
The commodity-DRAM space today has a wide range of options
from low power, to low cost and large capacity, to high cost and
high performance. For the single-channel (or single package) system
sizes that we study, we see that modern DRAMs offer performance
at whatever bandwidth one is willing to pay the power cost for,
as the interface power dominates all other aspects of operation.
Note that this would not be the case for extremely large systems:
at large capacities, refresh power may also be very significant and
dominate other activities. However, at the capacities we study, it is
the transmission of bits that dominates power; thus, this provides an
important first metric for system design: determine the bandwidth
required, and get it.

Our studies show that bandwidth determines one’s execution
time, even for the modest 4-core CPU studied herein, as the higher
bandwidths and, more importantly, the parallelism provided in
the high-performance packages, assure that queuing delays are
minimized. High-bandwidth designs such as HMC and HBM can
reduce end-to-end application execution time by 2–3x over DDRx
and LPDDR4 architectures. This translates to reducing the memory
overhead from over half of the total execution time to less than 30%
of total execution time. The net result: previously memory-bound
problems are turned into compute-bound problems, bringing the
focus back to architectural mechanisms in the processor that can
improve CPI.
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