
Low Latency, High Bisection-Bandwidth Networks
for Exascale Memory Systems

Shang Li, Po-Chun Huang, David Banks, Max DePalma, Ahmed Elshaarany,
Scott Hemmert*, Arun Rodrigues*, Emily Ruppel, Yitian Wang,

Jim Ang*, and Bruce Jacob

Electrical & Computer Engineering * Scalable Computer Architectures
University of Maryland Sandia National Laboratories

College Park, Maryland, USA Albuquerque, New Mexico, USA
{shangli,hpcalex,blj}@umd.edu {kshemme,afrodri,jaang}@sandia.gov

ABSTRACT
Data movement is the limiting factor in modern supercom-
puting systems, as system performance drops by several or-
ders of magnitude whenever applications need to move data.
Therefore, focusing on low latency (e.g., low diameter) net-
works that also have high bisection bandwidth is critical. We
present a cost/performance analysis of a wide range of high-
radix interconnect topologies, in terms of bisection widths,
average hop counts, and the port costs required to achieve
those metrics. We study variants of traditional topologies as
well as one novel topology. We identify several designs that
have reasonable port costs and can scale to hundreds of thou-
sands, perhaps millions, of nodes with maximum latencies
as low as two network hops and high bisection bandwidths.

CCS Concepts
•Networks → Network architectures; •Hardware →
Buses and high-speed links;

Keywords
network topology; supercomputer design; SST

1. INTRODUCTION
Computational efficiency is the fundamental barrier to ex-

ascale computing, and it is dominated by the cost of moving
data from one point to another, not by the cost of executing
floating-point operations [11, 16]. Data movement has been
the identified problem for many years (e.g., “the memory
wall” is a well-known limiting factor [21]) and still domi-
nates the performance of real applications in supercomputer
environments today [13]. In a recent talk, Jack Dongarra
showed the extent of the problem: his slide, reproduced in
Figure 1, shows the vast difference, observed in actual sys-
tems (the top 20 of the Top 500 List), between peak FLOPS,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’16, October 03 - 06, 2016, Alexandria, VA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4305-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989130

Abstract — Data movement is the limiting factor in  modern su-
percomputing systems, as system performance drops by several 
orders of magnitude whenever applications need to move data. 
Therefore, focusing on low latency (e.g., low diameter) networks 
that also have high bisection bandwidth is critical. We present a 
cost/performance analysis  of  a  wide range of  high-radix  inter-
connect  topologies,  in  terms  of  bisection  widths,  average  hop 
counts, and the port costs required to achieve those metrics. We 
study variants of traditional topologies as well as one novel topol-
ogy. We identify several designs that have reasonable port costs 
and  can  scale  to  hundreds  of  thousands,  perhaps  millions,  of 
nodes with maximum latencies as low as two network hops and 
high bisection bandwidths.

I. INTRODUCTION

Computational efficiency is the fundamental barrier to exas-
cale computing, and it is dominated by the cost of moving data 
from one point to another, not by the cost of executing float-
ing-point operations [1; 2]. Data movement has been the iden-
tified problem for many years (e.g., “the memory wall” is a 
well-known limiting factor  [3])  and still  dominates  the per-
formance of real applications in supercomputer environments 
today [4]. In a recent talk, Jack Dongarra showed the extent of 
the problem: his slide, reproduced in Figure 1, shows the vast 
difference, observed in actual systems (the top 20 of the Top 
500 List), between peak FLOPS, the achieved FLOPS on Lin-
pack (HPL), and the achieved FLOPS on Conjugate Gradients 
(HPCG), which has an all-to-all communication pattern within 
it. While systems routinely achieve 90% of peak performance 
on Linpack, they rarely achieve more than a few percent of 

peak  performance  on  HPCG:  as  soon  as  data  needs  to  be 
moved, system performance suffers by orders of magnitude.

Thus, to ensure efficient system design at exascale-class 
system sizes, it is critical that the system interconnect provide 
good  all-to-all  communication:  this  means  high  bisection 
bandwidth and short inter-node latencies. Exascale-class ma-
chines are expected to have on the order of one million nodes, 
with high degrees of integration including hundreds of cores 
per chip, tightly coupled GPUs (on-chip or on-package), and 
integrated networking. Integrating components both increases 
inter-component  bandwidth  and reduces  power  and latency; 
moreover, integrating the router with the CPU (concentration 
factor  C=1)  reduces  end-to-end latency by two high-energy 
chip/package crossings.  In  addition  to  considering bisection 
and latency characteristics, the network design should consid-
er costs in terms of router ports, as these have a dollar cost and 
also dictate power and energy overheads.

We present a cost/performance analysis of several high-
radix  network  topologies,  evaluating  each  in  terms  of  port 
costs,  bisection  bandwidths,  and  average  latencies.  System 
sizes presented here range from 100 nodes to one million. We 
find the following:

• Perhaps not surprisingly, the best topology changes with 
the system size. Router ports can be spent to increase bi-
section bandwidth, reduce latency (network/graph diame-
ter), and increase total system size: any two can be im-
proved at the expense of the third.

• Flattened Butterfly networks match and exceed the bisec-
tion bandwidth curves set by Moore bounds and scale 
well to large sizes by increasing dimension and thus di-
ameter.

• Dragonfly networks in which the number of inter-group 
links is scaled have extremely high bisection bandwidth 
and match that of the Moore bound when extrapolated to 
their diameter-2 limit.

• High-dimensional tori scale to very large system sizes, as 
their port costs are constant, and their average latencies 
are reasonably low (5–10 network hops) and scale well.

• Novel topologies based on Fishnet (a method of intercon-
necting two-hop subnets) become efficient at very large 
sizes — hundreds of thousands of nodes and beyond.

Our  findings  show  that  highly  efficient  network  topologies 
exist for tomorrow’s exascale systems. For modest port costs, 
one can scale to extreme node counts, maintain high bisection 
bandwidths, and still retain low network diameters.

Low Latency, High Bisection Bandwidth Networks 
for Exascale Memory Systems

Figure 1. A comparison of max theoretical performance, and real 
scores on Linpack (HPL) and Conjugate Gradients (HPCG). 
Source: Jack Dongarra

47 

10000#

100000#

1000000#

10000000#

100000000#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18# 19# 20#

Fl
op

/s
'

Rank'

Comparison'HPL'&'HPCG'
Peak,'HPL,'HPCG'

Rpeak'

HPL'

HPCG'

Figure 1: A comparison of max theoretical perfor-
mance, and real scores on Linpack (HPL) and Con-
jugate Gradients (HPCG). Source: Jack Dongarra

the achieved FLOPS on Linpack (HPL), and the achieved
FLOPS on Conjugate Gradients (HPCG), which has an all-
to-all communication pattern within it. While systems rou-
tinely achieve 90% of peak performance on Linpack, they
rarely achieve more than a few percent of peak performance
on HPCG: as soon as data needs to be moved, system per-
formance suffers by orders of magnitude.

Thus, to ensure efficient system design at exascale-class
system sizes, it is critical that the system interconnect pro-
vide good all-to-all communication: this means high bisec-
tion bandwidth and short inter-node latencies. Exascale-
class machines are expected to have on the order of one mil-
lion nodes, with high degrees of integration including hun-
dreds of cores per chip, tightly coupled GPUs (on-chip or
on-package), and integrated networking. Integrating com-
ponents both increases inter-component bandwidth and re-
duces power and latency; moreover, integrating the router
with the CPU (concentration factor c = 1) reduces end-to-
end latency by two high-energy chip/package crossings. In
addition to considering bisection and latency characteristics,
the network design should consider costs in terms of router
ports, as these have a dollar cost and also dictate power and



II. NETWORK TOPOLOGIES CONSIDERED

The following describes the various topologies  evaluated in 
this paper. Due to the desire for good all-to-all communication 
patterns, we focus on high-radix networks, as opposed to low 
radix topologies such as fat trees [5].

A. Hypercube, Torus, and Higher-Dimensional Extensions
2D and 3D meshes and tori are well known and are relatively 
common. We scale the dimensionality of the tori from 2D to 
10D (see Figure 2) and note that any torus with two nodes per 
side is a de facto hypercube. Like hypercubes, tori have very 
good efficiency at the higher dimensions: they have fixed port 
costs (each router has a fixed number of ports, no matter how 
large  the  network),  and  their  average  latency  values  grow 
more slowly than the pin costs  of  most  high-radix network 
topologies. In addition, they have simple routing heuristics: a 
node’s address directly determines which port a router can use, 
without need for a table lookup.

In general, the graphs have the following characteristics, 
where D is the dimension, and n is the length of a side (for the 
sake of simplicity, we assume all sides are of equal length):

• Nodes: nD

• Ports: 2D (except for n=2, which is D)
• Bisection Links: 2nD-1 (except for n=2, which is nD-1)
• Maximum Latency: ~Dn

The maximum latency depends on actual configuration, such 
as whether the length of a side n is an even number or odd. 

Note that, in the degenerate case of n=2 (a hypercube), a 
wraparound link is not needed, as there are only two nodes to 
a given side; for this case, the ports  per node and the bisection 
bandwidth are each reduced by half compared to those for a 
torus.

B. Flattened Butterfly and Higher-Dimensional Extensions
The Flattened Butterfly interconnect shown in Figure 3 pro-
vides a regular structure for a two-hop network, which is bene-
ficial because it simplifies routing heuristics: like tori, a node’s 

address determines which port a router uses, obviating a table 
lookup. A Flattened Butterfly network is created by combining 
nodes  in  both  horizontal  and  vertical  dimensions  into  fully 
connected  graphs.  Thus,  any  node  in  a  Flattened  Butterfly 
topology lies at a maximum distance of 2 from any other node 
in the network. Noting that this is a 2D structure, it is straight-
forward to extend the concept into three dimensions and be-
yond.  For example,  Figure 1 shows both the traditional  2D 
topology and a 3D Flattened Butterfly structure as well. 

In general, the graphs have the following characteristics, 
where D is the dimension, and n is the length of a side (as with 
the tori, we assume all sides are of equal length):

• Nodes: nD

• Ports: D(n–1)
• Bisection Links: ~ nD-1(n ÷ 2)2

• Maximum Latency: D

The number of bisection links depends on configuration, such 
as whether the length of a side n is an even number or odd.

                     
Figure 3. Flattened Butterfly (left) and 3D Flattened Butterfly 
(right): each dimension is characterized by fully connected graphs.

fully connected 
graphs

Figure 2. 2D, 3D, and 4D meshes/tori. Left: a 3D mesh/torus of side n=3 is simply 3 copies of the 2D mesh/torus tiled into a new dimension. 
Right: continuing this process produces meshes/tori in 4D, 5D, 6D, and higher dimensions. Note: numerous links not shown, for visibility.

1,1,1 1,1,2 1,1,3

1,2,1 1,2,2 1,2,3

1,3,1 1,3,2 1,3,3

2,1,1 2,1,2 2,1,3

2,2,1 2,2,2 2,2,3

2,3,1 2,3,2 2,3,3

3,1,1 3,1,2 3,1,3

3,2,1 3,2,2 3,2,3

3,3,1 3,3,2 3,3,3

1,1,1,1 1,1,1,2 1,1,1,3

1,1,2,1 1,1,2,2 1,1,2,3

1,1,3,1 1,1,3,2 1,1,3,3

1,2,1,1 1,2,1,2 1,2,1,3

1,2,2,1 1,2,2,2 1,2,2,3

1,2,3,1 1,2,3,2 1,2,3,3

1,3,1,1 1,3,1,2 1,3,1,3

1,3,2,1 1,3,2,2 1,3,2,3

1,3,3,1 1,3,3,2 1,3,3,3

2,1,1,1 2,1,1,2 2,1,1,3

2,1,2,1 2,1,2,2 2,1,2,3

2,1,3,1 2,1,3,2 2,1,3,3

2,2,1,1 2,2,1,2 2,2,1,3

2,2,2,1 2,2,2,2 2,2,2,3

2,2,3,1 2,2,3,2 2,2,3,3

2,3,1,1 2,3,1,2 2,3,1,3

2,3,2,1 3,3,2,2 2,3,2,3

2,3,3,1 2,3,3,2 2,3,3,3

3,1,1,1 3,1,1,2 3,1,1,3

3,1,2,1 3,1,2,2 3,1,2,3

3,1,3,1 3,1,3,2 3,1,3,3

3,2,1,1 3,2,1,2 3,2,1,3

3,2,2,1 3,2,2,2 3,2,2,3

3,2,3,1 3,2,3,2 3,2,3,3

3,3,1,1 3,3,1,2 3,3,1,3

3,3,2,1 3,3,2,2 3,3,2,3

3,3,3,1 3,3,3,2 3,3,3,3

Figure 2: 2D, 3D, and 4D meshes/tori. Left: a 3D mesh/torus of side n=3 is simply 3 copies of the 2D
mesh/torus tiled into a new dimension. Right: continuing this process produces meshes/tori in 4D, 5D, 6D,
and higher dimensions. Note: numerous links not shown, for visibility.

energy overheads.
We present a cost/performance analysis of several high-

radix network topologies, evaluating each in terms of port
costs, bisection bandwidths, and average latencies. System
sizes presented here range from 100 nodes to one million.
We find the following:

• Perhaps not surprisingly, the best topology changes
with the system size. Router ports can be spent to
increase bisection bandwidth, reduce latency
(network/graph diameter), and increase total system
size: any two can be improved at the expense of the
third.

• Flattened Butterfly networks match and exceed the
bisection bandwidth curves set by Moore bounds and
scale well to large sizes by increasing dimension and
thus diameter.

• Dragonfly networks in which the number of
inter-group links is scaled have extremely high
bisection bandwidth and match that of the Moore
bound when extrapolated to their diameter-2 limit.

• High-dimensional tori scale to very large system sizes,
as their port costs are constant, and their average
latencies are reasonably low (5 - 10 network hops)
and scale well.

• Novel topologies based on Fishnet (a method of
interconnecting diameter-2 subnets) become efficient
at very large sizes - hundreds of thousands of nodes
and beyond.

Our findings show that highly efficient network topolo-
gies exist for tomorrow’s exascale systems. For modest port
costs, one can scale to extreme node counts, maintain high
bisection bandwidths, and still retain low network diame-
ters.

1.1 Network Topologies Considered
The following describes the various topologies evaluated

in this paper. Due to the desire for good all-to-all communi-
cation patterns, we focus on high-radix networks, as opposed
to low radix topologies such as fat trees [12].

Hypercube, Torus, and Higher-Dimensional Extensions
2D and 3D meshes and tori are well known and are relatively
common. We scale the dimensionality of the tori from 2D to
10D (see Figure 2 ) and note that any torus with two nodes
per side is a defacto hypercube. Like hypercubes, tori have
very good efficiency at the higher dimensions: they have
fixed port costs (each router has a fixed number of ports,
no matter how large the network), and their average la-
tency values grow more slowly than the pin costs of most
high-radix network topologies. In addition, they have sim-
ple routing heuristics: a node’s address directly determines
which port a router can use, without need for a table lookup.

In general, the graphs have the following characteristics,
where D is the dimension, and n is the length of a side
(for the sake of simplicity, we assume all sides are of equal
length):

• Nodes: nD

• Ports: 2D (except for n = 2, which is D)

• Bisection Links: 2nD−1

(except for n = 2, which is nD−1)

• Maximum Latency: ∼ Dn

The maximum latency depends on actual configuration,
such as whether the length of a side n is an even number or
odd.

Note that, in the degenerate case of n = 2 (a hypercube), a
wraparound link is not needed, as there are only two nodes
to a given side; for this case, the ports per node and the
bisection bandwidth are each reduced by half compared to
those for a torus.

Flattened Butterfly and Higher-Dimensional Extensions
The Flattened Butterfly interconnect shown in Figure 3 pro-
vides a regular structure for a two-hop network, which is
beneficial because it simplifies routing heuristics: like tori,
a node’s address determines which port a router uses, ob-
viating a table lookup. A Flattened Butterfly network is
created by combining nodes in both horizontal and vertical
dimensions into fully connected graphs. Thus, any node in



II. NETWORK TOPOLOGIES CONSIDERED

The following describes the various topologies  evaluated in 
this paper. Due to the desire for good all-to-all communication 
patterns, we focus on high-radix networks, as opposed to low 
radix topologies such as fat trees [5].

A. Hypercube, Torus, and Higher-Dimensional Extensions
2D and 3D meshes and tori are well known and are relatively 
common. We scale the dimensionality of the tori from 2D to 
10D (see Figure 2) and note that any torus with two nodes per 
side is a de facto hypercube. Like hypercubes, tori have very 
good efficiency at the higher dimensions: they have fixed port 
costs (each router has a fixed number of ports, no matter how 
large  the  network),  and  their  average  latency  values  grow 
more slowly than the pin costs  of  most  high-radix network 
topologies. In addition, they have simple routing heuristics: a 
node’s address directly determines which port a router can use, 
without need for a table lookup.

In general, the graphs have the following characteristics, 
where D is the dimension, and n is the length of a side (for the 
sake of simplicity, we assume all sides are of equal length):

• Nodes: nD

• Ports: 2D (except for n=2, which is D)
• Bisection Links: 2nD-1 (except for n=2, which is nD-1)
• Maximum Latency: ~Dn

The maximum latency depends on actual configuration, such 
as whether the length of a side n is an even number or odd. 

Note that, in the degenerate case of n=2 (a hypercube), a 
wraparound link is not needed, as there are only two nodes to 
a given side; for this case, the ports  per node and the bisection 
bandwidth are each reduced by half compared to those for a 
torus.

B. Flattened Butterfly and Higher-Dimensional Extensions
The Flattened Butterfly interconnect shown in Figure 3 pro-
vides a regular structure for a two-hop network, which is bene-
ficial because it simplifies routing heuristics: like tori, a node’s 

address determines which port a router uses, obviating a table 
lookup. A Flattened Butterfly network is created by combining 
nodes  in  both  horizontal  and  vertical  dimensions  into  fully 
connected  graphs.  Thus,  any  node  in  a  Flattened  Butterfly 
topology lies at a maximum distance of 2 from any other node 
in the network. Noting that this is a 2D structure, it is straight-
forward to extend the concept into three dimensions and be-
yond.  For example,  Figure 1 shows both the traditional  2D 
topology and a 3D Flattened Butterfly structure as well. 

In general, the graphs have the following characteristics, 
where D is the dimension, and n is the length of a side (as with 
the tori, we assume all sides are of equal length):

• Nodes: nD

• Ports: D(n–1)
• Bisection Links: ~ nD-1(n ÷ 2)2

• Maximum Latency: D

The number of bisection links depends on configuration, such 
as whether the length of a side n is an even number or odd.

                     
Figure 3. Flattened Butterfly (left) and 3D Flattened Butterfly 
(right): each dimension is characterized by fully connected graphs.

fully connected 
graphs

Figure 2. 2D, 3D, and 4D meshes/tori. Left: a 3D mesh/torus of side n=3 is simply 3 copies of the 2D mesh/torus tiled into a new dimension. 
Right: continuing this process produces meshes/tori in 4D, 5D, 6D, and higher dimensions. Note: numerous links not shown, for visibility.

1,1,1 1,1,2 1,1,3

1,2,1 1,2,2 1,2,3

1,3,1 1,3,2 1,3,3

2,1,1 2,1,2 2,1,3

2,2,1 2,2,2 2,2,3

2,3,1 2,3,2 2,3,3

3,1,1 3,1,2 3,1,3

3,2,1 3,2,2 3,2,3

3,3,1 3,3,2 3,3,3

1,1,1,1 1,1,1,2 1,1,1,3

1,1,2,1 1,1,2,2 1,1,2,3

1,1,3,1 1,1,3,2 1,1,3,3

1,2,1,1 1,2,1,2 1,2,1,3

1,2,2,1 1,2,2,2 1,2,2,3

1,2,3,1 1,2,3,2 1,2,3,3

1,3,1,1 1,3,1,2 1,3,1,3

1,3,2,1 1,3,2,2 1,3,2,3

1,3,3,1 1,3,3,2 1,3,3,3

2,1,1,1 2,1,1,2 2,1,1,3

2,1,2,1 2,1,2,2 2,1,2,3

2,1,3,1 2,1,3,2 2,1,3,3

2,2,1,1 2,2,1,2 2,2,1,3

2,2,2,1 2,2,2,2 2,2,2,3

2,2,3,1 2,2,3,2 2,2,3,3

2,3,1,1 2,3,1,2 2,3,1,3

2,3,2,1 3,3,2,2 2,3,2,3

2,3,3,1 2,3,3,2 2,3,3,3

3,1,1,1 3,1,1,2 3,1,1,3

3,1,2,1 3,1,2,2 3,1,2,3

3,1,3,1 3,1,3,2 3,1,3,3

3,2,1,1 3,2,1,2 3,2,1,3

3,2,2,1 3,2,2,2 3,2,2,3

3,2,3,1 3,2,3,2 3,2,3,3

3,3,1,1 3,3,1,2 3,3,1,3

3,3,2,1 3,3,2,2 3,3,2,3

3,3,3,1 3,3,3,2 3,3,3,3

Figure 3: Flattened Butterfly (left) and 3D Flat-
tened Butterfly (right): each dimension is charac-
terized by fully connected graphs.

a Flattened Butterfly topology lies at a maximum distance
of 2 from any other node in the network. Noting that this is
a 2D structure, it is straightforward to extend the concept
into three dimensions and beyond. For example, Figure 3
shows both the traditional 2D topology and a 3D Flattened
Butterfly structure as well.

In general, the graphs have the following characteristics,
where D is the dimension, and n is the length of a side (as
with the tori, we assume all sides are of equal length):

• Nodes: nD

• Ports: D(n1)

• Bisection Links: ∼ nD−1(n/2)2

• Maximum Latency: D

The number of bisection links depends on configuration,
such as whether the length of a side n is an even number or
odd.

Moore Graphs
Computer networks based upon the Moore limit have been
used since the 1960s [7, 3] and have the advantage of max-
imizing the number of nodes in the system, given a specific
number of ports per router and a desired maximum network
hop count (graph diameter). Compared to regular topolo-
gies such as meshes/tori and Flattened Butterfly networks,
their packet-routing heuristics are more complex and take
more overhead, because a table lookup is required. How-
ever, a Moore graph requires fewer ports than a Flattened
Butterfly to connect the same number of nodes in the same
number of hops.

Figure 4 illustrates two extremely well-known instances of
two-hop (diameter 2) Moore graphs, in which every node lies
at a distance of at most two hops from every other node in
the graph. The Petersen graph combines 10 nodes, each of
which has 3 ports. The Hoffman-Singleton graph combines
50 nodes, each of which has 7 ports, and, as the figure shows,
the Hoffman-Singleton graph contains within it five disjoint
copies of the Petersen graph. This is important, as it has
manufacturing implications: only one circuit board design
would be needed for the subnetworks.

Moore graphs were not generally used in network design
for decades, designers preferring hardware routers that use
a node’s address to drive routing heuristics rather than a
table lookup. However, Moore graphs have seen a recent
resurgence in popularity. In 2006, the Petersen graph was
used to construct a high-performance DSP cluster, an im-
age processing system for a NASA satellite [17]. In 2013,
Bao [2] proposed using 2-hop Moore graphs as interconnect
networks. In 2014, Besta [4] proposed using 2-hop Moore
graphs as interconnect networks, calling the configuration
“Slim Fly.”

The benefit of using a diameter-2 Moore graph is the max-
imum system-wide latency of two hops. This comes at a
port cost, as to reach higher node counts, the number of
ports grows rapidly. For instance, 16 ports per router are
required for a network of 198 nodes, and 79 ports are needed
to build a network of 5600 nodes.

Moreover, the irregular nature of Moore graphs makes
their construction at large sizes non-trivial. The first two
examples provided in Figure 4 are the best known precisely
because they are the only two regular variants ever discov-
ered: these are the only two graphs known to achieve the
Moore limit (the number of nodes reachable given a maxi-
mum hop count and number of ports per node). All other
known graphs fail to reach the Moore limit (indeed, some,
like the (3,3) graph in Figure 4, have been proven not to
exist) and are thus irregular, which imposes constraints on
manufacturability.

In general, the diameter-2 graphs have the following char-
acteristics, where p is the number of ports per node:

• Nodes: p2 + 1

• Ports: p

• Bisection Links: ∼ (p− 2)(Nodes/4)

• Maximum Latency: 2

Note that the number of nodes is an upper bound, and
only three graphs have been discovered that actually reach
this upper bound: the pentagon (effectively the degenerate
case), the 10-node Petersen graph, and the 50-node Hoffman-
Singleton graph. As one chooses Moore graphs of increas-
ing diameter, the network size achievable with a relatively
small number of ports grows rapidly. For instance, on the
right of 4 is shown a diameter-3 graph with 22 nodes; a
diameter-4 graph has an upper bound of 46. In actuality,
the largest known diameter-3 graph has 20 nodes, and the
largest known diameter-4 graph has 38. The table below
shows the difference between the various bounds (labeled
“Max”) and the known graph sizes that have been discov-
ered (labeled “Real”): the difference factor grows with both
diameter and number of ports [20].

Dragonfly and High-Bisection Extensions
The Dragonfly interconnect [10] is an internet structure, a
network of subnetworks. Perhaps the most common form of
Dragonfly, which is the form we analyze here, is a fully con-
nected graph of fully connected graphs, which gives it a di-
ameter 3 across the whole network. This is illustrated in Fig-
ure 5. Dragonfly networks can use any number of ports for
inter-subnet connections, and any number for intra-subnet
connections. We vary the number of inter-subnet links, char-
acterizing 1, 2, 4, etc. links connecting each subnet, noting



C. Moore Graphs
Computer  networks  based  upon the  Moore  limit  have  been 
used since the 1960s [6; 7] and have the advantage of maxi-
mizing the number of nodes in the system, given a specific 
number of ports per router and a desired maximum network 
hop count (graph diameter). Compared to regular topologies 
such  as  meshes/tori  and  Flattened  Butterfly  networks,  their 
packet-routing  heuristics  are  more  complex  and  take  more 
overhead,  because  a  table  lookup  is  required.  However,  a 
Moore graph requires fewer ports than a Flattened Butterfly to 
connect  the  same number  of  nodes  in  the  same number  of 
hops.

Figure 4 illustrates two extremely well-known instances 
of two-hop (diameter 2) Moore graphs, in which every node 
lies at a distance of at most two hops from every other node in 
the  graph.  The Petersen graph combines  10 nodes,  each of 
which has 3 ports. The Hoffman-Singleton graph combines 50 
nodes, each of which has 7 ports, and, as the figure shows, the 
Hoffman-Singleton  graph  contains  within  it  five  disjoint 
copies of the Petersen graph. This is important, as it has manu-

facturing implications: only one circuit board design would be 
needed for the subnetworks.

Moore graphs were not generally used in network design 
for decades, designers preferring hardware routers that use a 
node’s address to drive routing heuristics rather than a table 
lookup. However, Moore graphs have seen a recent resurgence 
in popularity. In 2006, the Petersen graph was used to con-
struct a high-performance DSP cluster,  an image processing 
system for a NASA satellite [8]. In 2013, Bao [9] proposed 
using 2-hop Moore graphs as interconnect networks.  In 2014, 
Besta [3] proposed using 2-hop Moore graphs as interconnect 
networks, calling the configuration “Slim Fly.”

The  benefit  of  using  a  diameter-2  Moore  graph  is  the 
maximum system-wide latency of two hops. This comes at a 
port cost, as to reach higher node counts, the number of ports 
grows rapidly. For instance, 16 ports per router are required 
for a network of 198 nodes, and 79 ports are needed to build a 
network of 5600 nodes. 

Moreover,  the  irregular  nature  of  Moore  graphs  makes 
their construction at large sizes non-trivial. The first two ex-
amples provided in Figure 4 are the best known precisely be-
cause they are the only two regular variants ever discovered: 
these are the only two graphs known to achieve the Moore 
limit (the number of nodes reachable given a maximum hop 
count and number of ports per node). All other known graphs 
fail  to  reach  the  Moore  limit  (indeed,  some,  like  the  (3,3) 
graph in Figure 3, have been proven not to exist) and are thus 
irregular, which imposes constraints on manufacturability. 

In  general,  the  diameter-2  graphs  have  the  following 
characteristics, where p is the number of ports per node:

• Nodes: p2 + 1
• Ports: p
• Bisection Links: ~ (p–2)(Nodes ÷ 4)
• Maximum Latency: 2

Note that the number of nodes is an upper bound, and only 
three graphs have been discovered that actually reach this up-
per bound: the pentagon (effectively the degenerate case), the 
10-node Petersen graph, and the 50-node Hoffman-Singleton 
graph. As one chooses Moore graphs of increasing diameter, 

Moore Graphs: Bounds vs. Largest Known

Diameter 2 Diameter 3 Diameter 4
Ports Max Real Diff Max Real Diff Max Real Diff

3 10 10 = 22 20 1.1 46 38 1.2

4 17 15 1.1 53 41 1.3 161 96 1.7

5 26 24 1.1 106 72 1.5 426 210 2.0

6 37 32 1.2 187 110 1.7 937 390 2.4

7 50 50 = 302 168 1.8 1814 672 2.7

8 65 57 1.1 457 253 1.8 3201 1100 2.9

9 82 74 1.1 658 585 1.1 5266 1550 3.4

10 101 91 1.1 911 650 1.4 8201 2286 3.6

11 122 104 1.2 1222 715 1.7 12222 3200 3.8

12 145 133 1.1 1597 786 2.0 17569 4680 3.8

13 170 162 1.0 2042 851 2.4 24506 6560 3.7

14 197 183 1.1 2563 916 2.8 33321 8200 4.1

15 226 186 1.2 3166 1215 2.6 44326 11712 3.8

16 257 198 1.3 3857 1600 2.4 57857 14640 4.0

            
Figure 4. Two well-known 2-hop Moore graphs: the 10-node Petersen graph (left) and the 50-node Hoffman-Singleton graph (middle); the 
Moore limit is shown for a 3-hop graph with 3 ports per node (right), without final connecting edges, as the (3,3) limit is unachievable.

C

A1 A2

B1C2

C1 B2

B

A

0

3

4

5

6

2

1

12

11

8 7910

Figure 4: Two well-known 2-hop Moore graphs: the 10-node Petersen graph (left) and the 50-node Hoffman-
Singleton graph (middle); the Moore limit is shown for a 3-hop graph with 3 ports per node (right), without
final connecting edges, as the (3,3) limit is unachievable.

Table 1: Moore Graphs: Bounds vs. Largest Known
Diameter 2 Diameter 3 Diameter 4

Ports Max Real Diff Max Real Diff Max Real Diff
3 10 10 = 22 20 1.1 46 38 1.2
4 17 15 1.1 53 41 1.3 161 96 1.7
5 26 24 1.1 106 72 1.5 426 210 2.0
6 37 32 1.2 187 110 1.7 937 390 2.4
7 50 50 = 302 168 1.8 1814 672 2.7
8 65 57 1.1 457 253 1.8 3201 1100 2.9
9 82 74 1.1 658 585 1.1 5266 1550 3.4
10 101 91 1.1 911 650 1.4 8201 2286 3.6
11 122 104 1.2 1222 715 1.7 12222 3200 3.8
12 145 133 1.1 1597 786 2.0 17569 4680 3.8
13 170 162 1.0 2042 851 2.4 24506 6560 3.7
14 197 183 1.1 2563 916 2.8 33321 8200 4.1
15 226 186 1.2 3166 1215 2.6 4432 11712 3.8
16 257 198 1.3 3857 1600 2.4 57857 14640 4.0

the network size achievable with a relatively small number of 
ports grows rapidly. For instance, on the right of Figure 3 is 
shown a diameter-3 graph with 22 nodes; a diameter-4 graph 
has an upper bound of 46. In actuality, the largest known di-
ameter-3 graph has 20 nodes, and the largest known diameter-
4 graph has 38. The table below shows the difference between 
the various bounds (labeled “Max”) and the known graph sizes 
that have been discovered (labeled “Real”): the difference fac-
tor grows with both diameter and number of ports [10].

D. Dragonfly and High-Bisection Extensions
The  Dragonfly  interconnect  [11]  is  an  internet  structure,  a 
network of subnetworks. Perhaps the most common form of 
Dragonfly, which is the form we analyze here, is a fully con-
nected graph of fully connected graphs, which gives it a diam-
eter 3 across the whole network. This is illustrated in Figure 5. 
Dragonfly networks  can use  any number  of  ports  for  inter-
subnet connections, and any number for intra-subnet connec-
tions. We vary the number of inter-subnet links, characterizing 
1, 2, 4, etc. links connecting each subnet, noting that, when the 
number of inter-subnet links is equal to one more than the in-
tra-subnet links, the entire network has a diameter of 2, not 3 
(if every node has a connection to each of its local nodes as 
well as a connection to each one of the remote subnets, then it 
is by definition a two-hop network), which in our graphs later 
we will label as the “Dragonfly Limit.” 

In general, Dragonfly networks of this form have the fol-
lowing characteristics, where p is the number of ports for in-
tra-subnet connections, and s is the number of ports connected 
to remote subnets:

• Nodes: (p + 1)(p + 2)
• Ports: p + s
• Bisection Links: ~ s((p+2)2 ÷ 4)
• Maximum Latency: 3 

The  bisection  depends  on  actual  configuration,  such  as 
whether the number of subnets (p+1) is even or odd. 

E. Fishnet: Angelfish and Flying Fish
The Fishnet interconnection methodology is a novel means to 
connect multiple copies of a given subnetwork [12],  for in-
stance a 2-hop Moore graph or 2-hop Flattened Butterfly net-
work. Each subnet is connected by multiple links, the originat-
ing nodes in each subnet chosen so as to lie at a maximum 
distance of 1 from all other nodes in the subnet. For instance, 
in a Moore graph, each node defines such a subset: its nearest 

neighbors by definition lie at  a distance of 1 from all  other 
nodes in the graph, and they lie at a distance of 2 from each 
other. Figure 6 illustrates.

Using nearest-neighbor subsets to connect the members of 
different subnetworks to each other produces a system-wide 
diameter of 4, given diameter-2 subnets: to reach remote sub-
network i, one must first reach one of the nearest neighbors of 
node i within the local subnetwork. By definition, this takes at 
most one hop. Another hop reaches the remote network, where 
it is at most two hops to reach the desired node. The “Fishnet 
Lite” variant uses a single link to connect each subnet, as in a 
typical Dragonfly, and has maximum five hops between any 
two nodes, as opposed to four.

An example topology using the Petersen graph is illus-
trated in Figure 7: given a 2-hop subnet of n nodes, each node 
having p ports (in this case each subnet has 10 nodes, and each 
node has 3 ports), one can construct a system of n+1 subnets, 
in two ways: the first uses p+1 ports per node and has a maxi-
mum latency of five hops within the system; the second uses 
2p ports per node and has a maximum latency of four hops. 

The nodes of subnet 0 are labeled 1..n; the nodes of sub-
net  1  are  labeled  1,2..n;  the  nodes  of  subnet  2  are  labeled 
0,1,3..n; the nodes of subnet 3 are labeled 0..2,4..n; etc. In the 
top illustration, node i in subnet j connects directly to node j in 
subnet i. In the bottom illustration, the immediate neighbors of 
node i in subnet j connect to the immediate neighbors of node 
j in subnet i. 

Using the Fishnet interconnection methodology to com-
bine Moore networks produces an Angelfish network, illustrat-
ed in Figure 7. Using Fishnet on a Flattened Butterfly network 
produces a Flying Fish network, illustrated in Figures 8 and 9. 
Figure 8 illustrates a Flying Fish Lite network based on 7x7 
49-node  Flattened  Butterfly  subnets.  The  same  numbering 
scheme is used as in the Angelfish example: for all subnets X 
from 0 to 49 there is a connection between subnet X, node Y 

Figure 6. Each node, via its set of nearest neighbors, defines a 
unique subset of nodes that lies at a maximum of 1 hop from all 
other nodes in the graph. In other words, it only takes 1 hop from 
anywhere in the graph to reach one of the nodes in the subset. 
Nearest-neighbor subsets are shown in a Petersen graph for six of 
the graph’s nodes.

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

Figure 5. Dragonfly interconnect: a fully connected graph of fully 
connected graphs.

1
27

4

3

5

6

1
27

4

3

5

6

1
27

4

3

5

6

1
27

4

3

5

6

1
27

4

3

5

6
…

Figure 5: Dragonfly interconnect: a fully connected
graph of fully connected graphs.

that, when the number of inter-subnet links is equal to one
more than the intra-subnet links, the entire network has a
diameter of 2, not 3 (if every node has a connection to each
of its local nodes as well as a connection to each one of the
remote subnets, then it is by definition a two-hop network),
which in our graphs later we will label as the “Dragonfly
Limit.”

In general, Dragonfly networks of this form have the fol-
lowing characteristics, where p is the number of ports for
intra-subnet connections, and s is the number of ports con-
nected to remote subnets:

• Nodes: (p + 1)(p + 2)

• Ports: p + s

• Bisection Links: ∼ s((p + 2)2/4)

• Maximum Latency: 3

The bisection bandwidth depends on actual configuration,
such as whether the number of subnets (p+1) is even or odd.

Fishnet: Angelfish and Flying Fish
The Fishnet interconnection methodology is a novel means
to connect multiple copies of a given subnetwork [8], for
instance a 2-hop Moore graph or 2-hop Flattened Butterfly
network. Each subnet is connected by multiple links, the
originating nodes in each subnet chosen so as to lie at a
maximum distance of 1 from all other nodes in the subnet.
For instance, in a Moore graph, each node defines such a
subset: its nearest neighbors by definition lie at a distance
of 1 from all other nodes in the graph, and they lie at a
distance of 2 from each other. Figure 6 illustrates.

Using nearest-neighbor subsets to connect the members of
different subnetworks to each other produces a system-wide
diameter of 4, given diameter-2 subnets: to reach remote
subnetwork i, one must first reach one of the nearest neigh-
bors of node i within the local subnetwork. By definition,



the network size achievable with a relatively small number of 
ports grows rapidly. For instance, on the right of Figure 3 is 
shown a diameter-3 graph with 22 nodes; a diameter-4 graph 
has an upper bound of 46. In actuality, the largest known di-
ameter-3 graph has 20 nodes, and the largest known diameter-
4 graph has 38. The table below shows the difference between 
the various bounds (labeled “Max”) and the known graph sizes 
that have been discovered (labeled “Real”): the difference fac-
tor grows with both diameter and number of ports [10].

D. Dragonfly and High-Bisection Extensions
The  Dragonfly  interconnect  [11]  is  an  internet  structure,  a 
network of subnetworks. Perhaps the most common form of 
Dragonfly, which is the form we analyze here, is a fully con-
nected graph of fully connected graphs, which gives it a diam-
eter 3 across the whole network. This is illustrated in Figure 5. 
Dragonfly networks  can use  any number  of  ports  for  inter-
subnet connections, and any number for intra-subnet connec-
tions. We vary the number of inter-subnet links, characterizing 
1, 2, 4, etc. links connecting each subnet, noting that, when the 
number of inter-subnet links is equal to one more than the in-
tra-subnet links, the entire network has a diameter of 2, not 3 
(if every node has a connection to each of its local nodes as 
well as a connection to each one of the remote subnets, then it 
is by definition a two-hop network), which in our graphs later 
we will label as the “Dragonfly Limit.” 

In general, Dragonfly networks of this form have the fol-
lowing characteristics, where p is the number of ports for in-
tra-subnet connections, and s is the number of ports connected 
to remote subnets:

• Nodes: (p + 1)(p + 2)
• Ports: p + s
• Bisection Links: ~ s((p+2)2 ÷ 4)
• Maximum Latency: 3 

The  bisection  depends  on  actual  configuration,  such  as 
whether the number of subnets (p+1) is even or odd. 

E. Fishnet: Angelfish and Flying Fish
The Fishnet interconnection methodology is a novel means to 
connect multiple copies of a given subnetwork [12],  for in-
stance a 2-hop Moore graph or 2-hop Flattened Butterfly net-
work. Each subnet is connected by multiple links, the originat-
ing nodes in each subnet chosen so as to lie at a maximum 
distance of 1 from all other nodes in the subnet. For instance, 
in a Moore graph, each node defines such a subset: its nearest 

neighbors by definition lie at  a distance of 1 from all  other 
nodes in the graph, and they lie at a distance of 2 from each 
other. Figure 6 illustrates.

Using nearest-neighbor subsets to connect the members of 
different subnetworks to each other produces a system-wide 
diameter of 4, given diameter-2 subnets: to reach remote sub-
network i, one must first reach one of the nearest neighbors of 
node i within the local subnetwork. By definition, this takes at 
most one hop. Another hop reaches the remote network, where 
it is at most two hops to reach the desired node. The “Fishnet 
Lite” variant uses a single link to connect each subnet, as in a 
typical Dragonfly, and has maximum five hops between any 
two nodes, as opposed to four.

An example topology using the Petersen graph is illus-
trated in Figure 7: given a 2-hop subnet of n nodes, each node 
having p ports (in this case each subnet has 10 nodes, and each 
node has 3 ports), one can construct a system of n+1 subnets, 
in two ways: the first uses p+1 ports per node and has a maxi-
mum latency of five hops within the system; the second uses 
2p ports per node and has a maximum latency of four hops. 

The nodes of subnet 0 are labeled 1..n; the nodes of sub-
net  1  are  labeled  1,2..n;  the  nodes  of  subnet  2  are  labeled 
0,1,3..n; the nodes of subnet 3 are labeled 0..2,4..n; etc. In the 
top illustration, node i in subnet j connects directly to node j in 
subnet i. In the bottom illustration, the immediate neighbors of 
node i in subnet j connect to the immediate neighbors of node 
j in subnet i. 

Using the Fishnet interconnection methodology to com-
bine Moore networks produces an Angelfish network, illustrat-
ed in Figure 7. Using Fishnet on a Flattened Butterfly network 
produces a Flying Fish network, illustrated in Figures 8 and 9. 
Figure 8 illustrates a Flying Fish Lite network based on 7x7 
49-node  Flattened  Butterfly  subnets.  The  same  numbering 
scheme is used as in the Angelfish example: for all subnets X 
from 0 to 49 there is a connection between subnet X, node Y 

Figure 6. Each node, via its set of nearest neighbors, defines a 
unique subset of nodes that lies at a maximum of 1 hop from all 
other nodes in the graph. In other words, it only takes 1 hop from 
anywhere in the graph to reach one of the nodes in the subset. 
Nearest-neighbor subsets are shown in a Petersen graph for six of 
the graph’s nodes.

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

Figure 5. Dragonfly interconnect: a fully connected graph of fully 
connected graphs.

1
27

4

3

5

6

1
27

4

3

5

6

1
27

4

3

5

6

1
27

4

3

5

6

1
27

4

3

5

6
…

Figure 6: Each node, via its set of nearest neighbors,
defines a unique subset of nodes that lies at a maxi-
mum of 1 hop from all other nodes in the graph. In
other words, it only takes 1 hop from anywhere in
the graph to reach one of the nodes in the subset.
Nearest-neighbor subsets are shown in a Petersen
graph for six of the graph’s nodes.

this takes at most one hop. Another hop reaches the re-
mote network, where it is at most two hops to reach the
desired node. The “Fishnet Lite” variant uses a single link
to connect each subnet, as in a typical Dragonfly, and has
maximum five hops between any two nodes, as opposed to
four.

An example topology using the Petersen graph is illus-
trated in Figure 7: given a 2-hop subnet of n nodes, each
node having p ports (in this case each subnet has 10 nodes,
and each node has 3 ports), one can construct a system of
n + 1 subnets, in two ways: the first uses p + 1 ports per
node and has a maximum latency of five hops within the sys-
tem; the second uses 2p ports per node and has a maximum
latency of four hops.

The nodes of subnet 0 are labeled 1..n; the nodes of sub-
net 1 are labeled 1, 2..n; the nodes of subnet 2 are labeled
0, 1, 3..n; the nodes of subnet 3 are labeled 0..2, 4..n; etc. In
the top illustration, node i in subnet j connects directly to
node j in subnet i. In the bottom illustration, the immedi-
ate neighbors of node i in subnet j connect to the immediate
neighbors of node j in subnet i.

Using the Fishnet interconnection methodology to com-
bine Moore networks produces an Angelfish network, illus-
trated in Figure 7. Using Fishnet on a Flattened Butterfly
network produces a Flying Fish network, illustrated in Fig-
ures 8 and 9. Figure 8 illustrates a Flying Fish Lite network
based on 7×7 = 49 -node Flattened Butterfly subnets. The
same numbering scheme is used as in the Angelfish example:
for all subnets X from 0 to 49 there is a connection between
subnet X, node Y and subnet Y , node X. The result is a
2450-node network with a maximum 5-hop latency and 13
ports per node. Note that this is similar to the Cray Cas-
cade [6], in that it is a complete graph of Flattened Butterfly
subnets, with a single link connecting each subnet.

Figure 9 gives an example of connecting subnets in a
“full” configuration. Fishnet interconnects identify subsets
of nodes within each subnetwork that are reachable within a

single hop from all other nodes: Flattened Butterflies have
numerous such subsets, including horizontal groups, verti-
cal groups, diagonal groups, etc. The example in Figure 9
uses horizontal and vertical groups: 98 subnets, numbered
1H..49H and 1V..49V. When contacting an “H” subnet, one
uses any node in the horizontal row containing that num-
bered node. For example, to communicate from subnet 1H
to subnet 16H, one connects to any node in the horizon-
tal row containing node 16. To communicate from subnet
1H to subnet 42V, one connects to any node in the vertical
column containing node 42. Given that Flattened Butter-
fly networks are constructed out of fully connected graphs
in both horizontal and vertical dimensions, this means that
one can reach a remote subnet in at most two hops. From
there, it is a maximum of two hops within the remote subnet
to reach the desired target node. For a Flattened Butterfly
subnet of N × N nodes, one can build a system of 2 × N4

nodes with 4×N−2 ports per node and a maximum latency
of 4 hops. This can be extended even further by allowing
diagonal sets as well.

In general, the Angelfish graphs have the following charac-
teristics, where p is the number of ports that are used to con-
struct the fundamental Moore graph, from which the rest of
the network is constructed. As mentioned above with Moore
graphs, the number of nodes is an upper bound, unless spe-
cific implementations are described, where the numbers are
actual.

Angelfish
• Nodes: (p2 + 1)(p2 + 2)

• Ports: 2p

• Bisection Links: ∼ p((p2 + 1)2 ÷ 4)

• Maximum Latency: 4

Angelfish Lite
• Nodes: (p2 + 1)(p2 + 2)

• Ports: p + 1

• Bisection Links: ∼ (p2 + 1)2 ÷ 4

• Maximum Latency: 5

In general, the Flying Fish graphs have the following char-
acteristics, where n is the length of a side:

Flying Fish
• Nodes: 2n4

• Ports: 4n2

• Bisection Links: ∼ n(n4) = n5

• Maximum Latency: 4

Flying Fish Lite
• Nodes: n2(n2 + 1)

• Ports: 2n1

• Bisection Links: ∼ (n2 + 1)2 ÷ 4

• Maximum Latency: 5



and subnet Y, node X. The result is a 2450-node network with 
a maximum 5-hop latency and 13 ports per node. Note that 
this is similar to the Cray Cascade [13], in that it is a complete 
graph of Flattened Butterfly subnets, with a single link con-
necting each subnet.

Figure  9  gives  an  example  of  connecting  subnets  in  a 
“full” configuration. Fishnet interconnects identify subsets of 
nodes within each subnetwork that are reachable within a sin-
gle hop from all other nodes: Flattened Butterflies have nu-
merous  such  subsets,  including  horizontal  groups,  vertical 
groups, diagonal groups, etc.  The example in Figure 9 uses 
horizontal and vertical groups: 98 subnets, numbered 1H..49H 
and 1V..49V. When contacting an “H” subnet, one uses any 
node in the horizontal row containing that numbered node. For 
example, to communicate from subnet 1H to subnet 16H, one 
connects to any node in the horizontal row containing node 
16. To communicate from subnet 1H to subnet 42V, one con-
nects to any node in the vertical column containing node 42. 
Given that Flattened Butterfly networks are constructed out of 
fully connected graphs in both horizontal and vertical dimen-
sions, this means that one can reach a remote subnet in at most 
two hops. From there, it is a maximum of two hops within the 
remote subnet to reach the desired target node. For a Flattened 
Butterfly subnet of NxN nodes, one can build a system of 2N4 
nodes with 4N–2 ports per node and a maximum latency of 4 

hops. This can be extended even further by allowing diagonal 
sets as well.

In general, the Angelfish graphs have the following char-
acteristics, where p is the number of ports that are used to con-
struct the fundamental Moore graph, from which the rest of 
the network is constructed. As mentioned above with Moore 
graphs, the number of nodes is an upper bound, unless specific 
implementations are described, where the numbers are actual.

Angelfish

• Nodes: (p2 + 1)(p2 + 2)
• Ports: 2p
• Bisection Links: ~ p((p2 + 1) 2 ÷ 4)
• Maximum Latency: 4

Angelfish Lite

• Nodes: (p2 + 1)(p2 + 2)
• Ports: p+1
• Bisection Links: ~ (p2 + 1) 2 ÷ 4
• Maximum Latency: 5

In general, the Flying Fish graphs have the following charac-
teristics, where n is the length of a side:

Figure 8. Flying Fish Lite network based on a 7x7 Flattened Butterfly subnet — 50 subnets of 49 nodes (2450 nodes, 13 ports each, 5-hop 
latency). Note that this is the same type of arrangement as the Cray Cascade network.

87 9 10 11 12 13

1514 17 18 19 20 21

10 2 3 4 5 6

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

8 9 10 11 12 137

15 16 17 18 19 2014

22 23 24 25 26 2721

29 30 31 32 33 3428

36 37 38 39 40 4135

1 2 3 4 5 60

44 45 46 47 48 4943

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

subnet 0 subnet 16 subnet 42

… …

Figure 7. Angelfish (bottom) and Angelfish Lite (top) networks based on a Petersen graph.

8

10 3

49

7 6

5

2

1

8

10 3

49

7 6

5

2

0

8

10 3

49

7 6

5

1

0

7

9 2

38

6 5

4

1

0

subnet 0 subnet 1 subnet 2 subnet 10

…

8

10 3

49

7 6

5

2

1

8

10 3

49

7 6

5

2

0

8

10 3

49

7 6

5

1

0

7

9 2

38

6 5

4

1

0

subnet 0 subnet 1 subnet 2 subnet 10

…

Figure 7: Angelfish (bottom) and Angelfish Lite (top) networks based on a Petersen graph.

and subnet Y, node X. The result is a 2450-node network with 
a maximum 5-hop latency and 13 ports per node. Note that 
this is similar to the Cray Cascade [13], in that it is a complete 
graph of Flattened Butterfly subnets, with a single link con-
necting each subnet.

Figure  9  gives  an  example  of  connecting  subnets  in  a 
“full” configuration. Fishnet interconnects identify subsets of 
nodes within each subnetwork that are reachable within a sin-
gle hop from all other nodes: Flattened Butterflies have nu-
merous  such  subsets,  including  horizontal  groups,  vertical 
groups, diagonal groups, etc.  The example in Figure 9 uses 
horizontal and vertical groups: 98 subnets, numbered 1H..49H 
and 1V..49V. When contacting an “H” subnet, one uses any 
node in the horizontal row containing that numbered node. For 
example, to communicate from subnet 1H to subnet 16H, one 
connects to any node in the horizontal row containing node 
16. To communicate from subnet 1H to subnet 42V, one con-
nects to any node in the vertical column containing node 42. 
Given that Flattened Butterfly networks are constructed out of 
fully connected graphs in both horizontal and vertical dimen-
sions, this means that one can reach a remote subnet in at most 
two hops. From there, it is a maximum of two hops within the 
remote subnet to reach the desired target node. For a Flattened 
Butterfly subnet of NxN nodes, one can build a system of 2N4 
nodes with 4N–2 ports per node and a maximum latency of 4 

hops. This can be extended even further by allowing diagonal 
sets as well.

In general, the Angelfish graphs have the following char-
acteristics, where p is the number of ports that are used to con-
struct the fundamental Moore graph, from which the rest of 
the network is constructed. As mentioned above with Moore 
graphs, the number of nodes is an upper bound, unless specific 
implementations are described, where the numbers are actual.

Angelfish

• Nodes: (p2 + 1)(p2 + 2)
• Ports: 2p
• Bisection Links: ~ p((p2 + 1) 2 ÷ 4)
• Maximum Latency: 4

Angelfish Lite

• Nodes: (p2 + 1)(p2 + 2)
• Ports: p+1
• Bisection Links: ~ (p2 + 1) 2 ÷ 4
• Maximum Latency: 5

In general, the Flying Fish graphs have the following charac-
teristics, where n is the length of a side:

Figure 8. Flying Fish Lite network based on a 7x7 Flattened Butterfly subnet — 50 subnets of 49 nodes (2450 nodes, 13 ports each, 5-hop 
latency). Note that this is the same type of arrangement as the Cray Cascade network.

87 9 10 11 12 13

1514 17 18 19 20 21

10 2 3 4 5 6

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

8 9 10 11 12 137

15 16 17 18 19 2014

22 23 24 25 26 2721

29 30 31 32 33 3428

36 37 38 39 40 4135

1 2 3 4 5 60

44 45 46 47 48 4943

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

subnet 0 subnet 16 subnet 42

… …

Figure 7. Angelfish (bottom) and Angelfish Lite (top) networks based on a Petersen graph.

8

10 3

49

7 6

5

2

1

8

10 3

49

7 6

5

2

0

8

10 3

49

7 6

5

1

0

7

9 2

38

6 5

4

1

0

subnet 0 subnet 1 subnet 2 subnet 10

…

8

10 3

49

7 6

5

2

1

8

10 3

49

7 6

5

2

0

8

10 3

49

7 6

5

1

0

7

9 2

38

6 5

4

1

0

subnet 0 subnet 1 subnet 2 subnet 10

…

Figure 8: Flying Fish Lite network based on a 7x7 Flattened Butterfly subnet – 50 subnets of 49 nodes (2450
nodes, 13 ports each, 5-hop latency). Note that this is the same type of arrangement as the Cray Cascade
network.

Flying Fish

• Nodes: 2n4

• Ports: 4n – 2
• Bisection Links: ~ n(n4) = n5

• Maximum Latency: 4

Flying Fish Lite

• Nodes: n2(n2 + 1)
• Ports: 2n – 1
• Bisection Links: ~ (n2 + 1)2 ÷ 4
• Maximum Latency: 5

III. NETWORK CONNECTIVITY AND AVAILABILITY

With millions of nodes in a network, the reliability of the net-
work and the availability  of  nodes proposes a  serious chal-
lenge to system designers. A considerable amount of work has 
been devoted to such issues, from both hardware and software 
perspectives [14-20]. As Schroeder [14] pointed out, the fail-
ure rates of an HPC system is approximately proportional to 
the number of nodes (or processors) in that system. Thus for a 

system building upon millions of nodes, node failure is certain 
to happen. So in the situation of a node or even a board failure, 
whether an interconnect topology could provide the ability to 
reroute to bypass the failed part and allow maintenance and 
replacement of the failure part is crucial. 

Theoretically, all the topologies we have discussed above 
provide  some  redundancy  in  terms  of  connection—that  is, 
when one node or board/subnet is down, the rest of the net-
work is still able to access other functioning parts of the net-
work. The question remains is, how easily that could be done?

Figure 10 shows the rerouting schemes to bypass a failed 
node in different topologies. Note that since the nodes of the  
flattened butterfly are fully connected, it doesn't require rerout-
ing  when  one  node  fails;  therefore  it  is  not  shown  in  this 
graph. As could be seen from the graph, assuming in each sit-
uation,  node  0  is  trying  to  access  node  2  through  node  1, 
which is unavailable. A 2D torus has 2 alternative routes to 
bypass  the  faulty  node,  and both  take  2  additional  hops  (4 
hops comparing to 2 hops) to get to the destination; a 5-node 
Moore graph has 1 alternative route, costing 1 additional hop; 
and a 10-node Petersen graph has 2 alternative routes, costing 
1 additional hop. This could be summarized in the following 
table:

One interesting result here is that, even though a torus network 
has more hops to reroute over a failed node than other topolo-
gies, it has more alternative routes, especially when the num-
ber of dimensions grows. This may imply that during the han-
dling of a failed node in a torus network, there would be more 

Topologies for Subnets Additional Cost in Hops Alternative Routes

nD Torus 2 2 (n – 1)

Flattened Butterfly 0 n/a

5-node Moore 1 1

10-node Petersen 1 2

Figure 10. Rerouting to bypass faulty nodes in 2D torus, 5-node 
Moore Graph, and a 10-node Petersen Graph. The unavailable 
route is marked in red; alternative routes marked in green. For 
simplicity arrows are plotted only in one direction instead of both.

Figure 9. Flying Fish network based on a 7x7 Flattened Butterfly subnet — 98 subnets of 49 nodes (4802 nodes, 26 ports each, 4-hop latency).

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

…

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

…

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

16

subnet 16H

subnet 42H

subnet 16V

subnet 42V

subnet 1H

Figure 9: Flying Fish network based on a 7x7 Flattened Butterfly subnet – 98 subnets of 49 nodes (4802
nodes, 26 ports each, 4-hop latency).



Flying Fish

• Nodes: 2n4

• Ports: 4n – 2
• Bisection Links: ~ n(n4) = n5

• Maximum Latency: 4

Flying Fish Lite

• Nodes: n2(n2 + 1)
• Ports: 2n – 1
• Bisection Links: ~ (n2 + 1)2 ÷ 4
• Maximum Latency: 5

III. NETWORK CONNECTIVITY AND AVAILABILITY

With millions of nodes in a network, the reliability of the net-
work and the availability  of  nodes proposes a  serious chal-
lenge to system designers. A considerable amount of work has 
been devoted to such issues, from both hardware and software 
perspectives [14-20]. As Schroeder [14] pointed out, the fail-
ure rates of an HPC system is approximately proportional to 
the number of nodes (or processors) in that system. Thus for a 

system building upon millions of nodes, node failure is certain 
to happen. So in the situation of a node or even a board failure, 
whether an interconnect topology could provide the ability to 
reroute to bypass the failed part and allow maintenance and 
replacement of the failure part is crucial. 

Theoretically, all the topologies we have discussed above 
provide  some  redundancy  in  terms  of  connection—that  is, 
when one node or board/subnet is down, the rest of the net-
work is still able to access other functioning parts of the net-
work. The question remains is, how easily that could be done?

Figure 10 shows the rerouting schemes to bypass a failed 
node in different topologies. Note that since the nodes of the  
flattened butterfly are fully connected, it doesn't require rerout-
ing  when  one  node  fails;  therefore  it  is  not  shown  in  this 
graph. As could be seen from the graph, assuming in each sit-
uation,  node  0  is  trying  to  access  node  2  through  node  1, 
which is unavailable. A 2D torus has 2 alternative routes to 
bypass  the  faulty  node,  and both  take  2  additional  hops  (4 
hops comparing to 2 hops) to get to the destination; a 5-node 
Moore graph has 1 alternative route, costing 1 additional hop; 
and a 10-node Petersen graph has 2 alternative routes, costing 
1 additional hop. This could be summarized in the following 
table:

One interesting result here is that, even though a torus network 
has more hops to reroute over a failed node than other topolo-
gies, it has more alternative routes, especially when the num-
ber of dimensions grows. This may imply that during the han-
dling of a failed node in a torus network, there would be more 

Topologies for Subnets Additional Cost in Hops Alternative Routes

nD Torus 2 2 (n – 1)

Flattened Butterfly 0 n/a

5-node Moore 1 1

10-node Petersen 1 2

Figure 10. Rerouting to bypass faulty nodes in 2D torus, 5-node 
Moore Graph, and a 10-node Petersen Graph. The unavailable 
route is marked in red; alternative routes marked in green. For 
simplicity arrows are plotted only in one direction instead of both.

Figure 9. Flying Fish network based on a 7x7 Flattened Butterfly subnet — 98 subnets of 49 nodes (4802 nodes, 26 ports each, 4-hop latency).

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

…

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

…

98 10 11 12 13 14

1615 17 18 19 20 21

21 3 4 5 6 7

2322 24 25 26 27 28

3029 31 32 33 34 35

3736 38 39 40 41 42

4443 45 46 47 48 49

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40 41 42

43 44 45 46 47 48 49

16

subnet 16H

subnet 42H

subnet 16V

subnet 42V

subnet 1H

Figure 10: Rerouting to bypass faulty nodes in 2D
torus, 5-node Moore Graph, and a 10-node Petersen
Graph. The unavailable route is marked in red; al-
ternative routes marked in green. For simplicity
arrows are plotted only in one direction instead of
both.

2. NETWORK AVAILABILITY
With millions of nodes in a network, the reliability of

the network and the availability of nodes proposes a seri-
ous challenge to system designers. A considerable amount
of work has been devoted to such issues, from both hardware
and software perspectives [15, 22, 5, 19, 14, 18, 1, 9] . As
Schroeder [15] pointed out, the failure rates of an HPC sys-
tem is approximately proportional to the number of nodes
(or processors) in that system. Thus for a system building
upon millions of nodes, node failure is certain to happen. So
in the situation of a node or even a board failure, whether an
interconnect topology could provide the ability to reroute to
bypass the failed part and allow maintenance and replace-
ment of the failure part is crucial.

Theoretically, all the topologies we have discussed above
provide some redundancy in terms of connection – that is,
when one node or board/subnet is down, the rest of the
network is still able to access other functioning parts of the
network. The question remains is, how easily that could be
done?

Figure 10 shows the rerouting schemes to bypass a failed
node in different topologies. Note that since the nodes of
the flattened butterfly are fully connected, it doesn’t require
rerouting when one node fails; therefore it is not shown in
this graph. As could be seen from the graph, assuming in
each situation, node 0 is trying to access node 2 through
node 1, which is unavailable. A 2D torus has 2 alternative
routes to bypass the faulty node, and both take 2 additional
hops (4 hops comparing to 2 hops) to get to the destination;
a 5-node Moore graph has 1 alternative route, costing 1 ad-
ditional hop; and a 10-node Petersen graph has 2 alternative
routes, costing 1 additional hop. This could be summarized
in the following table:

Topologies Additional Alternative
for Subnets Cost in Hops Routes

nD Torus 2 2(n− 1)
Flattened Butterfly 0 n/a

5-node Moore 1 1
10-node Petersen 1 2

One interesting result here is that, even though a torus
network has more hops to reroute over a failed node than
other topologies, it has more alternative routes, especially
when the number of dimensions grows. This may imply
that during the handling of a failed node in a torus network,

there would be more latency, but also more bandwidth and
less traffic congestion are expected, which may mitigate the
latency issue.

3. COST/PERFORMANCE ANALYSIS
This section presents a cost/performance analysis of the

previously described network topologies, in configurations
up to 1 million nodes. As described above, Moore graphs
represent upper bounds; Fishnet numbers based on Moore
graphs use actual graphs for a basis (i.e., the Angelfish and
Flying Fish numbers in this section are all for real graphs,
based on published diameter-2 network topologies, and not
unachievable upper bounds on characteristics).

Figure 11 compares the port costs of the topologies with
relatively fixed latencies. Instead of having fixed port costs,
as in the tori and hypercubes, the port requirements (the
number of ports per router) for these topologies grow with
the system size, and their average latencies are relatively
stable. The Fishnet, Dragonfly, and Flattened Butterfly
topologies are compared to the Moore bounds, with Moore
graphs of diameter 2, 3, 4, 5, and 6. In general, low-diameter
networks can be built out to 1,000,000 nodes with a mod-
est number of ports: high-diameter Flattened Butterfly de-
signs and Fishnet designs will scale to these sizes in under
30 router ports (this is “modest” considering that 100-port
routers exist today).

3.1 Ports per Router, Average Latencies,
Bisection Bandwidth

The graph in Figure 12 shows the average latencies for the
topologies that have fixed port costs: the torus variations,
from 2D to 10D. A node in a torus interconnect has a fixed
number of ports, regardless of the network size, except at 2
nodes per side, which is a hypercube. What changes is the
maximum and average latency through the network. One
can see that the average latency grows quickly for a system
of a given dimension, as the length of a side is scaled from
2 to 3 to 4, etc. One can also see that a torus with 3 nodes
on a side is more efficient than a hypercube with the same
number of total nodes; this is to be expected, as, given the
same dimension, they both have the same worst-case latency,
and a torus with 3 nodes per side has more nodes than one
with 2 per side.

Figure 13 shows bisection bandwidths; the metric is sim-
ply the number of links at the narrowest part of the graph,
as each link could be any bandwidth, depending on inter-
connect technology. The figure in the top left simply plots
bisection bandwidth (in links) against system size, both axes
logarithm scale. As one would expect, the bandwidths grow
proportionally with the system size: as the system scales by
four orders of magnitude, the bisection bandwidths scale by
over five orders of magnitude. Note that data points are ex-
cluded where the design would require more than 300 ports
or exhibit an average latency over 35 hops; this is true for
all following graphs.

Some of the topologies scale their bisection bandwidth
faster than others, and so at the larger system sizes (around
100,000 nodes and larger), there is a clear division of topolo-
gies: a gap in bandwidth appears between the top and bot-
tom groups. The top group includes Moore topologies, Drag-
onfly topologies, Flattened Butterfly topologies, Angelfish,
Flying Fish, and Angelfish Mesh. These are the topologies
with high port costs, and so it is expected that they would



latency, but also more bandwidth and less traffic congestion 
are expected, which may mitigate the latency issue.

IV. COST/PERFORMANCE ANALYSIS

This section presents a cost/performance analysis of the previ-
ously described network topologies, in configurations up to 1 
million  nodes.  As  described above,  Moore  graphs  represent 
upper bounds; Fishnet numbers based on Moore graphs use 
actual graphs for a basis (i.e., the Angelfish and Flying Fish 
numbers in this section are all for real graphs, based on pub-
lished  diameter-2  network  topologies,  and  not  unachievable 
upper bounds on characteristics).

A. Ports per Router, Average Latencies, Bisection Bandwidth
Figure 11 compares the port costs of the topologies with rela-
tively fixed latencies. Instead of having fixed port costs, as in 
the tori and hypercubes, the port requirements (the number of 
ports  per  router)  for  these topologies  grow with the system 
size,  and  their  average  latencies  are  relatively  stable.  The 
Fishnet,  Dragonfly,  and  Flattened  Butterfly  topologies  are 
compared to the Moore bounds, with Moore graphs of diame-
ter 2, 3, 4, 5, and 6. In general, low-diameter networks can be 
built out to 1,000,000 nodes with a modest number of ports: 
high-diameter Flattened Butterfly designs and Fishnet designs 
will scale to these sizes in under 30 router ports (this is “mod-
est” considering that 100-port routers exist today). The Drag-
onfly networks do not scale as well and require more ports to 

build out a system, requiring hundreds of ports to reach be-
yond 10,000 nodes.

The graph in Figure 12 shows the average latencies for 
the topologies that have fixed port costs: the torus variations, 
from 2D to 10D. A node in a torus interconnect has a fixed 
number of ports, regardless of the network size,  except at 2 
nodes per  side,  which is  a  hypercube.  What  changes is  the 
maximum and average latency through the network. One can 
see that the average latency grows quickly for a system of a 
given dimension, as the length of a side is scaled from 2 to 3 

  
   

Figure 11. Ports costs for max-diameter graphs. 

     
   Figure 12. Average latencies of topologies.

Figure 11: Ports costs for max-diameter graphs.

latency, but also more bandwidth and less traffic congestion 
are expected, which may mitigate the latency issue.

IV. COST/PERFORMANCE ANALYSIS

This section presents a cost/performance analysis of the previ-
ously described network topologies, in configurations up to 1 
million  nodes.  As  described above,  Moore  graphs  represent 
upper bounds; Fishnet numbers based on Moore graphs use 
actual graphs for a basis (i.e., the Angelfish and Flying Fish 
numbers in this section are all for real graphs, based on pub-
lished  diameter-2  network  topologies,  and  not  unachievable 
upper bounds on characteristics).

A. Ports per Router, Average Latencies, Bisection Bandwidth
Figure 11 compares the port costs of the topologies with rela-
tively fixed latencies. Instead of having fixed port costs, as in 
the tori and hypercubes, the port requirements (the number of 
ports  per  router)  for  these topologies  grow with the system 
size,  and  their  average  latencies  are  relatively  stable.  The 
Fishnet,  Dragonfly,  and  Flattened  Butterfly  topologies  are 
compared to the Moore bounds, with Moore graphs of diame-
ter 2, 3, 4, 5, and 6. In general, low-diameter networks can be 
built out to 1,000,000 nodes with a modest number of ports: 
high-diameter Flattened Butterfly designs and Fishnet designs 
will scale to these sizes in under 30 router ports (this is “mod-
est” considering that 100-port routers exist today). The Drag-
onfly networks do not scale as well and require more ports to 

build out a system, requiring hundreds of ports to reach be-
yond 10,000 nodes.

The graph in Figure 12 shows the average latencies for 
the topologies that have fixed port costs: the torus variations, 
from 2D to 10D. A node in a torus interconnect has a fixed 
number of ports, regardless of the network size,  except at 2 
nodes per  side,  which is  a  hypercube.  What  changes is  the 
maximum and average latency through the network. One can 
see that the average latency grows quickly for a system of a 
given dimension, as the length of a side is scaled from 2 to 3 

  
   

Figure 11. Ports costs for max-diameter graphs. 

     
   Figure 12. Average latencies of topologies.

Figure 12: Average latencies of torus.

have higher bisection bandwidths. The bottom group in-
cludes Angelfish L-Mesh, Angelfish Lite, Flying Fish Lite,
and all of the tori from 2D to 10D. The divide can be seen
more clearly in the bottom right graph of Figure 13, which
presents bisection bandwidth scaled by the system size.

The second graph in Figure 13 shows how efficiently a
particular topology can produce bisection bandwidth: this
is the ratio of bisection bandwidth to system size. This

explains the various curves seen in the previous graph: at
the top, including Moore and Flattened Butterfly topolo-
gies, Angelfish, Flying Fish, and Angelfish Mesh, the curves
grow with system size: i.e., the curves have positive slope,
and the bisection bandwidth grows faster than the system
size. In addition, topologies such as the Dragonfly varia-
tions, Angelfish Lite, and Flying Fish Lite, have designs with
completely flat curves, indicating topologies whose bisection
bandwidth scales at the same pace as the system size. All of
the tori, from 2D to 10D, have downward slopes, indicating
that the bisection bandwidth grows more slowly than the
system size.

An interesting point is that all topologies other than the
tori have lower bandwidth per node as the dimension (and
thus the diameter) grows: for instance, the 2-hop Moore
and Flattened Butterfly networks are coincident, as are the
3-hop Moore and Flattened Butterfly networks, as are the
4-hop Moore, Flattened Butterfly, and Angelfish networks.
Each of these has a shallower slope than the one before it:
as dimension and diameter grows, the bisection bandwidth
grows less rapidly with the system size. The tori are a mirror
image of this: as the dimension grows from 2D to 3D and
beyond to 10D, the curves grow flatter in the positive direc-
tion, indicating that each has bisection bandwidth that is
growing more and more rapidly with system size. They still
do not grow as rapidly as the Moore, Flattened Butterfly,
and Fishnet topologies, but it is encouraging that tori be-
come better choices the larger their dimension, as the larger
dimensions are the only ones that scale to extremely large



to 4, etc. One can also see that a torus with 3 nodes on a side is 
more efficient than a hypercube with the same number of total 
nodes; this is to be expected, as, given the same dimension, 
they both have the same worst-case latency, and a torus with 3 
nodes per side has more nodes than one with 2 per side. 

Figure 13 shows bisection bandwidths; the metric is sim-
ply the number of links at the narrowest part of the graph, as 
each link could be any bandwidth, depending on interconnect 
technology. The figure in the top left  simply plots bisection 
bandwidth (in links) against system size, both axes logarithm 
scale. As one would expect, the bandwidths grow proportion-
ally with the system size: as the system scales by four orders 
of magnitude, the bisection bandwidths scale by over five or-
ders of magnitude. Note that data points are excluded where 
the design would require more than 300 ports or exhibit an 
average latency over  35 hops;  this  is  true for  all  following 
graphs.

Some of  the  topologies  scale  their  bisection bandwidth 
faster than others, and so at the larger system sizes (around 
100,000 nodes and larger), there is a clear division of topolo-
gies: a gap in bandwidth appears between the top and bottom 
groups. The top group includes Moore topologies, Dragonfly 
topologies,  Flattened  Butterfly  topologies,  Angelfish,  Flying 
Fish, and Angelfish Mesh. These are the topologies with high 
port costs, and so it is expected that they would have higher 
bisection bandwidths. The bottom group includes Angelfish L-
Mesh, Angelfish Lite, Flying Fish Lite, and all of the tori from 
2D to 10D. The divide can be seen more clearly in the bottom 
right graph of Figure 13, which presents bisection bandwidth 
scaled by the system size.

The second graph in Figure 13 shows how efficiently a 
particular topology can produce bisection bandwidth: this is 
the ratio of bisection bandwidth to system size. This explains 
the various curves seen in the previous graph: at the top, in-
cluding Moore and Flattened Butterfly topologies, Angelfish, 

Figure 13. Left: Bisection bandwidth for all topologies, in terms of links intersected; note the log scale on the y-axis—at nearly all network 
sizes, there is a two-order-of-magnitude spread in bisection bandwidth, and the spread grows larger with system size. Right: Bisection scaled 
by system size. This highlights the difference between topologies whose bisection sales faster system size (positive slopes), those that scale 
more slowly than system size (negative slopes), and those that scale at exactly the same rate (flat slopes).

Figure 13: Left: Bisection bandwidth for all topologies, in terms of links intersected; note the log scale on
the y-axis – at nearly all network sizes, there is a two-order-of-magnitude spread in bisection bandwidth,
and the spread grows larger with system size. Right: Bisection scaled by system size. This highlights the
difference between topologies whose bisection sales faster system size (positive slopes), those that scale more
slowly than system size (negative slopes), and those that scale at exactly the same rate (flat slopes).

network sizes.

3.2 Bisection by Ports x Latency
In general, to characterize each system, metrics of interest

include bisection bandwidth, average latency, and the num-
ber of ports per router, as well as number of nodes. Ideally,
one would produce a 3D Pareto surface for each decade of
system size to study this design space, but that is difficult
to visualize. Instead, we look at a slice through that space
by projecting the 3D surface onto one dimension, combining
bisection bandwidth, average latency, and ports-per-router
cost into one metric. The metric is bisection bandwidth
divided by ports and latency; because bisection bandwidth
grows much, much faster than the number of ports or the
average latency through the network, we scale the metric by
the system size. Higher numbers are better.

This metric indicates that, if one interconnect requires

twice the number of ports as another, but it has half the
latency, the two would be considered equal. If one intercon-
nect has half the average latency as another, but it also has
half the bisection bandwidth, the two would be considered
equal. If one interconnect has twice the average latency as
another, but it only requires half the ports per router, the
two would be considered equal. The topologies are compared
in Figure 14.

As one can see, there is tremendous variation across the
topologies considered. The Moore graphs represent the bound:
one cannot achieve a lower port cost at a given diameter, and
thus the ports-latency product for Moore graphs is the best
achievable. However, some graphs have higher bisection, es-
pecially as they use more ports, and so the“efficiency”values
can be higher than those of the Moore bounds. A good ex-
ample of this is the set of diameter-3 Dragonfly variations
up near the Dragonfly Limit curve. In this region, the bisec-



limit. Novel topologies based on Fishnet, in particular the An-
gelfish design, become efficient at very large sizes (hundreds 
of thousands of nodes).

One of the most surprising results is that, at the truly ex-
treme scales, high-dimensional tori become the most efficient 
designs; this, despite the common wisdom that tori do not fare 
well at large sizes — while that sentiment might hold for 2D 
and 3D tori,  the  higher  dimensions  are  extremely  powerful 
designs.

ACKNOWLEDGMENTS

This work was supported in part by the Department of Energy 
under the Data Movement Dominates project, and in part by 
Northrop Grumman under the NCTA Cold Logic program. 

REFERENCES

[1] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carl-
son,  W. Dally,  M. Denneau,  P.  Franzon,  W. Harrod,  K. 
Hill, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. 
Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, et 
al. (2008). ExaScale Computing Study: Technology Chal-

lenges in Achieving Exascale Systems. Defense Advanced 
Research Projects Agency.

[2] J. Shalf, S. Dosanjh, and J. Morrison (2010). “Exascale 
computing technology challenges.” In High Performance 
Computing  for  Computational  Science--VECPAR  2010, 
pp. 1-25. Springer.

[3] M. Besta and T. Hoefler (2014). “Slim fly: A cost effective 
low-diameter  network  topology.”  In  Proceedings  of  the 
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pp. 348-359. No-
vember 2014.

[4] R. Murphy (2007). “On the effects of memory latency and 
bandwidth  on  supercomputer  application  performance.” 
In  10th  IEEE  International  Symposium  on  Workload 
Characterization  (IISWC  2007),  pp.  35-43.  September 
2007.

[5] C.E. Leiserson (1985). “Fat-trees: Universal networks for 
hardware-efficient  supercomputing.”  IEEE  Transactions 
on Computers, 100(10), 892-901.

        
  

Figure 14. Bisection per Ports-Latency Product, scaled by System Size. The bottom right graph combines all others into one.
Figure 14: Bisection per Ports-Latency Product, scaled by System Size. The bottom right graph combines
all others into one.

tion of the network is high because the port costs are high
(from right to left, we have Dragonfly networks where an
additional 128, 64, 32, etc. links are used to connect each
subnetwork, which thereby increases bisection bandwidth by
a factor of 128, 64, 32, etc.), and in this region, up to about
1000 nodes, the Dragonfly topologies have higher“efficiency”
than the diameter-3 Moore bound.

The Flattened Butterfly designs have very good efficiency,
and they scale out to the largest network sizes by increasing
dimension and thus diameter. For instance, a diameter-3
Butterfly can be built with 100,000 nodes, requiring 140
ports, and one can scale it to half a million nodes, requiring
240 ports. The design has a high efficiency value because its
latency is low and its bisection bandwidth is high.

In the same efficiency neighborhood is a diameter-4 net-
work, the Angelfish design, which scales to 100,000 nodes at
38 ports, to 500,000 nodes at 58 ports, and to 1.1 million
nodes at 70 ports. This achieves roughly the same efficiency
by having a factor-of-two lower port costs, a factor-of-two
lower bisection bandwidth, and 4:3 ratio for average latency.
The lower port costs enables it to scale to much larger sys-
tem sizes for the same port costs.

Thus, out at the largest system sizes, the Fishnet-based

topologies (specifically the Angelfish variants) are the most
efficient. If one were to follow the curves out far beyond
the edge if the graphs shown here, as the network sizes scale
larger and larger, the designs that require more ports for
larger sizes, all drop out, leaving only the highest-dimensional
tori.

3.3 Cycle-Accurate Simulations
To compare how the different topologies handle all-to-all

traffic, we simulated them using a modified version of Book-
sim [9] , a widely used, cycle-accurate simulator for intercon-
nect networks. It provides a set of built-in topology models
and offers the flexibility for custom topologies by accept-
ing a netlist. The tool uses Dijkstra’s algorithm to build
the minimum-path routing tables for those configurations
that are not in its set of built-in topologies. We simulated
injection mode with a uniform traffic pattern. The config-
urations simulated include the topologies described earlier,
as well as 2-hop Moore graphs labeled “MMS2.” These latter
networks are not bounds but graphs, the same graphs used
to construct the Angelfish networks studied in this analysis
section; they represent sizes from 18 to 5618 nodes.

The results are shown in Figure 15, which presents aver-



D. Cycle-Accurate Simulations
To compare how the different topologies handle all-to-all traf-
fic, we simulated them using a modified version of Booksim 
[25], a widely used, cycle-accurate simulator for interconnect 
networks.  It  provides a  set  of  built-in  topology models  and 
offers  the  flexibility  for  custom  topologies  by  accepting  a 
netlist.  The tool uses Dijkstra's algorithm to build the mini-
mum-path routing tables for those configurations that are not 
in its set of built-in topologies. We simulated injection mode 
with  a  uniform traffic pattern.  The configurations  simulated 
include  the  topologies  described  earlier,  as  well  as  2-hop 
Moore graphs labeled “MMS2.” These latter networks are not 
bounds but graphs, the same graphs used to construct the An-
gelfish networks studied in this analysis section; they represent 
sizes from 18 to 5618 nodes.

The results are shown in Figure 14, which presents aver-
age network latency, including transmission time as well  as 
time spent in queues at  routers.  The figure shows the same 
graph twice, at different y-axis scales. The left graph shows 
enough data points to see the sharply increasing slope of the 
low-dimension tori. The graph on the right shows details of 
the graphs with the lowest average latencies. There are several 
things to note. First, it is clear that, at the much higher dimen-
sions, the high-D tori will have latencies on the same scale as 
the  other  topologies.  Second,  the  Dragonfly  networks  are 
shown scaled out beyond 100,000 nodes, which requires sev-
eral hundred ports per node, assuming routers are integrated 
on the CPU. Our simulations show that a configuration using 
an external router would incur an order of magnitude higher 
latencies  due  to  congestion  at  the  routers  and  longer  hop 

counts.  The Angelfish and Angelfish Mesh networks at  this 
scale require 38 and 21 ports per node, respectively. Third, the 
3D/4D  Flattened  Butterfly  designs  have  identical  physical 
organization as the 3D/4D tori; they simply use many more 
wires to connect nodes in each dimension. One can see the net 
effect: the Flattened Butterfly designs have half the latency of 
the same-sized tori.  

VI. CONCLUSIONS

There is a clear set of design options to choose from, given the 
balance between the desire for low average interconnect laten-
cy and the desire to reduce the number of wires connecting 
each router chip. Extremely low latencies (e.g., 2–3 hops) are 
certainly possible: two hops can be maintained into the tens of 
thousands of nodes; three hops can be achieved at system sizes 
in the range of 1,000,000 nodes; four hops can be maintained 
through system sizes approaching 1 billion nodes. The cost for 
a network is latency and the number of ports per router. If one 
can live with longer latencies,  the port  requirements can be 
reduced significantly. If one can live with higher port costs, 
latencies can be reduced significantly. 

REFERENCES

[1] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. 
Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. 
Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, 
S. Scott, A. Snavely, T. Sterling, et al. (2008). ExaScale Com-
puting  Study:  Technology  Challenges  in  Achieving  Exascale 
Systems. Defense Advanced Research Projects Agency.

�10

Figure 14. Simulations of network topologies under constant load; the MMS2 graphs are the 2-hop Moore graphs based on MMS techniques 
that were used to construct the Angelfish networks.Figure 15: Simulations of network topologies under constant load; the MMS2 graphs are the 2-hop Moore

graphs based on MMS techniques that were used to construct the Angelfish networks.

age network latency, including transmission time as well as
time spent in queues at routers. The figure shows the same
graph twice, at different y-axis scales. The left graph shows
enough data points to see the sharply increasing slope of
the low-dimension tori. The graph on the right shows de-
tails of the graphs with the lowest average latencies. There
are several things to note. First, it is clear that, at the much
higher dimensions, the high-D tori will have latencies on the
same scale as the other topologies. Second, the Dragonfly
networks are shown scaled out beyond 100,000 nodes, which
requires several hundred ports per node, assuming routers
are integrated on the CPU. Our simulations show that a
configuration using an external router would incur an or-
der of magnitude higher latencies due to congestion at the
routers and longer hop counts. The Angelfish and Angelfish
Mesh networks at this scale require 38 and 21 ports per
node, respectively. Third, the 3D/4D Flattened Butterfly
designs have identical physical organization as the 3D/4D
tori; they simply use many more wires to connect nodes in
each dimension. One can see the net effect: the Flattened
Butterfly designs have half the latency of the same-sized tori.

4. CONCLUSIONS
There is a clear set of design options to choose from, given

the balance between the desire for low average interconnect
latency and high bisection bandwidth, and the desire to re-
duce the number of wires connecting each router chip. Ex-
tremely low latencies (e.g., 2 - 3 hops) are certainly possi-
ble: two hops can be maintained into the tens of thousands
of nodes; three hops can be achieved at system sizes in the
range of 500,000 nodes; four hops can be maintained beyond
1 million nodes. The cost for a network is latency and the

number of ports per router. If one can live with longer la-
tencies or lower bisection bandwidths, the port requirements
can be reduced significantly. On the flip side, if one can live
with higher port costs, latencies can be reduced significantly,
and bisection bandwidths can be increased significantly. In
other words, the “best” topology is not a constant but in-
stead changes with the system size. Router ports can be
spent to increase bisection bandwidth, reduce latency (net-
work/graph diameter), and increase total system size: any
two can be improved at the expense of the third.

Flattened Butterfly networks match and exceed the bi-
section bandwidth curves set by Moore bounds and scale
well to large sizes by increasing dimension and thus diame-
ter. Dragonfly networks in which the number of inter-group
links is scaled have extremely high bisection bandwidth and
match that of the Moore bound when extrapolated to their
diameter-2 limit. Novel topologies based on Fishnet, in par-
ticular the Angelfish design, become efficient at very large
sizes (hundreds of thousands of nodes).

One of the most surprising results is that, at the truly
extreme scales, high-dimensional tori become the most ef-
ficient designs; this, despite the common wisdom that tori
do not fare well at large sizes – while that sentiment might
hold for 2D and 3D tori, the higher dimensions are extremely
powerful designs.

Acknowledgments
This work was supported in part by the Department of En-
ergy under the Data Movement Dominates project, and in
part by Northrop Grumman under the NCTA Cold Logic
program.



5. REFERENCES
[1] Y. Ajima, S. Sumimoto, and T. Shimizu. Tofu: A 6d

mesh/torus interconnect for exascale computers.
Computer, 42(11):0036–41, 2009.

[2] W.-T. Bao, B.-Z. Fu, M.-Y. Chen, and L.-X. Zhang. A
high-performance and cost-efficient interconnection
network for high-density servers. Journal of computer
science and Technology, 29(2):281–292, 2014.

[3] J. Bermond, J. Bond, M. Paoli, and C. Peyrat.
Graphs and interconnection networks: diameter and
vulnerability. In Surveys in combinatorics, volume 82,
pages 1–30. Cambridge University Press Cambridge,
1983.

[4] M. Besta and T. Hoefler. Slim fly: a cost effective
low-diameter network topology. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
348–359. IEEE Press, 2014.

[5] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer,
and M. Snir. Toward exascale resilience. International
Journal of High Performance Computing Applications,
2009.

[6] G. Faanes, A. Bataineh, D. Roweth, E. Froese,
B. Alverson, T. Johnson, J. Kopnick, M. Higgins,
J. Reinhard, et al. Cray cascade: a scalable hpc
system based on a dragonfly network. In Proceedings
of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page
103. IEEE Computer Society Press, 2012.

[7] A. J. Hoffman and R. R. Singleton. On moore graphs
with diameters 2 and 3. IBM Journal of Research and
Development, 4(5):497–504, 1960.

[8] B. Jacob. The 2 petaflop, 3 petabyte, 9 tb/s, 90 kw
cabinet: A system architecture for exascale and big
data.

[9] N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J.
Dally, G. Michelogiannakis, and J. Kim. A detailed
and flexible cycle-accurate network-on-chip simulator.
In Performance Analysis of Systems and Software
(ISPASS), 2013 IEEE International Symposium on,
pages 86–96. IEEE, 2013.

[10] J. Kim, W. J. Dally, S. Scott, and D. Abts.
Technology-driven, highly-scalable dragonfly topology.
In ACM SIGARCH Computer Architecture News,
volume 36, pages 77–88. IEEE Computer Society,
2008.

[11] P. Kogge, K. Bergman, S. Borkar, D. Campbell,
W. Carson, W. Dally, M. Denneau, P. Franzon,
W. Harrod, K. Hill, et al. Exascale computing study:
Technology challenges in achieving exascale systems.
2008.

[12] C. E. Leiserson. Fat-trees: universal networks for
hardware-efficient supercomputing. IEEE transactions
on Computers, 100(10):892–901, 1985.

[13] R. Murphy. On the effects of memory latency and
bandwidth on supercomputer application performance.
In 2007 IEEE 10th International Symposium on
Workload Characterization, pages 35–43. IEEE, 2007.

[14] A. B. Nagarajan, F. Mueller, C. Engelmann, and S. L.
Scott. Proactive fault tolerance for hpc with xen
virtualization. In Proceedings of the 21st annual
international conference on Supercomputing, pages

23–32. ACM, 2007.

[15] B. Schroeder and G. Gibson. A large-scale study of
failures in high-performance computing systems. IEEE
Transactions on Dependable and Secure Computing,
7(4):337–350, 2010.

[16] J. Shalf, S. Dosanjh, and J. Morrison. Exascale
computing technology challenges. In International
Conference on High Performance Computing for
Computational Science, pages 1–25. Springer, 2010.

[17] J. S. Smith. Distributed two-dimensional Fourier
Transforms on DSPs: With an applications for phase
retrieval. PhD thesis, 2006.

[18] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott.
Proactive process-level live migration in hpc
environments. In Proceedings of the 2008 ACM/IEEE
conference on Supercomputing, page 43. IEEE Press,
2008.

[19] C. Wang, Z. Zhang, X. Ma, S. S. Vazhkudai, and
F. Mueller. Improving the availability of
supercomputer job input data using temporal
replication. Computer Science-Research and
Development, 23(3-4):149–157, 2009.

[20] Wikipedia. Table of the largest known graphs of a
given diameter and maximal degree, 2016. [Online;
accessed 27-March-2016].

[21] W. A. Wulf and S. A. McKee. Hitting the memory
wall: implications of the obvious. ACM SIGARCH
computer architecture news, 23(1):20–24, 1995.

[22] J. Yang, D. B. Minturn, and F. Hady. When poll is
better than interrupt. In FAST, volume 12, pages 3–3,
2012.


