
The Case for Associative DRAM Caches

Paul Tschirhart
University of Maryland,

College Park
pkt3c@umd.edu

Jim Stevens
University of Maryland,

College Park
jims@cs.umd.edu

Zeshan Chishti
Intel Labs

Hillsboro, Oregon, USA
zeshan.a.chishti@intel.com

Bruce Jacob
University of Maryland,

College Park
blj@umd.edu

ABSTRACT
In-package DRAM caches are a promising new development
that may enable the continued scaling of main memory by
facilitating the creation of multi-level memory systems that
can effectively utilize dense non-volatile memory technolo-
gies. However, determining an appropriate storage scheme
for the large amount of meta-data needed by these new
caches has proven to be difficult. As a result, prior work
has suggested that associativity, with its additional meta-
data requirements, may not be well suited for use in large
in-package DRAM caches. This work makes the case that
despite these problems, associativity is still a desirable fea-
ture for DRAM caches by demonstrating the benefits of
associativity for a wide range of cache configurations and
workloads.

CCS Concepts
•Computer systems organization → Architectures;
Heterogeneous (hybrid) systems; •Hardware→Emerg-
ing architectures; Memory and dense storage;

Keywords
Hybrid Memory, DRAM Cache, Multi-Level Main Memory,
Associativity

1. INTRODUCTION
The current memory system has been pushed to its limits

by the increasing demands of modern workloads. To coun-
teract this, multi-level main memory architectures have been
suggested by researchers as a way to enable the continued
improvement of main memory performance [24, 15, 22, 7,
17]. These architectures use the existing DRAM system as
a cache to maintain or improve the performance of the sys-
tem while simultaneously increasing its overall memory ca-
pacity by using a larger, relatively slow backing store. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS 2016 October 3–6, 2016, Washington, DC, USA
c© 2016 ACM. ISBN 978-1-4503-4305-3. . . $15.00

DOI: http://dx.doi.org/10.1145/2989081.2989120

recent development of in-package DRAM caches has helped
to enable these architectures by allowing for a higher band-
width DRAM cache implementation [2, 3]. In addition, the
announcement of a new potential non-volatile main mem-
ory technology has renewed the possibility that multi-level
memory architectures will be needed to hide the slower ac-
cess latencies of non-volatile backing stores [1, 20].

One of the main challenges facing the design of these
DRAM cache systems is the storage of the megabytes of tags
that are needed to identify entries in the cache. Ideally, this
sort of meta-data would be kept in an on-chip SRAM store
that would provide rapid access to the tags during a cache
access. However, the potential sizes of DRAM caches result
in quantities of tags that are impractical to store on-chip in
SRAM (20MB for a 256MB cache). So, the meta-data for
the DRAM cache must be stored in some other way that
does not negatively impact hit latency. Recent work in the
area of associative DRAM caches have proposed several dif-
ferent ways to address this problem [17, 9, 11, 12, 16, 8,
14, 13]. However, all of these designs still introduce signif-
icant complexity to the system and still require non-trivial
amounts of on-chip SRAM. In addition, the time it takes to
access the tags, even when they are stored in SRAM, adds
to the hit latency of the cache which can reduce the overall
performance of the system.

These meta-data storage and delay issues have led prior
work to conclude that associativity may not be a desirable
trait for this new level of the memory hierarchy. This view
is supported by two effects that have been observed in these
systems. First, the miss rate reduction that can be achieved
by introducing associativity at this level is just around 5-6%
on average for workloads such as those from SPEC CPU2006
or PARSEC. And second, thus far, most implementations of
DRAM caches have utilized DRAM technology for both the
backing store and the cache, so their miss penalty is not sig-
nificantly larger than the hit latency. The combination of
these effects significantly reduces the potential performance
improvement that can be achieved by introducing associa-
tivity. As a result, the incorporation of associativity in these
systems often results in performance degradation as the neg-
ative impact of their increased hit-latency tends to outweigh
the benefits of miss reduction. However, this is only the case
for a narrow range of system configurations and does not
take into account the full potential of multi-level memory
systems.

In this work, we make the case for associative DRAM

Stacked
DRAM
Cache
Layers

Processor
Cores

Silicon Interposer

Processor Cores Cache Interface (WIO) DRAM Cache Layers

Stacked DRAM Cache Side-by-side DRAM Cache

Figure 1: Some examples of recently proposed in package DRAM caches.

caches by demonstrating that associativity can provide con-
siderable benefits for systems that differ significantly from
the existing memory system in terms of organization or tech-
nology choice.

Specifically, this work makes the following contributions:
• We show that the effects of associativity in DRAM

caches are workload dependent and that averaging across
workloads obfuscates the significance of associativity
• We quantify the impact of cache size and page size

on the effect of associativity and show that while as-
sociativity provides some benefit for all DRAM cache
organizations, it provides a greater benefit for smaller
caches and caches that utilize large page sizes
• We demonstrate that the miss penalty of the overall

system plays an important role in determining the im-
portance of associativity as large miss penalties am-
plify the importance of otherwise minor miss rate re-
ductions

2. THE ROLE AND LIMITATIONS OF AS-
SOCIATIVITY

Associativity has long been a feature of L2 and L3 caches
because it can help to improve cache performance by re-
ducing the number of conflict misses. Conflict misses occur
because more than one piece of frequently used data maps
to the same location in the cache. Associativity helps reduce
this type of miss by providing multiple places for the data
to reside, thereby reducing contention over individual cache
locations. Associativity can also help with some amount of
capacity misses by allowing critical data to reside continu-
ally in a line while other less important data is constantly
swapped in and out of other lines.

However, the benefits of associativity are limited in certain
situations. For instance, associativity cannot provide a sig-
nificant miss rate improvement for some workloads because
those workloads only exhibit a small percentage of conflict
misses. In addition, if the workload is significantly larger
than the size of the cache, then even large amounts of asso-
ciativity will provide only moderate benefits because there
is simply too much set contention. Similarly, if the workload
is significantly smaller than the size of the cache, then asso-
ciativity will not provide any noticeable benefit because the
majority of misses will be compulsory. Therefore, the bene-
fits of associativity will vary significantly between different
workloads and for different cache configurations. This often
leads to a somewhat low average performance improvement

across large groups of workloads, as we will see later. But
associativity is still included in many cache designs because
its benefits in specific cases make up for its otherwise low
average improvement.

3. DRAM CACHE DESIGN OVERVIEW
The decision of whether or not to include associativity in

DRAM caches is a difficult one because there is currently
no ideal way to store the required meta-data (such as tags
and valid bits). The simplest approach is to store the meta-
data in SRAM, either on chip or off. By storing the tags
in SRAM we can ensure that the tag lookup time will be
relatively negligible compared to the data access time in the
DRAM. However, the amount of SRAM required to store
all of the tags is prohibitively large. For instance in a 48-
bit address space, the tags for a 128MB cache with 64B
blocks would need roughly 6MB of SRAM for storage. This
represents a significant portion of the typical on-chip SRAM
capacity. More importantly, though, the size of the SRAM
tag store would need to scale with the size of the DRAM
cache. So, a 1GB DRAM cache would need roughly 8x the
SRAM to store its tags or 48MB, which is larger than the
total SRAM on most chips today.

The primary alternative to an SRAM tag store is to store
the tags in DRAM along with the data. The problem with
storing the meta-data in DRAM, though, is that it nega-
tively impacts the latency of the cache. This is because two
DRAM accesses are required for each cache hit access, one
to fetch the tags and another to fetch the data. Figure 2
provides a comparison of the DRAM access process to the
fast SRAM tag store access process.

To address this problem there have been many proposed
DRAM cache designs that attempt to efficiently store and
access the necessary meta-data. These designs tend to fall
into two categories: block based designs that utilize the stan-
dard 64B DRAM access as their line size, and page based
designs that utilize a large line size.

3.1 Block Based Designs
One of the first DRAM cache architectures was proposed

by Loh et al. and stored the meta-data for a set in the same
row as the data for the set [17]. This leveraged row buffer
locality to reduce the access latency of the subsequent tag
and data accesses after the initial access had opened the row.
However, this design used an entire DRAM row for each set
and so the row buffer locality was only exploited for a sin-

RLDRAM Read Burst

Tag Fetch Data Access

RLDRAM Read BurstTags in DRAM

Data Access

RLDRAM Read BurstSRAM

Tag Fetch

Tags in SRAM

Tag and Data Access

RLDRAM Read Burst
Direct Mapped

(Alloy)

Figure 2: A comparison of the different tag access schemes for DRAM caches.

gle set access. The LAMOST design improved upon Loh’s
design by reducing the degree of associativity from 28-way
to 7-way, which allowed for 4 sets to be placed in a row in-
stead of just one [9]. As a result, row buffer locality could be
leveraged for multiple set accesses thereby improving perfor-
mance. However, both of these designs still require multiple
accesses to the DRAM for each cache hit and this ultimately
becomes a limiting factor in the performance of the system.

To address this problem of multiple DRAM accesses to
fetch tags, Qureshi et al. proposed Alloy cache which stores
the tag and data together and fetches them with a single
72 byte DRAM access [21]. This approach provides good
performance for many workloads at the expense of higher
miss rates due to the lack of associativity.

Another approach is to store a subset of tags in SRAM
while the majority of tags are stored in DRAM. In effect
these designs, such as [11], create an additional structure
to cache the tags from the DRAM cache. In [11], this tag
cache is structured and operates in much the same way as
any other cache. It attempts to retain tags that have been
accessed and replaces ones that aren’t used. This approach
achieves some considerable speedups over tags in DRAM
caches but requires 46KB of SRAM for the tag cache. An-
other similar design which also used an SRAM tag cache was
proposed in [18].

Still another way to reduce the overhead of storing meta-
data is to compress it. This is explored in the Tag Ta-
bles paper which proposes a novel compression scheme for
DRAM cache tags [8]. The compression scheme achieves a
significant reduction in the amount of space needed to store
the tags for the DRAM cache. However, despite its notable
compression ratio, this design still often requires 1-2MB of
tag storage.

3.2 Page Based Designs
All of the previous approaches that we have discussed have

utilized standard 64B block sized accesses in their designs.
However, another way to approach building a DRAM cache
is to use large pages. This is the approach that is explored
by the Unison and Footprint cache designs [13, 14]. Uti-
lizing large page sized accesses results in higher hit rates
and reduced tag overhead for the cache. However, addi-
tional mechanisms are required to manage the contents of
the pages in the cache to prevent wasting bandwidth to fetch
data that won’t be used.

Another interesting page based DRAM cache design was

Table 1: Baseline Simulator Configuration
Processor

Number of cores 8-core
Issue Width 4
Frequency 3.2GHz

On Chip Caches
L1I (private) 128 KB, 8-way, 64 B block size
L1D (private) 128 KB, 8-way, 64 B block size
L2 (private) 256 KB, 8-way, 64 B block size
L3 (shared) 32 MB, 20-way, 64 B block size

proposed in [16]. This design utilizes the existing TLB in-
frastructure to keep track of the contents of the DRAM
cache, essentially indexing the cache with virtual addresses.

4. METHODOLOGY
The results that are featured in this work were generated

using a full-system simulation driven detailed model of a
multi-level main memory system. A modified version of Hy-
bridSim [23] was utilized to model the DRAM cache with
a typical LRU replacement policy. The input to the Hy-
bridSim model was generated using the MARSSx86 [19] full
system simulator with the baseline configuration in table 1.

4.1 Benchmarks
For the studies presented in this paper we use a selection

of multi-threaded workloads from the SPEC CPU2006 [10],
NPB [4], and PARSEC [5] benchmark suites. The SPEC
workloads were run in rate mode with 8 copies while the
NPB and PARSEC benchmarks were run with 8 threads.
Table 2 presents the relevant characteristics of the chosen
benchmarks. The baseline miss ratio values included in this
table are for a 64MB direct mapped DRAM cache with a
64B block size.

5. RESULTS AND DISCUSSION
In order to demonstrate the potential benefits of associa-

tivity for DRAM caches we perform a series of experiments
that illustrate the effects that different system configuration
choices have on the impact of associativity. In particular, we
look at the consequences of different cache capacities, cache
line sizes, and miss penalties with regard to the improve-
ment that can be achieved by introducing different degrees
of associativity. These experiments show that the benefits

2KB DRAM Row

T T T D

T D T T T

Tags

D

One 29- Way Cache Set

64B

72B

Tag Data

8B 64B

64B

One 7-way Cache Set
Tag

Block 0
Tag

Block 1
Tag

Block 7
Unused. . .

7B x 6 = 42B 22B

Loh-Hill

Direct Mapped Cache

Alloy Cache

LAMOST

Figure 3: A comparison of some of the different possible row layouts for DRAM caches.

Table 2: Benchmark Characteristics

Observed Footprint L3 MPKI DRAM Cache Miss Ratio

ft 1287.27 MB 7.116 0.62
is 264.87 MB 10.424 0.83

mg 430.87 MB 13.597 0.63
blackscholes 269.53 MB 0.64 0.9

bodytrack 534.28 MB 0.5 0.66
canneal 497.60 MB 6.5 0.57

freqmine 894.04 MB 1.318 0.57
bzip2 2559.93 MB 61.007 0.61

gcc 441.31 MB 6.1 0.68
leslie3d 601.15 MB 18.725 0.71

milc 1909.66 MB 22.47 0.7

of associativity become significantly more noticeable in sys-
tems that utilize larger line sizes and that have longer miss
penalties than the systems that have been primarily studied
in prior work. In addition, we also include individual results
for each of the benchmarks that are evaluated to show their
distinct reactions to associativity.

5.1 The Role of Cache Capacity
The first experiment that we present in this paper varies

the capacity of the cache in order to show how the impact of
associativity is tied to the ratio of cache capacity to work-
load size. In this experiment we vary the capacity of the
cache from 64MB (a cache that is significantly smaller than
all of the workloads) to 512MB (a cache that is roughly the
size of more than half of the tested workloads). To isolate
the effects of associativity, each series of these results repre-
sents the percent improvement over the miss rate of a direct

mapped cache with the same size. The results of this exper-
iment are presented in Figure 4.

Comparing the graphs in Figure 4, we can see that the ef-
fects of cache size and associativity vary greatly from work-
load to workload. For instance, canneal is sensitive to asso-
ciativity at all three cache sizes and experiences significant
benefits from increasing the degree of associativity. GCC
also consistently benefits from increased associativity but
only when the cache capacity is small enough to keep the
percentage of conflict misses high. Freqmine, however, re-
acts very differently to associativity. For the two middle
cache sizes (128MB and 256MB), freqmine shows almost no
effect from increasing associativity. When the size of the
cache is increased to 512MB, freqmine shows an increase
in miss rate as a result of increasing associativity. Similar
trends can also be noted for several other workloads and
cache capacities. To check this somewhat odd result we

reran the experiment using the Dinero cache simulator and
got similar trends [6]. We believe that this behavior is due
to the additional set contention that can sometimes result
from increasing the associativity. Adjusting the replacement
algorithm from LRU to RRIP or something similar may help
to alleviate this effect.

Averaging the effects of size and associativity across all
benchmarks appears to indicate that associativity has an
insignificant effect for all but the smallest caches. However,
this obfuscates the important fact that while associativity is
not always helpful on average, it is sometimes very helpful
in specific cases as can be seen in these results.

5.2 The Effect of Line Size
Having established that associativity can provide notewor-

thy benefits to some workloads provided that the percentage
of conflict misses is significant, we next look at the effect of
different cache organizations on the impact of associativ-
ity. Several proposed DRAM cache designs utilize line sizes
that are considerably larger than the standard 64B DRAM
cache access. To investigate the effect of associativity on
these larger line size DRAM caches we conduct an experi-
ment where we increase the size of the cache line from 64B
to 4KB. The cache in this experiment is 128MB because this
capacity provided the most consistent results in the previ-
ous experiment. As was the case in the previous experiment,
each series of these results is the percent improvement over
the miss rate of a direct mapped cache with the same line
size in order to isolate the effects of associativity. Figure 5
contains the results from this experiment.

In almost all cases shown in Figure 5, caches with longer
line sizes benefit from increased associativity. The only
workload for which this trend did not hold is canneal, which
showed noticeable benefits only for the smaller 64B and
256B line sizes. This is because canneal tends to have a
high degree of set contention when the number of sets is
small, resulting in poor hit rates even when associativity is
increased. The same effect can be seen in the previous exper-
iment where canneal’s benefit from associativity improved
noticeably when the cache capacity was increased resulting
in more sets. Interestingly, the 256B line size benefited more
from associativity than the 64B line size suggesting that the
256B line resulted in a more optimal set assignment for this
workload.

In general, these results suggest that both block based
and page base DRAM caches should implement some form
of associativity in order to minimize their miss rate. They
also suggest that the limited utility of associativity observed
in prior work may be an effect that is largely limited to
the 64B cache configurations that were being investigated
in those studies.

5.3 The Impact of Miss Penalty
We conclude our experiments by investigating the effect

that miss penalty has on the impact of associativity in these
systems. One of the potential uses for in-package DRAM
caches would be to help hide the longer access latencies of
backing stores constructed with a dense non-volatile mem-
ory technology. In these systems, the miss penalty would be
considerably longer than it is in the DRAM backed, DRAM
cached systems that have been focus of prior work. To eval-
uate the influence that this technology choice could have on
the effect of associativity we perform a study where we in-

creased the miss penalty relative to the hit latency from 2x to
8x. The series in these results represent the percent improve-
ment over the average access latency of a direct mapped
cache with the same miss penalty. This was done to expose
the effects of associativity. The capacity of the cache was
128MB for this study and the line size was 64B.

Figure 6 displays the effects of backing store speed on the
impact of associativity. From these results it is clear that,
as the ratio of miss penalty to hit latency increases, the
role of associativity in preventing misses becomes more and
more important. However, even at a ratio of 8x, little ben-
efit is seen from increasing associativity beyond 4-way. The
average results also show that 2-way associativity provides
the greatest difference in performance. Interestingly, the
performance of the 8x ratio system actually degrades after
peaking at 4-way associativity. It is also worth noting that
bzip2, leslie3d and milc show significantly less performance
improvements for the 8x ratio than they did for the 4x ratio.
This is because the miss latency became the dominant as-
pect of the system at 8x for these workloads and contributed
much more to the average latency than was saved by intro-
ducing associativity. Overall though, these results suggest
that implementing associativity should be a high priority for
future multi-level memory systems that employ a relatively
slow non-volatile backing store.

6. CONCLUSION
In-package DRAM caches are an exciting area of mem-

ory architecture research that could help to provide a path
towards larger, faster, more energy efficient main memory
systems. However, implementing associative DRAM caches
has been difficult due to the large amounts of meta-data
that they require and the additional access latencies that
they introduce. Prior work has suggested that these addi-
tional requirements make associativity a less than desirable
feature for DRAM caches.

This work makes the case for associativity in DRAM caches
in three ways. First, we show that when a wide range of con-
figurations is considered, the benefits of associativity become
more significant. Second, we show that when the effects of
associativity on individual workloads are considered, its true
impact becomes more apparent. And finally, we establish
the need for associativity in multi-level main memory sys-
tems that utilize slower non-volatile memory as their backing
store technology and, as a result, have a longer miss penalty.
Looking forward, this work emphasizes the importance of
the development of associative DRAM cache designs that
utilize small amounts of on-chip storage and provide low la-
tency accesses as a critical step toward the realization of the
full potential of multi-level main memory systems.

7. REFERENCES
[1] 3D XPoint Technology. http://www.micron.com/

about/innovations/3d-xpoint-technology.

[2] High Bandwidth Memory. http://www.amd.com/
en-us/innovations/software-technologies/hbm.

[3] Hybrid Memory Cube Consortium.
http://hybridmemorycube.org.

[4] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. Simon, V. Venkatakrishnan, and S. Weeratunga.

The nas parallel benchmarks. International Journal of
High Performance Computing Applications,
5(3):63–73, 1991.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The
parsec benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’08, pages 72–81, New
York, NY, USA, 2008. ACM.

[6] J. Edler and M. D. Hill. Dinero iv trace-driven
uniprocessor cache simulator, 1998.

[7] A. Ferreira, B. Childers, R. Melhem, D. Mosse, and
M. Yousif. Using pcm in next-generation embedded
space applications. In Real-Time and Embedded
Technology and Applications Symposium (RTAS),
2010 16th IEEE, pages 153–162, April 2010.

[8] S. Franey and M. Lipasti. Tag tables. In High
Performance Computer Architecture (HPCA), 2015
IEEE 21st International Symposium on, pages
514–525, Feb 2015.

[9] F. Hameed, L. Bauer, and J. Henkel. Simultaneously
optimizing dram cache hit latency and miss rate via
novel set mapping policies. In Compilers, Architecture
and Synthesis for Embedded Systems (CASES), 2013
International Conference on, pages 1–10, Sept 2013.

[10] J. L. Henning. Spec cpu2006 benchmark descriptions.
SIGARCH Comput. Archit. News, 34(4):1–17, Sept.
2006.

[11] C.-C. Huang and V. Nagarajan. Atcache: Reducing
dram cache latency via a small sram tag cache. In
Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14,
pages 51–60, New York, NY, USA, 2014. ACM.

[12] C.-C. Huang and V. Nagarajan. Atcache: Reducing
dram cache latency via a small sram tag cache. In
Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14,
pages 51–60, New York, NY, USA, 2014. ACM.

[13] D. Jevdjic, G. Loh, C. Kaynak, and B. Falsafi. Unison
cache: A scalable and effective die-stacked dram
cache. In Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on,
pages 25–37, Dec 2014.

[14] D. Jevdjic, S. Volos, and B. Falsafi. Die-stacked dram
caches for servers: Hit ratio, latency, or bandwidth?
have it all with footprint cache. In Proceedings of the
40th Annual International Symposium on Computer
Architecture, ISCA ’13, pages 404–415, New York, NY,
USA, 2013. ACM.

[15] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting Phase Change Memory as a Scalable
Dram Alternative. In Proceedings of the 36th Annual
International Symposium on Computer Architecture,
ISCA ’09, pages 2–13, New York, NY, USA, 2009.
ACM.

[16] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong,
and J. W. Lee. A fully associative, tagless dram cache.
In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture, ISCA ’15,
pages 211–222, New York, NY, USA, 2015. ACM.

[17] G. H. Loh and M. D. Hill. Efficiently enabling
conventional block sizes for very large die-stacked

dram caches. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-44, pages 454–464, New
York, NY, USA, 2011. ACM.

[18] J. Meza, J. Chang, H. Yoon, O. Mutlu, and
P. Ranganathan. Enabling efficient and scalable
hybrid memories using fine-granularity dram cache
management. Computer Architecture Letters,
11(2):61–64, July 2012.

[19] A. Patel, F. Afram, S. Chen, and K. Ghose.
MARSSx86: A Full System Simulator for x86 CPUs.
In Design Automation Conference 2011 (DAC’11),
2011.

[20] J. T. Pawlowski. Vision of Processor-Memory
Systems. Keynote Presentation.

[21] M. K. Qureshi and G. H. Loh. Fundamental latency
trade-off in architecting dram caches: Outperforming
impractical sram-tags with a simple and practical
design. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 235–246,
Washington, DC, USA, 2012. IEEE Computer Society.

[22] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable High Performance Main Memory System
Using Phase-Change Memory Technology. In
Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09,
pages 24–33, New York, NY, USA, 2009. ACM.

[23] J. Stevens, P. Tschirhart, M.-T. Chang, I. Bhati,
P. Enns, J. Greensky, Z. Chisti, S. Lu, and B. Jacob.
An integrated simulation infrastructure for the entire
memory hierarchy: Cache, dram, nonvolatile memory,
and disk. Intel Technology Journal, 17(1):184–200,
2013.

[24] M. Wu and W. Zwaenepoel. envy: A non-volatile,
main memory storage system. In ASPLOS, pages
86–97, 1994.

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 4 8 16 32

Associativity

bodytrack

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

1 2 3 4 5 6

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

ft

-120.00%

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

1 2 4 8 16 32

Associativity

is

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1 2 4 8 16 32

Associativity

mg

-140.00%

-120.00%

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

blackscholes

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 4 8 16 32

Associativity

canneal

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

1 2 4 8 16 32

Associativity

milc

64MB 128MB 256MB 512MB

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

freqmine

-4.00%

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 4 8 16 32

Associativity

bzip2

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Associativity

gcc

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

leslie3d

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

1 2 4 8 16 32

Associativity

Average

Figure 4: The effect of different cache capacities and different degrees of associativity on the miss rate of
the cache. Each series is the percent improvement over the miss rate of a direct mapped cache with the
corresponding size. This was done to isolate the effects of associativity.

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 4 8 16 32

Associativity

bodytrack

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

ft

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Associativity

is

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 4 8 16 32

Associativity

mg

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

blackscholes

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 4 8 16 32

Associativity

canneal

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

1 2 4 8 16 32

Associativity

milc

64B 256B 1KB 4KB

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

freqmine

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

1 2 4 8 16 32

Associativity

bzip2

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

1 2 4 8 16 32

Associativity

gcc

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

leslie3d

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 4 8 16 32

Associativity

Average

Figure 5: The effect of different cache line sizes and different degrees of associativity on the miss rate of the
cache. Each series is the percent improvement over the miss rate of a direct mapped cache with the same
line size. This was done to isolate the effects of associativity.

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Associativity

bodytrack

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

1 2 4 8 16 32

P
e

rc
e

n
t

Im
p

ro
ve

m
e

n
t

Associativity

ft

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1 2 4 8 16 32

Associativity

is

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

1 2 4 8 16 32

Associativity

mg

-0.40%

-0.30%

-0.20%

-0.10%

0.00%

0.10%

0.20%

0.30%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

blackscholes

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

1 2 4 8 16 32

Associativity

canneal

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

1 2 4 8 16 32

Associativity

milc

2x Miss Penalty 4x Miss Penalty 8x Miss Penalty

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

freqmine

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

1 2 4 8 16 32

Associativity

bzip2

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

1 2 4 8 16 32

Associativity

gcc

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

1 2 4 8 16 32

P
er

ce
n

t
Im

p
ro

ve
m

en
t

Associativity

leslie3d

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

1 2 4 8 16 32

Associativity

Average

Figure 6: The effect of different miss penalties relative to hit latency and different degrees of associativity
on the average access latency of the cache. Each series is the percent improvement over the average access
latency of a direct mapped cache with the corresponding miss penalty. This was done to isolate the effects
of associativity.

