
Bringing Modern Hierarchical Memory Systems Into Focus

A study of architecture and workload factors on system performance

Paul Tschirhart
University of Maryland,

College Park
pkt3c@umd.edu

Jim Stevens
University of Maryland,

College Park
jims@cs.umd.edu

Zeshan Chishti
Intel Labs

Hillsboro, Oregon, USA
zeshan.a.chishti@intel.com

Shih-Lien Lu
Intel Labs

Hillsboro, Oregon, USA
shih-lien.l.lu@intel.com

Bruce Jacob
University of Maryland,

College Park
blj@umd.edu

ABSTRACT
The increasing size of workloads has led to the development
of new technologies and architectures that are intended to
help address the capacity limitations of DRAM main mem-
ories. The proposed solutions fall into two categories: those
that re-engineer Flash-based SSDs to further improve stor-
age system performance and those that incorporate non-
volatile technology into a Hybrid main memory system. These
developments have blurred the line between the storage and
memory systems. In this paper, we examine the differences
between these two approaches to gain insight into the types
of applications and memory technologies that benefit the
most from these different architectural approaches.

In particular this work utilizes full system simulation to
examine the impact of workload randomness on system per-
formance, the impact of backing store latency on system
performance, and how the different implementations utilize
system resources differently. We find that the software over-
head incurred by storage based implementations can account
for almost 50% of the overall access latency. As a result,
backing store technologies that have an access latency up to
25 microseconds tend to perform better when implemented
as part of the main memory system. We also see that high
degrees of random access can exacerbate the software over-
head problem and lead to large performance advantages for
the Hybrid main memory approach. Meanwhile, the page
replacement algorithm utilized by the OS in the storage ap-
proach results in considerably better performance on highly
sequential workloads at the cost of greater pressure on the
cache.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS 2015, October 05-08, 2015, Washington DC, DC, USA
c© 2015 ACM. ISBN 978-1-4503-3604-8/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2818950.2818975

CCS Concepts
•Computer systems organization→Architectures; Het-
erogeneous (hybrid) systems; •Hardware→Non-volatile
memory;

Keywords
Hybrid Memory, SSD, DRAM Capacity, Full System Simu-
lation, Non-Volatile Memory

1. INTRODUCTION
In the last few years, the distinction between the stor-

age system and the memory system has become increas-
ingly vague. Data sets have grown at a rate of 50% annually
and have quickly outpaced the growth of the main memory
system [14]. Ideally, the entire workload would be resident
in the main memory for fast access. However, the limited
capacity growth and cost per bit of DRAM constrain the
amount of data that can be placed in main memory. This
limitation of the main memory system has resulted in an
effort among researchers to find a new way to increase the
effective size of the main memory system. SSDs have already
seen widespread adoption to improve the read performance
of data centers and one direction of research seeks to further
improve the performance of SSDs [6] [31] [13] [7]. Many of
these suggestions center around improving the way in which
the OS interacts with the SSD such as introducing object
stores or reducing inter-core communication [6] [7]. The
other direction of research seeks to expand the main mem-
ory system by using novel non-volatile memory technologies
(such as PCM or flash) to build a Hybrid memory system
that includes a memory level between the DRAM and the
disk [26] [19] [12] [17]. Our work investigates the advantages
and disadvantages of the SSD and Hybrid approaches.

Fundamentally these two architectures are expanding the
main memory capacity in the same way. They are both
adding a new, slower level to the main memory hierarchy
and using the DRAM to cache it. Interestingly, the primary
differences between these two approaches that are blurring
the line between storage and memory have to do with the
way that they utilize their DRAM cache. The SSD approach
uses the virtual memory manager (or some other software) to
manage the DRAM cache while the Hybrid system manages
it in hardware. This difference shapes the constraints on

the cache management heuristics used by both approaches
and ultimately results in the two systems utilizing system
resources in different ways. So, analyzing these systems re-
quires an understanding of all levels of the memory hierar-
chy: caches, main memory and storage.

The effectiveness of these two approaches is primarily de-
termined by the miss rate of the DRAM cache and the av-
erage hit / miss latency ratio of the system. These two
aspects of the system are, in turn, the cumulative product
of multiple design attributes. For instance, the miss rate is
affected by the size of the cache, its degree of associativity,
and its replacement policy (including any prefetching that
might be done). Similarly, the average hit/miss latency ra-
tio is affected by the base access latencies of the cache and
the backing store, the available concurrency at both levels,
and the prefetching heuristic utilized. Each of these design
attributes plays an important role in determining the overall
performance of the system and in extreme cases can totally
negate the positive effects of the others. Therefore, to un-
derstand the advantages and disadvantages of the storage
and memory based approaches, it is necessary to understand
how these approaches react to different aspects of the overall
architecture.

To understand these interactions this work performs a se-
ries of full system simulation experiments that are intended
to isolate and expose the effects and overheads of the SSD
and Hybrid approaches. These experiments focus on simple,
easy to understand single and multi-threaded workloads in
order to provide the most straightforward picture of the ar-
chitecture choices that favor one approach over the other.
However, some additional representative storage workloads
are also included to provide context for the simple workload
results.

The goal of this work is to untangle some of the compli-
cated relationships that shape the performance of these sys-
tems in order to create a general sense of which approaches
are best suited to which architectures and workloads. To
this end we find the following results to be of interest:

• Storage implementations enjoy full associativity, ag-
gressive prefetching heuristics, and more complex re-
placement heuristics for their DRAM cache. As a re-
sult, storage based systems achieve better performance
in architectures with large caches, very slow backing
stores, and/or highly sequential workloads. However,
these features come at the cost of a considerable soft-
ware overhead that can greatly hamper performance
when the features fail to provide a performance im-
provement.

• Context switching can also provide a source of speed
up in storage based systems provided that the backing
store is slow enough and there is other useful work to
be done. In most other situations though it hinders
performance and is best avoided.

• Memory implementations benefit from minimal over-
heads that allow them to perform better when the
backing store is fast, when the cache is small and when
workloads exhibit more random accesses.

• Relatively slow memory technologies still achieve bet-
ter performance with a memory based approach for
many workloads suggesting that technologies such as

SLC flash can be used more aggressively than they cur-
rently are for certain applications. However, around
typical MLC flash latencies, it makes more sense to
context switch rather than wait.

2. ARCHITECTURE COMPARISON
The Hybrid architecture evaluated by this work resem-

bles the Flash Hybrid architecture proposed in [17] and the
PCM Hybrid architecture proposed in [26]. This architec-
ture extends the functionality of the memory controller to
manage the DRAM main memory as a cache for a large
backing store. The backing store hardware has been kept
largely identical to the hardware of an SSD to minimize the
changes required by this architecture. The key difference is
that the memory controller, rather than the operating sys-
tem, is responsible for generating requests and managing
whether a page is stored in the DRAM cache or the backing
store. Figure 1 illustrates the diffences between the SSD and
Hybrid approaches.

The following section will describe the key design differ-
ences of the Hybrid and SSD systems by comparing the Hy-
brid design to the design of a current state-of-the-art enter-
prise PCIe SSD. These differences are summarized in Table
1.

2.1 Stalling vs. Interrupting
Since the storage system was designed for long latency

spinning disks, one of the key concerns was hiding disk la-
tency. This was done on time-shared systems by having the
OS scheduler switch to another task and using an I/O in-
terrupt to indicate completion of the access. The process
waiting for I/O would later be awoken by the OS sched-
uler to resume execution. Modern systems have inherited
this feature, which still makes sense for most types of I/O
operations. However, as with high speed networks, when
the hardware is capable of high enough throughput or low
enough latency, interrupting can create unnecessary over-
head in the system. This can come from several possible
sources including the time it takes to service an interrupt,
the time it takes to perform a context switch to another task,
the time it takes the OS scheduler to resume execution of
the waiting task, and indirect costs such as cache pollution.
At the current time, the typical design for a modern SSD
still relies on the interrupt and task switch approach and we
are assuming that for the SSD version of our experimental
setup.

Since backing store accesses are hidden from the OS in
the Hybrid memory design, the interrupt and task switch
approach is replaced with a simpler stalling approach. This
is similar to how the CPU cores simply wait on the memory
controller to perform DRAM accesses. While this may seem
non-intuitive due to the much longer latency of some backing
store technologies such as flash, if the overhead of the inter-
rupt and task switch approach is sufficiently large, then the
stalling approach can offer better performance. The work
in [20] indicated that the delay incurred by a context switch
can be as much as 1.5 ms. Therefore, in some situations a
system could benefit greatly from stalling on a read access
to the backing store rather than task switching and waiting
for an interrupt.

2.2 Page Placement
Currently, the OS virtual memory system determines which

CPU

Shared
Cache

Level/s

Transparent
Addressing

Main
Memory
Explicit

Addressing

Hybrid/Hierarchical System Organization
Hybrid uses a large shared L3 cache, a last-level DRAM

cache, and an extremely large non-volatile memory-based
main memory

State of the Art Enterprise System Design
Current servers use shared L3 caches, large DDRx DRAM

main memories, and PCIe SSDs as extremely large backing
stores

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or

eDRAM

Shared
DRAM Cache

(~128MB – 512MB
In-Package or

~10-100GB Off-Chip)

Main Memory
Direct Hardware Access
Non-Volatile Memory

(~1-10TB)

Private L1 (~128KB) SRAM
and

Private L2 (~256KB) SRAM

Shared
L3 (~32MB) SRAM or

eDRAM

CPU

I/O
Subsystem
Software
Access via
Operating

System

SSD
NAND Flash
(~1-10TB)

Main Memory
DRAM

(~10-100GB Off-Chip)

OS

Figure 1: Hybrid organization versus a typical enterprise-class SSD organizataion

Table 1: Hybrid Memory vs. SSD Comparison
Hybrid SSD

Page Placement CPU memory controller OS - virtual memory/buffer cache
Garbage Collection (where necessary) flash controller chip flash controller chip
Virtual to Physical Address Translation OS - virtual memory OS - virtual memory
Physical to Backing Store Address Translation CPU memory controller OS - block layer
Backing Store access scheduling backing store controller chip OS - I/O scheduler
Host Interface direct connection to CPU memory controller PCIe root complex
File System tmpfs ramdisk ext3

virtual pages are kept in the main memory page frames and
which virtual pages are stored on the SSD backing store
(either the original file for file-backed page or the swap for
anonymous virtual pages). This process is described in Fig-
ure 2-a. Step 1 of this diagram starts with the application
generating a request to the virtual memory system. Step
2 occurs on a page miss; here the virtual memory system
selects and evicts a virtual page from the main memory.
The virtual memory system also passes the requested vir-
tual page to the I/O system. During step 3 the I/O system
generates a request for the SSD. This request is then sent to
the PCIe root complex which directs it to the SSD in step 4.
To specify which virtual page to bring in from the SSD, the
OS sends the SSD controller a logical block address. The
SSD then uses that logical block address to determine the
actual physical location of the virtual page associated with
that address and issues a request to the device which con-
tains that virtual page. For the virtual page that is evicted
from the main memory, the SSD allocates a new physical
page for that virtual page and issues a write to the appro-
priate device. This occurs between steps 4 and 5. After the
SSD handles the request, it sends the data back to the CPU
via the PCIe root complex, step 5. The PCIe root complex
the passes the data to the main memory system where it is
written, step 6. Once the write is complete the PCIe root

complex raises an interrupt alerting the OS scheduler that
an applications request is complete. This is step 7. Finally,
during step 8, the application resumes, reissues its request
to the virtual memory system and generates a page hit for
the data. The division of the virtual memory address space
between the different physical address spaces in SSD-based
systems is described in Figure 3-a.

In the Hybrid system, the backing store is presented to the
OS virtual memory manager as the entire physical memory
address space. This address space organization is presented
in Figure 3-b. It appears to the OS that the computer’s
main memory is the size of the backing store. The actual
DRAM main memory address space is hidden from the OS
and is managed by the memory controller as a cache. To-
gether the backing store and DRAM cache form the Hybrid
memory. Accesses to this Hybrid memory have a granu-
larity of 64 bytes, just like DRAM. The cache lines in the
DRAM cache have a granularity of 4KB because that is the
typical size of an OS virtual memory page. Keeping the fill
granularity the same in both the SSD and Hybrid systems
removes a possible source of confusion from the results. Fig-
ure 2-b. shows the access process for the Hybrid architecture
which is considerably simpler than the SSD process. Step
1 begins with the application generating a request. Step 2,
varies somewhat depending on the degree of associativity

Application IO System

SSD

1

2

3

4

5

6

7

8

PCIe Root
Complex

Main
Memory

Virtual
Memory
System

Flash Access

Application

Main
Memory

Hybrid
Controller

Non-Volatile
Backing Store

Flash Access

Flash Access

1

2

3

4

5
6

SSD Miss Access Process

Hybrid Miss Access Process

9

(a)

(b)

Figure 2: Comparison of the steps involved in servicing a miss of the DRAM for both the SSD (a) and Hybrid
(b) organizations.

SSD Implementation

Hybrid Implementation

Disk

Disk
DRAMDRAM

Virtual Memory

Virtual Memory

SSD

Non-Volatile Backing Store

LRU Cache Replacement Policy

OS Virtual Memory Manager

OS Virtual Memory Manager

(a)

(b)

Figure 3: Comparison of the address spaces involved in the SSD (a) and Hybrid (b) organizations.

implemented in the Hybrid system. If the system is using a
direct mapped cache like the one proposed in [25] then the
appropriate location in the DRAM is determined from the
address and accessed. The tag is retrieved with the data in
a single accesses. If the system is implementing associativity
we assume that it is using an SRAM tag store. In this sys-
tem a DRAM cache access begins with the Hybrid memory
controller checking its tag database to determine if a partic-
ular cache line is present in the DRAM cache. If the cache
line is present in the DRAM cache, then the access is ser-
viced by the DRAM as a normal main memory access (not
shown in Figure 2-b.). When an access misses the DRAM
cache, the Hybrid controller selects a page in the DRAM to
evict and schedules a write-back if the page is dirty. In the
current implementation of our Hybrid memory controller, a
least recently used (LRU) algorithm is used to determine
which page to evict. The missed page is then read in from
the backing store and placed in the DRAM. This is step 3.
The Hybrid memory controller can also prefetch additional
pages into the DRAM or write back cold dirty pages preemp-
tively, similar to how the virtual memory memory works, to

further improve read performance. Currently, our Hybrid
system implements sequential prefetching. More complex
prefetching schemes such as stream buffers, stride prefetch-
ing, and application directed prefetching are also compatible
with this design. Step 4 is the backing store handling the
request. Once the data has been received from the backing
store the Hybrid controller passes the data to the applica-
tion, step 5. Finally, during step 6 the data is written into
DRAM from the Hybrid memory controller.

2.3 Associativity
The page table utilized by the OS is functionally fully as-

sociative and so the cache in our Hybrid system is 16 way
set-associative in order to provide a more fair comparison.
We also analyze the effects of different levels of associativ-
ity on Hybrid performance later in the study to determine
the roll that associativity plays in the performance of both
systems.

In order to implement associativity efficiently a Hybrid
main memory design must store its cache tags in an effi-
cient manner. The tag size is computed as b - c + a + s,

where b is the number of bits in the backing store address
space, c is the number of bits in cache address space, a is
the number of bits in the cache associativity, and t is the
number of tag state bits including the valid bit, the dirty
bit, replacement policy state bits, and other related data.
For sufficiently large Hybrid memories, the tag store can
become too large in terms of transistor budget to store di-
rectly on the CPU. There have been several solutions that
have been proposed to solve the problem of tag overhead
in DRAM caches. These range from adding a tag cache
to temporarily store tags [16], only storing tags alongside
data in DRAM [21] and only implementing DRAM caches
as direct mapped [25]. To keep matters as straightforward
as possible in this work we assume that the tags of the as-
sociative Hybrid implementations are stored in SRAM and
can be accessed efficiently. Such a system could be realized
with either a dedicated tag store or a tag cache in a real
world implementation. Additionally, we find in our exper-
imentation that associativity has a relatively limited effect
on many of these workloads. As a result, the design sug-
gested in [25] would also produce many of the same results
without the need for tag storage. We note that an interest-
ing subject for future work would be to expand upon this
study by comparing different DRAM cache designs.

2.4 Prefetching
The operating system prefetches data off out of the back-

ing store on a page fill in a effort to reduce future misses and
to amortize the cost of the backing store access. To keep the
comparison as fair as possible we have implemented a se-
quential prefetcher as part of the Hybrid design. On a cache
fill this prefetcher grabs the next 16 pages after the missed
address in addition to the missed page itself. We arrived
at the 16 page window as a result of experimentation that
is not included in this study. More advanced prefetching
schemes are another area of potential future work that the
researchers would like to explore.

3. EXPERIMENTAL SETUP

3.1 Base System Parameters
The simulation environment used in this work is based

on the MARSSx86 [24] cycle-accurate full system simula-
tor, which consists of the PTLSim and QEMU subcompo-
nents. PTLSim models an x86-64 multicore processor with
full details of the pipeline, micro-op front end, trace cache,
reorder buffers, and branch predictor. This processor model
includes a full cache hierarchy model and implements several
cache coherency protocols. In addition, MARSSx86 utilizes
QEMU as an emulation environment to support any hard-
ware not explicitly modeled by the full system environment,
such as network cards and disks. This simulation environ-
ment is able to boot a full, unmodified operating system,
such as any modern Linux distribution, and run unmodified
benchmarks. The simulator captures both the user-level and
kernel-level instructions, unlike other simulations that are
user-level only, enabling the study of the operating system.

To model the memory system, DRAMSim2 [28], a cycle
accurate, hardware verified DRAM memory system simu-
lator has been integrated into MARSSx86 to service last
level cache misses. The Hybrid memory system simulator
extends the base MARSSx86 + DRAMSim2 system further
by adding two additional modules: OpenMemorySimulator

Table 2: System Under Study
Processor

Number of cores 4-core
Issue Width 4
Frequency 2GHz

On Chip Caches
L1I (private) 128 KB, 8-way, 64 B block size
L1D (private) 128 KB, 8-way, 64 B block size
L2 (private) 256 KB, 8-way, 64 B block size
L3 (shared) 32 MB, 20-way, 64 B block size

DRAM Cache
Organization 64GB, 16-way, 4 KB page size
DRAM Bus Frequency DDR3-1333
DRAM Bus Width 64 bits per channel
DRAM Channels 1-16
DRAM Ranks 1 Ranks per channel
DRAM Banks 8 Banks per rank
Row Size 1024 Bytes
tCAS-tRCD-tRP-tRAS 10-10-10-24

Backing Store
Organization 1TB, 4 KB page size
Backing Store Bandwidth PCIe 3.0 x16 equivalent

(OMS) and HybridSim. OMS provides detailed simulation
of the backing store. HybridSim simulates the memory con-
troller for a Hybrid architecture, providing cache manage-
ment mechanisms to utilize the DRAM and backing store
efficiently. OMS has been verified against DRAMSim2 when
simulating DRAM and against the publicly available flash
access protocols when simulating non-volatile memory. The
full-system infrastructure models the full behaviors of the
studied capacity (i.e., it uses 1MB of DRAM to model 1MB
of flash), so we simulate our 1TB backing store and cache
with a scaled-down capacity model that represents the tim-
ing of the full-size hierarchy.

To understand the performance of the Hybrid architecture
relative to current systems that utilize solid state drives, we
created a full-system SSD simulation and integrated it into
MARSSx86. In this configuration, the main memory con-
sists only of DRAMSim2. To the best of our knowledge,
this is the first full-system SSD simulation. Prior SSD sim-
ulation work [5] [11] utilizes trace-based simulation only to
study SSD performance. The SSD simulator is implemented
with a module wrapped around HybridSim called PCI SSD
to simulate the host interface and DMA engine simulation.
The internals of the SSD are simulated with OMS, making
the non-volatile memory simulation identical for both the
Hybrid and SSD versions. The SSD model explicitly simu-
lates direct memory access via a callback to the DRAMSim2
main memory. The addresses for the DMA requests are ex-
tracted from QEMU’s scatter-gather lists. These lists con-
sist of pairs of pointers and sizes to enable the DMA request
to access non-contiguous locations in the DRAM address
space. In addition, we have also modified QEMU to utilize
AHCI drivers instead of the default IDE drivers. This en-
ables Native Command Queuing and allows the SSD-based
system to take advantage of hardware parallelism in multi-
threaded runs.

The full scale system that is modeled in all of our simula-
tions is shown in Table 2.

3.2 Benchmarks
To simulate random read access, we utilize GUPS and

MMAP. GUPS is based on an implementation of the Giga-
Updates Per Second benchmark by Sandia National Labs
[2]. In our experiments, this benchmark allocates a table
that is one eighth the size of the simulated backing store
in the virtual memory space and then randomly updates
locations within it 5000 times. Since the table is larger than
main memory, GUPS forces the virtual memory system to
swap the tableâĂŹs anonymous pages to the backing store.

Our MMAP experiment maps a file that is half the size
of the simulated backing store into the virtual address space
with the mmap() system call and then performs 10000 ran-
dom reads with the file. Once again, since the file is larger
than main memory, the file system cannot read in the entire
file into the buffer cache and is forced to read the random
addresses from the backing store. For the Hybrid memory
version, we overlay a filesystem on top of the memory ad-
dress space using a tmpfs ramdisk. The purpose of MMAP is
to provide a filesystem workload in contrast to the swapping
workload of GUPS so we can understand different aspects
of OS overhead when comparing the SSD and Hybrid archi-
tectures.

Both MMAP and GUPS also incorporate OpenMP to al-
low for multiple threads performing random accesses to uti-
lize more parallelism at the hardware level for our study.
To understand the effect of varying the degree of random
access within our workloads, the gups benchmark also has
a âĂIJrandom probabilityâĂİ, which determines if the next
access will be sequential following the current access or if
it will be an independent random access. Finally, because
both of these benchmarks are run to completion in our tests,
execution cycles are used to measure performance.

To test the Hybrid and SSD systems with a large sequen-
tial workload, we built microbenchmarks DD READ and
DD WRITE based on the dd Linux utility. Both bench-
marks measure the time required to move a 64 MB file be-
tween the backing store and DRAM. For DD READ, the 64
MB file is created and forced to the backing store with sync
and cache flush operations. The dd program is then used to
copy that into memory. In the case of the Hybrid memory,
a file system is created using a tmpfs ramdisk and we force
the sections of main memory that make up the ramdisk to
be flushed to the backing store before the DD READ starts.
DD WRITE performs a dd run to copy data from /dev/zero
and write the data to the disk. For the SSD case, we en-
sure that the DD WRITE actually writes to the disk rather
than the RAM buffer cache by using the conv\=fdatasync
option to dd. For the Hybrid case, we use a special MMIO
operation to tell the memory controller to flush dirty pages
in the cache to the backing store.

Together we refer to these four workloads as the targeted
benchmarks as their intent is to isolate certain behaviors of
the systems in question.

To provide context for the results from our targeted work-
loads, we also utilize several representative benchmarks from
the Filebench workload generator [1]. We use the varmail,
webserver, webproxy, and fileserver workloads from this suite.
Unlike the targeted benchmarks, performance for these work-
loads is measured in IOP/S because they run for a fixed time
of 250 ms in the ROI of each workload.

4. EXPERIMENTAL RESULTS
The overall goal of this work is to better understand how

certain features of the underlying hardware architecture or

workloads affect the performance of systems that utilize a
slow backing store as either storage or memory. To achieve
that understanding we began by identifying the two princi-
ple factors that affected performance in both types of sys-
tem: the miss rate of the DRAM cache and the average
hit/miss latency ratio. The experiments that make up this
study therefore focus on the features that affect those two
principle factors such as backing store latency, cache size, as-
sociativity, etc. Together these experiments provide a clear
picture of which architectural and workload features benefit
or harm the performance of both SSD and Hybrid systems
and why. For the purposes of this study we do not focus on
any particular backing store technology but instead exam-
ine points of interest on the range of possible backing store
latencies.

4.1 The Effect of Backing Store Latency
We begin our investigation by looking at the effects of the

backing store latency on the performance of the SSD and
Hybrid approaches. This is a logical starting point since
the difference between storage and memory technologies has
traditionally largely been determined by their access latency.
The potential to task switch and perform useful work while
a page fill is taking place makes the SSD approach better
suited to longer latency technologies. However, it is unclear
exactly how long that latency should be in order to see any
benefit from the SSD approach. So, we are looking for the
crossover point where the backing store is too slow for the
Hybrid approach and better suited to the SSD approach.
To find this crossover point, we steadily increase the read
latency of the backing store by a factor of 10 from 125 to
12500 ns. In addition, we also include some additional la-
tencies at particular points of interest. For instance, 25000
ns is the read latency of SLC NAND Flash and 75000 ns
is the read latency of MLC NAND Flash. Because most
non-volatile technologies feature asymmetric read to write
latencies, we use a write latency that is 10x the read la-
tency for these experiments. However, with the exception
of DD Write, the benchmarks in this study do not feature
write traffic to the backing store as a system bottleneck.

Comparing the results in Figure 4 it is clear that for the
random workload GUPS the Hybrid architecture performs
considerably better at all backing store latencies. This sug-
gests that the cost of a cache miss is considerably greater for
the the storage implementation than it is for the memory
one. In addition, the Hybrid approach is clearly advanta-
geous at all backing store latencies for the single threaded
case of MMAP. However, increasing the thread count from
1 to 16 improved the performance of the SSD based system
considerably more than the Hybrid system and resulted in
the SSD system out performing the Hybrid system. This
was not the case with GUPS and that suggests that tmpfs
may be responsible for some of the lost performance in the
multi-threaded Hybrid MMAP runs.

DD Read shows the performance of the SSD to be slightly
faster than the Hybrid system. At this point we hypothe-
sized that the superior sequential performance of the SSD
system was probably due to its prefetching and associativity
which helped to keep its miss rate lower. This also explains
why DD Write does not show a similar advantage for the
SSD. The prefetching and associativity of the storage im-
plementation cannot help with a write heavy workload even
if it is streaming. Also, because the writes are triggering

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

1.40E+09

125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000

GUPS MMAP DD_Read DD_Write

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

Backing Store Read Latency (ns)

Hybrid - 1 thread

SSD - 1 thread

Hybrid - 16 thread

SSD - 16 thread

Figure 4: The effect of different backing store read latencies on System Performance for the targeted bench-
marks. The Y-Axis is the execution time in cycles, so smaller is better. DD Read and DD Write are single
threaded only.

0

5000

10000

15000

20000

25000

125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000 125 1250 12500 25000 75000

Fileserver Webserver Webproxy Varmail

IO
P

/S
 (

la
rg

er
 is

 b
et

te
r)

Backing Store Read Latency (ns)

Hybrid

SSD

Figure 5: The effect of different backing store read latencies on System Performance for the representative
file system benchmarks. The Y-Axis is IO operations per second, so larger is better.

page faults and cache misses there is a slight edge for the
Hybrid system in the DD Write benchmark due to the ad-
ditional page fill overhead suffered by the storage system.

The results in Figure 5, however, tell a slightly different
story. In these representative workloads we see the SSD
system pulling ahead in quite a few benchmarks. At MLC
latencies the Hybrid system is only better in the Varmail
workload. This indicates that many realistic workloads ben-
efit from the prefetching and associativity advantages that
enabled the SSD system to outperform the Hybrid system
in the DD Read workload. Also, even though DD Read is
only one of three target workloads, this result demonstrates
how important this workload is for capturing the more eas-
ily prefetched and cached address streams of many common
storage workloads.

An important feature of this experiment is that we can
see the crossover points where the performance of the stor-
age system surpasses the performance of the memory archi-
tecture. The crossover points are really only visible in the
representative workloads as the targeted workloads tend to
always favor either the SSD or the Hybrid system. Among
those workloads that have a crossover point we see that at
SLC latencies the Hybrid and SSD architectures are very
close in terms of performance while the storage system per-
forms much better at MLC latencies in almost all cases.

These results show that technologies such as SLC NAND
Flash could be used more aggressively as the backing store
technology of some Hybrid systems. SLC NAND backed
Hybrid systems break even with SSD systems in most cases
and achieve significant performance gains in others.

4.2 The Software Overhead of the Storage Sys-
tem

From the latency sweep results we can clearly see that at
lower backing store latencies there is some overhead in the
storage system that is negatively affecting its performance.
In order to characterize the nature of the storage overhead
we need to quantify the contribution of the software portion
of a storage access. We accomplished this by instrumenting
our MMAP benchmark to log when a request began and
ended at the application level. We created the instrumen-
tation by using x86 rdtsc instructions that ran immediately
before and after each access. We also implemented code
in the SSD host interface to record when accesses began
and ended at the hardware level. The hardware time in-
cludes the host interface time, the time it took to process
the access in the SSD controller, and the time it took to per-
form the DMA. Since the raw time from the software level
logs include the hardware time, we must subtract the hard-
ware time from those raw values to compute the actual time

Table 3: Software and Hardware Access Time
Total Time (ns) Hardware Time (ns) Software Time (ns)

Mean Stdev Mean Stdev Mean Percent Software Delay
SLC Latency 85360.93 33837.39 38900.67 6689.59 46460.26 54.43

MLC Latency 162148.72 61060.33 88750.12 13016.83 73398.60 45.27

spent processing the access in software. To provide an ac-
curate picture of the associated delays, 10000 accesses were
measured and their delays were averaged. Also, the same
analysis was performed with a backing store that had a read
latency roughly equivalent to SLC NAND Flash (25000 ns)
and MLC NAND Flash (75000 ns). The resulting values are
presented in Table 3.

From these results it is clear that the software level of a
storage system access represents a significant portion of the
total delay. As the latency of the backing store increases,
the relative percentage of the delay that is due to software
decreases because it remains relatively constant. However,
even at MLC NAND Flash latencies the software delays rep-
resent almost half of the time it takes to access the backing
store.

It is also worth pointing out that the standard deviation
of the total delay is roughly five times the standard devia-
tion of the hardware delay. This indicates that the software
layer introduces a significant amount of nondeterminism to
the system. This same effect can clearly be seen in our other
results where the traditional SSD approach exhibits consid-
erably more nondeterminism than the Hybrid architecture.

4.3 The Effect of Random Accesses
The impact of high miss rate applications on the perfor-

mance of both Hybrid and SSD systems led to questions
about the importance of miss rate on the overall performance
of both systems. As a result, the following experiment was
developed to gauge the effect of varying degrees of random-
ness in the memory access pattern on both the Hybrid and
SSD systems when they are swapping. For this experiment,
each access has a probability of being either sequential or
random and by changing the probability, we can adjust the
degree of randomness in the workload. For this experiment
we held the latency constant at 25000ns for all data points.

In Figure 6, we can see that only 10 percent random reads
introduces significant performance degradation compared to
the purely sequential case. This suggests that even programs
which are largely sequential can benefit from the Hybrid ar-
chitecture’s efficient handling of random reads. In addition,
the multithreaded version of the workload appears to intro-
duce additional randomness that further degrades perfor-
mance for the SSD versions of the system when the workload
is relatively sequential. This is because the relatively sequen-
tial threads interfere with one another and produce memory
traffic that is largely random. However, as the randomness
of the workload increases the performance benefits of the
multithreaded version begin to outweigh the randomness in-
troduced by the multithreading interference. This transition
appears to occur at around 70 percent random access. How-
ever, the considerable involvement of the OS in the SSD
version of the system introduces some nondeterminism to
the results. The Hybrid architecture, on the other hand, is
much more deterministic due to the reduced dependence on
the OS. The Hybrid architecture also benefits from the addi-
tional threads for all levels of random access. As the degree

of randomness increases, the performance boost provided by
the Hybrid architecture increases from around 2X at the 10
percent randomness point to 5x when the workload is totally
random. Furthermore, the Hybrid architecture handles the
purely sequential workload almost as well as the SSD despite
lacking many of the optimizations that have been developed
for sequential disk accesses.

It is important to note though that the performance dif-
ferences seen in this experiment do not reflect the results
from the representative workloads. In those workloads the
SSD performed better or equal in most cases at 25000ns but
in this experiment it is surpassed by the Hybrid organiza-
tion at just 10 percent random reads. To further investigate
these results we next analyze the aspects of the cache that
tend to affect the miss rate in an effort to determine if some
other factor besides randomness is contributing to the rep-
resentative workload performance of the SSD.

4.4 The Effect of Associativity
Associativity is often an effective way to reduce the miss

rate of a workload. However, while the page table of the
OS is functionally fully associative the Hybrid system was
limited to 16 ways of associativity in the prior experiments.
To investigate the effects of associativity we swept the de-
gree of associativity available to the Hybrid system from
direct mapped to 64 way set associative. For this experi-
ment and the remaining two experiments we set the backing
store latency to 17000 ns. This value was selected because
it represents a middle value that does not overly favor any
particular aspect of the system that has been studied thus
far.

The results in Figure 7 show that associativity has a rel-
atively minimal effect on performance. Both MMAP and
DD Read experience a roughly 30% speedup as a result of
increasing the associativity from direct mapped to 64 way.
It is interesting to note that the multi-threaded workloads
appear to benefit more from the added associativity. This
indicates that the different threads are creating some set
contention in the lower associativity cases. However, the
multi-threaded MMAP runs exhibit some additional non-
determinism as a result of the OS scheduler and so it is
difficult to accurately gauge the precise speedup. Finally,
the direct mapped and 2 way associative runs of DD Write
failed to complete in all attempts. The additional write pres-
sure on the backing store created by the lack of associativity
seems to have overwhelmed the backing store resulting in
extremely long access latencies.

Given the 30% improvement seen in DD Read it seemed
that the superior associativity of the storage implementation
might have been a contributing factor to its performance.
So, we repeated this same experiment with the representa-
tive workloads. However, we found that only fileserver ex-
hibited any sensitivity to associativity. Moreover, fileserver
was slowed by reducing the associativity to direct mapped
but did not receive any boost from increasing associativity
beyond 4 way. Therefore, associativity on its own could not

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

3.00E+09

3.50E+09

0 10 20 30 40 50 60 70 80 90 100

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

Percent Random Access

Hybrid 1 Thread

SSD 1 Thread

Hybrid 16 Thread

SSD 16 Thread

Figure 6: The effects on system performance from different percentages of random access for the GUPS
benchmark. The Y-Axis is the execution time in cycles, so smaller is better.

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

1 2 4 16 64 1 2 4 16 64 1 2 4 16 64 1 2 4 16 64

GUPS MMAP DD_Read DD_Write

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

Cache Associativity

Hybrid - 1 thread

Hybrid - 16 thread
> 3.00E+08

Figure 7: The effect of different levels of DRAM cache associativity on the performance of the Hybrid system
for the targeted benchmarks. The Y-Axis is the execution time in cycles, so smaller is better.

be the source of the SSD’s performance advantage.

4.5 The Effect of Cache Size
Another possible source of misses could come from the

cache being too small for the working set. However, this
can be mediated by clever cache management schemes that
retain only the most useful data thereby maximizing the
available cache space. By varying the size of the cache we
can expose the cache manage scheme and determine how
effective it is at utilizing the space in the cache.

We can see right away in Figure 8 that the cache manage-
ment schemes in the SSD and Hybrid approaches are doing
something very different. The size of the cache has almost no
effect on the Hybrid system while the SSD benefits greatly
from increasing the cache size. This suggests that the SSD
is prefetching very aggressively as the randomness of GUPS
should limit the effectiveness of most prefetches. We con-
firmed this by checking the size of the requests being issued
by the OS and noted that they can grow to be quite large (on
the order of megabytes). By prefetching so much the SSD

is benefiting from a âĂIJbirthday attackâĂİ-like effect, in

which prefetching the pages from the backing store is help-
ing some future accesses with a certain probability. However,
this prefetching results in greatly reduced performance when
the cache is small because the replacement policy is unable
to prevent the cache from being polluted by prefetched data.

4.6 The Effect of Cache Concurrency
In addition to potentially polluting the cache, aggressive

prefetching to can also place a greater strain on the concur-
rency of the cache. In order to determine if the available
cache concurrency was a bottleneck we performed an exper-
iment where we swept the number of channels in the DRAM
cache from 1 to 16.

From the results in Figure 9 we can see that increasing
the available concurrency in the cache does not significantly
speed up most of the SSD runs. So, we can be reason-
ably sure that though the SSD is exerting a lot of prefetch
pressure on the cache, that pressure is not interfering with
normal requests in most cases. However, the single threaded
GUPS SSD benchmark shows a nearly 2x speedup due to in-
creasing the concurrency. This suggests that cache pressure

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

16 32 64 128 256

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
et

te
r)

Modeled Cache Size (GB)

Hybrid - 1 thread

SSD - 1 thread

Hybrid - 16 thread

SSD - 16 thread

Figure 8: The effect of cache size on System Performance for the GUPS targeted benchmark. The Y-Axis is
the execution time in cycles, so smaller is better.

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

5.00E+08

6.00E+08

7.00E+08

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

GUPS MMAP DD_Read DD_Write

Ex
ec

u
ti

o
n

 C
yc

le
s

(s
m

al
le

r
is

 b
e

tt
e

r)

Number of Cache Channels

Hybrid - 1 thread

SSD - 1 thread

Hybrid - 16 thread

SSD - 16 thread

Figure 9: The effect of cache concurrency on system performance for the targeted benchmarks. The Y-Axis
is the execution time in cycles, so smaller is better.

is a major bottleneck for the SSD in the single threaded
GUPS runs. The ability to switch to other threads while
waiting on a DRAM cache accesses appears to negate this
effect in the multithreaded GUPS runs. Interestingly, some
of the Hybrid runs also show some improvement with in-
creased cache concurrency suggesting that the Hybrid sys-
tem is using the cache less efficiently in certain workloads. In
particular, the MMAP workload shows a considerable speed
up. This could account for some of the performance differ-
ence between the SSD and Hybrid systems that was noted
earlier for this workload.

5. RELATED WORK
A number of projects exist that have modified the software

interface to solid state drives by polling the disk controller
rather than utilizing an IO interrupt to indicate when a re-
quest completes [31] [13] [8]. This is similar to the Hybrid
architecture in our study in that the memory controller and
the application poll when a request is outstanding to the
backing store. The key differences are that these designs
still utilize the same PCIe interface and basic operating sys-
tem structures as current PCIe SSD designs. The perfor-
mance advantages/limitations that IO polling would have

compared to the Hybrid architecture approach are an open
area of study and hopefully a subject for future work.

Another way to redesign the OS to work with SSDs is
to build persistent object stores. These designs require the
programmer to determine which objects should be persistent
and modify the code to utilize special allocation functions.
A section of the DRAM is then allocated as a cache for the
persistent objects. These designs require careful manage-
ment at the user and/or system level to prevent problems
such as dangling pointers and deal with allocation, garbage
collection, and other management issues. A performance
improvement for certain types of workloads is possible with
these designs by customizing the caching algorithm for per-
sistent objects to be more efficient than the generic oper-
ating system paging mechanism. SSDAlloc [6] builds per-
sistent objects for boosting the performance of flash-based
SSDs, particularly the high end PCIe Fusion-IO drives. NV-
Heaps [9] is a similar system designed to work with upcom-
ing byte-addressable non-volatile memories such as phase
change memory.

Other work describes file system approaches for manag-
ing non-volatile memory. One example is a file system for
managing Hybrid main memories [22]. This work assumes

that the OS rather than the memory controller handles tasks
such as page placement, garbage collection, and wear lev-
eling. Another proposed file system is optimized for byte-
addressable and low latency non-volatile memories (e.g. phase
change memory) using a technique called short-circuit shadow
paging [10].

Over the past few years, a significant amount of work has
also been put into designing architectures that can effec-
tively use PCM to replace or reduce that amount of DRAM
needed by systems [26] [19] [12]. This body of work antic-
ipates a slow down in the scaling of DRAM and proposes
PCM based systems as a way to continue increasing the ca-
pacity of main memory to meet demand. Some of the archi-
tectures that have been suggested for use with PCM inspired
the Hybrid architecture studied in this paper in that they
also utilize the DRAM as a cache that is managed by the
memory controller [26].

However, these PCM designs were not the first to utilize
a Hybrid architecture. In 1994, eNVy was proposed as a
way to increase the size of the main memory by pairing a
NOR flash backing store with a DRAM cache [30]. This de-
sign is actually very similar to both the Hybrid architecture
studied in this paper and the Hybrid PCM architectures
except that it utilizes NOR flash as its non-volatile backing
store technology. In addition, a very similar architecture was
also proposed by FlashCache which utilized a small DRAM
caching a larger NAND flash system [18]. However, it is
engineered to focus on low power consumption and to act
as a file system buffer cache for web servers, which means
the performance requirements are significantly different than
the more general purpose merged storage and memory sys-
tem. In 2009, a follow-up paper to FlashCache proposed
essentially the same design with the same goals using PCM
[27].

There have also been several industry solutions that at-
tempt to improve the performance of the storage system [23]
[4] [3] [29] [15]. These solutions tend to fall in one of three
categories: software acceleration for SSDs, PCIe SSDs, and
Non-Volatile DIMMs. Recently, several companies including
Oracle have released software to improve the access times to
SSDs by treating the SSD differently than a traditional hard
disk [23]. Similarly, Samsung recently released a file system
for use with its SSDs that takes into account factors such
as garbage collection which can affect access latency and
performance.

Finally, for several years, companies such as Fusion IO,
OCZ and Intel have been producing SSDs that utilize the
PCIe bus for communication rather than the traditional
SATA bus. The additional channel bandwidth provided by
PCIe allows for much better overall system performance by
alleviating one of the traditional storage system bottlenecks.
The SSD design utilized in this study was based on these
products.

6. CONCLUSION
In this paper, we have presented a series of experiments

which clearly illustrate the advantages and disadvantages of
Hybrid and SSD-based hierarchical memory architectures.
These experiments have demonstrated that SSD-based sys-
tems perform best when workloads are highly sequential,
DRAM cache sizes are large, and backing store technologies
are slow. Conversely, the Hybrid-based system performs
best when the workload is more random and the backing

store is fast. In addition, we have quantified the direct delay
introduced by the software during storage system access and
have shown that the total cost of a software overhead (file
system, task switch, etc.) is a significant component of the

storage approachâĂŹs access latency. Finally, we have also
shown that slower technologies such as SLC NAND Flash
can be successfully utilized in more aggressive Hybrid sys-
tems. Overall, this work has shown that there is a clear
place for both the Hybrid and the SSD approaches to build-
ing hierarchical memory systems. Furthermore, by taking
certain specific system and workload attributes into account
it is possible to safely decide which approach is best suited
to a particular use case.

7. ACKNOWLEDGMENTS
The authors would like to thank Dr. Ishwar Bhati, Dr.

Mu-Tien Chang and the reviewers for their valuable input.
This research was funded in part by Intel Labs University
Research Office and Sandia National Labs.

8. REFERENCES
[1] Filebench.

http://www.fsl.cs.sunysb.edu/˜vass/filebench.

[2] Gups. http://www.dgate.org/˜brg/files/dis/gups.

[3] Fusion IO. http://www.fusionio.com, 2012.

[4] PCI Express OCZ Technology.
http://www.ocztechnology.com/products/solid state
drives/pci-e solid state drives, 2012.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, , and R. Panigrahy. Design Tradeoffs for
SSD Performance. In Proceedings of the 2008 USENIX
Technical Conference (USENIX’08), USENIX ’08,
2008.

[6] A. Badam and V. S. Pai. SSDAlloc: Hybrid
SSD/RAM Memory Management Made Easy. In In
Proc. 8th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’11), 2011.

[7] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet.
Linux block io: Introducing multi-queue ssd access on
multi-core systems, 2013.

[8] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K.
Gupta, and S. Swanson. Moneta: A High-Performance
Storage Array Architecture for Next-Generation,
Non-volatile Memories. In Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 385–395,
Washington, DC, USA, 2010. IEEE Computer Society.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. Nv-heaps:
making persistent objects fast and safe with
next-generation, non-volatile memories. SIGARCH
Comput. Archit. News, 39(1):105–118, Mar. 2011.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better i/o through
byte-addressable, persistent memory. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating
systems principles, SOSP ’09, pages 133–146, New
York, NY, USA, 2009. ACM.

[11] C. Dirik and B. Jacob. The performance of PC
Solid-State Disks (SSDs) as a function of bandwidth,
concurrency, device architecture, and system

organization. In Proceedings of the 36th Annual
International Symposium on Computer Architecture,
ISCA ’09, pages 279–289, 2009.

[12] A. P. Ferreira, B. Childers, R. Melhem, D. Mosse, and
M. Yousif. Using PCM in Next-generation Embedded
Space Applications. Real-Time and Embedded
Technology and Applications Symposium, IEEE,
0:153–162, 2010.

[13] A. Foong, B. Veal, and F. Hady. Towards SSD-ready
Enterprise Platforms. In 1st International Workshop
on Accelerating Data Management Systems Using
Modern Processor and Storage Architectures (ADMS),
2010.

[14] J. Gantz and D. Reinsel. The digital universe
decade-are you ready. External Publication of IDC
(Analyse the Future) Information and Data, pages
1–16, 2010.

[15] T. Hardware. Samsung intros nand flash-friendly file
system. http://www.tomshardware.com/news/
NAND-Flash-Flash-Friendly-File-System-F2FS-Jaegeuk-Kim,
18229.html, 2012.

[16] C.-C. Huang and V. Nagarajan. Atcache: Reducing
dram cache latency via a small sram tag cache. In
Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14,
pages 51–60, New York, NY, USA, 2014. ACM.

[17] B. Jacob. The memory system: you can’t avoid it, you
can’t ignore it, you can’t fake it. Synthesis Lectures on
Computer Architecture, 4(1):1–77, 2009.

[18] T. Kgil and T. Mudge. FlashCache: a NAND Flash
Memory File Cache for Low Power Web Servers. In
Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded
systems, CASES ’06, pages 103–112, New York, NY,
USA, 2006. ACM.

[19] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting Phase Change Memory as a Scalable
Dram Alternative. In Proceedings of the 36th Annual
International Symposium on Computer Architecture,
ISCA ’09, pages 2–13, New York, NY, USA, 2009.
ACM.

[20] C. Li, C. Ding, and K. Shen. Quantifying the cost of
context switch. In Proceedings of the 2007 workshop
on Experimental computer science, ExpCS ’07, New
York, NY, USA, 2007. ACM.

[21] G. H. Loh and M. D. Hill. Efficiently enabling
conventional block sizes for very large die-stacked
dram caches. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-44, pages 454–464, New
York, NY, USA, 2011. ACM.

[22] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi.
Operating System Support for NVM+DRAM Hybrid
Main Memory. In Proceedings of the 12th conference
on Hot topics in operating systems, HotOS’09, pages
14–14, Berkeley, CA, USA, 2009. USENIX
Association.

[23] Oracle. Achieving new levels of datacenter
performance and efficiency with software-optimized
flash storage. http://www.oracle.com/us/products/
servers-storage/storage/tape-storage/
software-optimized-flash-192597.pdf, 2010.

[24] A. Patel, F. Afram, S. Chen, and K. Ghose.
MARSSx86: A Full System Simulator for x86 CPUs.
In Design Automation Conference 2011 (DAC’11),
2011.

[25] M. K. Qureshi and G. H. Loh. Fundamental latency
trade-off in architecting dram caches: Outperforming
impractical sram-tags with a simple and practical
design. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on
Microarchitecture, MICRO-45, pages 235–246,
Washington, DC, USA, 2012. IEEE Computer Society.

[26] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable High Performance Main Memory System
Using Phase-Change Memory Technology. In
Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09,
pages 24–33, New York, NY, USA, 2009. ACM.

[27] D. Roberts, T. Kgil, and T. Mudge. Using non-volatile
memory to save energy in servers. In Proceedings of
the Conference on Design, Automation and Test in
Europe, DATE ’09, pages 743–748, 3001 Leuven,
Belgium, Belgium, 2009. European Design and
Automation Association.

[28] P. Rosenfeld, E. Cooper-Balis, and B. Jacob.
DRAMSim2: A Cycle Accurate Memory System
Simulator. Computer Architecture Letters, 10(1):16
–19, Jan.-June 2011.

[29] Spansion. Using spansion ecoram to improve tco and
power consumption in internet data centers.
http://www.spansion.com/jp/About/Documents/
spansion ecoram whitepaper 0608.pdf, 2008.

[30] M. Wu and W. Zwaenepoel. envy: A non-volatile,
main memory storage system. In ASPLOS, pages
86–97, 1994.

[31] J. Yang, D. B. Minturn, and F. Hady. When poll is
better than interrupt. In FAST’12: Proceedings of the
10th USENIX conference on File and Storage
Technologies, pages 3–3, Berkeley, CA, USA, 2012.
USENIX Association.

