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Abstract— Memory hierarchies have long been studied by
many means: system building, trace-driven simulation, and
mathematical analysis. Yet little help is available for the sys-
tem designer wishing to quickly size the different levels in a
memory hierarchy to a first-order approximation. In this pa-
per, we present a simple analysis for providing this practical
help and some unexpected results and intuition that come out
of the analysis. By applying a specific, parameterized model of
workload locality, we are able to derive a closed-form solution
for the optimal size of each hierarchy level. We verify the accu-
racy of this solution against exhaustive simulation with two case
studies: a three-level I/0 storage hierarchy and a three-level
processor-cache hierarchy. In all but one case, the configura-
tion recommended by the model performs within 5% of optimal.
One result of our analysis is that the first place to spend money
is the cheapest (rather than the fastest) cache level, particularly
with small system budgets. Another is that money spent on
an n-level hierarchy is spent in a fized proportion until another
level is added.

Keywords— cache, memory, and storage hierarchies; trace-
driven simulations; optimization of cache configurations.

I. INTRODUCTION

AST memory and storage systems are vital to achiev-

ing good system performance, as CPU speeds increase
faster than memory and disk speeds. Almost all systems
use caching throughout the disk, memory, and processor
subsystems to improve the average time to access data,
but the widening gap between storage technologies makes
it easy to lose significant performance through poor cache
sizing. Unfortunately, little practical help exists for sys-
tem designers and administrators seeking to optimize their
cache hierarchies. Exhaustive simulation takes far too long,
particularly as hierarchies become more complex [16]; trial
and error on running systems is usually impossible; and
prior mathematical analyses have stopped short of provid-
ing much-needed, intuitive insight into cache sizing [10] or
have assumed the availability of memory technologies with
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arbitrary speeds and costs [20].

In this paper, we analyze the performance of a general,
n-level memory hierarchy using a parameterized workload
characterization. Our intent is to derive a simple and in-
tuitive method for quickly generating first-order approxi-
mations of optimal hierarchy organizations. To this end,
we make several simplifications and compare the results to
those obtained by more accurate simulation techniques.

The result i1s a simple, closed-form solution for the size
of each level of the hierarchy as a function of the workload
locality, the speed and cost of available technologies, and
the amount of money available to spend on the system.
We validate the model with trace-driven simulations of a
three-level processor-cache hierarchy and a three-level stor-
age hierarchy. The cache sizes recommended by our model
perform close to the optimal performance as determined by
exhaustive simulation.

With little money to spend on the hierarchy, the model
recommends spending it all on the cheapest, slowest storage
technology rather than the fastest. This is contrary to
conventional wisdom, which focuses on satisfying as many
references as possible in the fastest cache level, such as the
L1 cache for processors or the file cache for storage systems.
Interestingly, it does reflect what has happened in the PC
market, where processor caches have been among the last
levels of the memory hierarchy to be added. We discuss
why initial money is best spent on slow technologies and
hope that this paper helps to improve the intuition of those
configuring caches.

The model also suggests that every dollar spent on an
n-level hierarchy be done in a fixed proportion; every dollar
should increase the size of every level in the hierarchy, not
just one. This is described more in the discussion of the
analysis (Section IV).

II. PrREVIOUS WORK

Countless articles have been written about memory hi-
erarchies ([17, 18] provide excellent overviews of CPU and
disk caches), generally focusing on a two-level hierarchy [9].
Most papers in recent years have used trace-driven simu-
lation to investigate such aspects of cache performance as
multiprocessor cache coherence and replacement strategies.
Trace-driven studies are valuable for understanding cache
behavior on specific workloads, but they are not easily ap-
plied to other workloads [17].

Unlike traces, mathematical analysis lends itself well
to understanding cache behavior on general workloads,
though such generality usually leads to less accurate re-



JACOB ET AL: AN ANALYTICAL MODEL FOR DESIGNING MEMORY HIERARCHIES 101

sults. Many researchers have analyzed memory hierarchies
in the past. Chow showed that the optimum number of
cache levels scales with the logarithm of the capacity of
the cache hierarchy [3, 4]. Garcia-Molina and Rege demon-
strated that it 1s often better to have more of a slower device
than less of a faster device [7, 15]. Welch showed that the
optimal speed of each level should be proportional to the
amount of time spent servicing requests at that level [20].

These studies have had two shortcomings: 1) they as-
sume the availability of memory technologies with arbitrary
speeds and costs, and 2) they do not apply their analyses to
a specific model of workload locality. Being able to create
and use technologies on a continuum of characteristics is
convenient for analysis but makes the analysis difficult for
system builders to use. Failing to apply a specific model of
workload locality makes it impossible to provide an easily
used, closed-form solution for the optimal cache configura-
tion [10], and so results from these papers have contained
dependencies on the cache configuration—the number of
levels, or the sizes and hit rates of the levels.

We provide three main contributions beyond those of

previous analyses:

o We extend previous analyses by applying our general
solution to a specific model of workload locality. We
are thus able to provide a closed-form solution for the
optimal sizes of each workload level as a function of
two locality parameters and the device speeds and
costs.

o We discuss what the resulting equations mean intu-
itively to system designers in terms of their general
locality and available device characteristics.

o We verify our model’s accuracy against a detailed sim-
ulation of two memory hierarchies: 1) a storage hi-
erarchy consisting of RAM, disk, and tape, and 2) a
three-level processor-cache hierarchy consisting of an
on-chip cache (L1), an off-chip cache (L2), and main
memory. The performance of the cache configuration
recommended by our model is almost always within
5% of the best performance obtained from exhaustive
simulation.

ITI. ANALYSIS

In this section, we derive an analytic solution for the size
of each level in a cache hierarchy. The analysis starts with a
pre-specified set of technologies, though the resulting equa-
tions may be used easily to choose an optimal subset of
technologies from the universe of technologies.

A. The System Model
A.1 Notation

In the following analysis, a hierarchy will consist of n
cache levels, numbered 1 through n, with the backing store
considered to be level n+1. Fig 1 shows a typical hierarchy.
Note that the hierarchy to be analyzed can start and end
anywhere; it need not begin immediately beneath the CPU.
For instance, our simulated T/O hierarchy does not begin
at the on-chip cache level, but several layers below at main

Towards Level Tech. Access
CPU Size Cost Time
S1 c1 tl
o oa b

| Level n | Sn Cn tn

|

| Backing Store |

Sn+1  Cnt4l  tn4l

Fig. 1. A general cache hierarchy. The bottommost level (backing
store) is not considered part of the hierarchy; it is the storage
level being cached. The highest level shown is labeled “Towards
CPU?” instead of just “CPU” because the analytical hierarchy can
begin at any point, not necessarily immediately below the CPU.
We assume inclusion; that is, all data at each level is contained
in the level immediately beneath it.

memory, and could just have easily started with the disk
level.

Each technology level ¢ is described by the following three
parameters:

o t; 1s the average access time of the technology,

o ¢; i1s the cost of the technology in dollars per byte, and

o s; 18 the size of the level, in bytes.

The only unknown variables are s;; the values for all ¢;
and ¢; are known constants. We assume that the choice of
hierarchy technologies is made first. We also assume that
any hierarchy will be a realistic one in that level 7 is always
faster and more expensive than level 7 + 1.

The total cost of the cache hierarchy system is the sum
of the costs of cache levels 1 through n. For the sake of
simplicity, we will assume a linear cost model.! The system
budget, B, is given by:

B = En:cisi (1)
i=1

A .2 Stack Distance Curves

Our analysis for cache performance depends on a mathe-
matical description of workload locality and models a fully
associative cache and a hierarchy that maintains inclusion.
The effects of these assumptions are discussed at the end
of this section. To compute the probability of a reference
hitting at a cache level, we use stack distance curves, mea-
surements taken directly from address streams [5].

The stack distance curves describe how many unique
bytes of data separate two references to the same item. For
instance, consider a reference stream A,C7By1ByCyAs B3,
where A,, refers to the nth time that datum A is referenced.

1A non-linear model can be used but would tend to obscure the
discussion, and as demonstrated in Section V, the linear model gives
good results.
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Then there are two unique data touched between A; and
As, which are C' and B, and the stack distance between A;
and As is 3. There is one unique datum touched between
C1 and Cy, which is B, and the stack distance between C4
and C5 is 2; there are no data touched between B; and
B-, and the stack distance is 1; there are two data touched
between By and Bz (C and A), so the stack distance is 3.

After normalizing, we can plot this distribution of stack
distances as a cumulative probability function and a prob-
ability density function. The cumulative probability func-
tion shows, at each x value, how many references were made
at a stack distance of x or less; how many references were
separated from the last reference to the same data by less
than z unique pieces of data (Fig 2a). This relates well to
an LRU-managed, fully-associative cache; a cache of size
1 will catch all references of stack distance 1 (those refer-
ences with 0 intervening data), a cache of size 2 will catch
all references at stack distance 1 and 2, and so on. The
cumulative probability function P(z) indicates what pro-
portion of accesses are to data at a stack distance of x or
smaller. An LRU-managed, fully-associative cache of size
z would therefore have a hit ratio of P(z). The probability
density function is the derivative of the cumulative prob-
ability function; p(z) describes the frequency of references
at exactly stack distance z (Fig 2b).

Fig 2 plots the expected shape of these curves. We pri-
marily use the density function. As we expect most work-
loads to have some locality, Fig 2b graphs more pairs of
accesses being separated by few data than by more data.
The area under the density function between X1 and X2
describes the probability of an access being separated from
its last reference by more than X1 and less than X2 pieces
of unique data. With fully associative caches, this is ex-
actly the probability of a reference missing in a cache of
size X1 and hitting in the next cache level of size X2. With
caches that are not fully associative, conflict misses can oc-
cur, where the size of the cache is large enough to capture
a reference stream but the placement policy causes addi-
tional misses. For the same reason, caches that are not
fully associative may yield hits on data that is old but, due
to the placement policy, has not yet been displaced.

Fig 3 illustrates the difference between fully and non-
fully associative caches. With a fully associative cache, we
can draw an exact line on the probability density curve
separating cache hits from cache misses based on capacity
and inter-reference distance. With a non-fully associative
cache, we may only specify a probability distribution of
hits on the probability density curve. References closer to
the y-axis are more likely to be hits than references farther
from the y-axis.

This paper conducts a first-order analysis using fully as-
sociative caches. Section V verifies that this analysis is also
accurate for non-fully associative caches.

A.3 Average Time per Reference

Chow and Welch use as a performance measure the av-
erage time per memory reference, and model it with the
following equation:

T = me

Each ¢; is the time to access level 7 in the hierarchy, and
each P; is the probability that level ¢ will be accessed. The
hierarchy maintains inclusion and the probabilities do not
necessarily sum to one; the topmost level is accessed on
every single reference (hit or miss), so Py is 1.

=P 2>2P>P3>--- 2P,

In our analysis, the stack distance curves are used to
compute P;. The probability of accessing level i is equal to
the probability that the reference will miss in all the levels

above it:
o0
/5 1

i—

p(z)dx

where p(z) is the probability density function. The av-
erage system time spent per reference accessing level i is
thus the time to reference level ¢ scaled by this probability:

ti/ p(z)dz

i—

and the total system time spent per reference is the sum
of the times across all levels in the hierarchy:

(o] (o]
T=t +1 / p(x)de 4+ -+ thyr / p(x)dx (2)
$1 Sn

The size of the bottom storage level n+1 does not appear
in the equation, since this level is assumed to contain all
data, so s, 41 is for all intents infinite. The time to reference
this level does appear, scaled by the miss rate of the lowest
cache level. As we expect, backing store is only referenced
on misses to the lowest cache level.

Fig 4 illustrates the behavior of the access time function
T as affected by the hierarchy organization. The graph
represents a two-level hierarchy and the x-axis shows the
percentage of the budget spent on the top level of the hi-
erarchy. Towards the left represents more money spent
on the L2 cache, toward the right represents more money
spent on the L1 cache. The curves depict constant budget
values.

B. Hierarchy Optimization

Our goal is to specify the memory hierarchy with the
fastest average access time (7T'). Specifically, we solve for
the size of each hierarchy level (s;), given the access time
(t;) and unit cost (¢;) of each technology; parameters de-
scribing workload locality; and the total system budget.
Our solution proceeds through the following steps: 1) use
Lagrange multipliers [2] to get a general solution without
constraining the sizes to be non-negative; 2) apply a spe-
cific, parameterized model of workload locality to derive a
closed-form solution, again allowing negative sizes; 3) re-
fine the solution to account for the additional constraint
that all sizes be non-negative.
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The stack distance curves. These functions describe the degree of locality in a workload. They show the distribution of how many

unique bytes the workload touches between references to the same item. The cumulative probability function is a plot of hit rate versus
cache size, for an LRU-managed cache. We use these graphs to compute the probability that a workload’s reference hits in a given cache

size.

(a) Fully associative

(b) Direct-mapped

Fig. 3. Fully associative cache model vs. direct-mapped cache model. In the fully associative model, it is clear what cache accesses are hits
and what accesses are misses. The size of the cache is the clear dividing line separating the two. The percentage of hits is therefore the
area under the curve—a simple integral over the probability density function. The direct-mapped case introduces an element of chance,
as a particular line in the cache could be thrown out on the next cache reference, or it could last in the cache for an unusually long
period of time, all depending on the particular address reference stream. It is much more difficult to draw a solid line between the hits
and misses; the line is blurred, as illustrated in (b). However, it can be modeled probabilistically, where we know with high probability
that the references at the extremes (those near in time and those distant in time) will be hits and misses, respectively. However, in the
middle ranges, the chances of guessing correctly grow worse, depicted by darkening shades of grey.

B.1 Calculus of Variations

First, we put the cost function B into an appropriate
form and obtain the constraint function g:

g=(c1s1+casa+---+cpsy)— B=0 (3)

T is a function of the n variables sy,...,s,, as is the
cost function B and its associated cost constraint g. At
the point where 7' is minimized, we know that:

VT = A\Vyg

where X is the Lagrange multiplier. Combining the gra-
dients of Eqs 2 and 3, we get

—tip1p(si) = Aej, for 1 <i<nm

This form gives us an interesting ratio which we will call
the cost-performance ratio W;;:

_plsi) _ eitjp
Ui = = (4)
jli41

The behavior of ¥;; is described later; for now, it is only
necessary to note that ¥;; = 1. Eq 1 (total system cost)
and Eq 4 yield n independent equations, so solving for the
n variables s1,..., s, is straightforward as long as p(z) is
invertible.

B.2 Modeling Program Behavior

We wish to replace p(z) in Eq 4 with a specific function.
Smith, Stone and others have noted that a cache’s miss
rate can be modeled as a one-term polynomial function of
its size, of the form

pa

where o and f are constants with « less than zero [17,
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Fig. 4. Behavior and sensitivity of the access time function. This is
an example of the access time for a two-level hierarchy, depend-
ing on what proportion of money is spent on which level in the
hierarchy. The curves represent constant budget values.

19]. This follows from the 30% Rule?. Tt is also consistent
with our workload traces in Section V. Thus we assume
polynomial forms for P(z) and p(z) in this paper; we have
also used an exponential form with similar results [8].

It is easiest to start at the cumulative probability graph
P(z). As mentioned before, P(z) is related to a cache’s hit
ratio—an LRU-managed cache of size  would have a hit
rate of P(z), given the input stream that generated P(z).
Tt is necessary that P(z) be 0 at 0 and 1 at infinity, and
ideally would have a form similar to

1— pz®

For simplicity and convenience we make the following
changes:
o we would like the exponent to be positive, so we move
x® to the denominator,
o the function blows up at 0, so we replace z with z + 1,
o we want the derivative p(z) to have a simple exponent,
so we replace a with o« — 1, and
o the function defined would not have the value 0 at 0,
and also would not be unitless, so we scale the value
of x directly by g.
This gives us the following forms for P(z) and its differ-
ential p(z).

2The 30% Rule, first suggested by Smith [17], is the rule of thumb
that every doubling of a cache’s size should reduce the cache misses
by 30%. Solving the recurrence relation

0.7f(z) = f(2=)
yields a polynomial of the form
f(z) = Bz”

where o and  are constants, o is negative, and 3 is a scaling term.
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1 () = c
G+o T @

where the constant C'is (3*~1)(a—1). Workload locality
improves with decreasing 3 or increasing «.

Given this form for p(z), we can now find the sizes for
the optimal hierarchy. First, we combine Eqs 4 and 5 and
arrive at the following (ignoring negative roots because all
values are positive):

P(z)=1- (5)

S5 +ﬂ 1/a
prra B (©)
s+ 3
Eq 6 yields n—1 independent equations with n unknowns
S1,.++,8n:
ss+fB  _1/a 53+08  _1/a Sn+ 8 /e
= %12, = %13, =9,
s1+p s+ P ’ 5140 :
which yields:
cas2 + 2 e gllo €353 +C3/?’ el
51 +[), — 2% 20 51 +ﬂ C3¥ 30 3
CnSn +Cnﬂ — Cn\Ili/na
51+ 3 :

and since this is valid over all 7 and j we have n — 1
independent equations of the form:

cjsi +¢ib 1/a
Z si+ =2V
J#i J#e
Together with Eq 1 (total system cost), we have n equa-

tions and n unknowns and can solve for each s; in the
following manner (using s; as an example):

— Z \Ijl/a

Dizo Cisi + ciff
s1+ 0

B—cis1+3 0,

- /o if =s51+0
dico Ci\I’u

n 1/« n
o Dis Ci‘I’L/i B+ _,cf
1= n e n @
€1 + Zi:? CZ\IIi/Z Ei:Z clqji/l

B+ Y, ep(1 -0/
61+Zz =2 Z 1/108

)

S1 =

and, since ¥;; = 1:
B+ Y0 Bl -0/
Z?:l ciq’i,/ia

A similar sequence of steps can be performed for each s;
in turn, yielding a general form for s;:

S1 =
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Fig. 5. The graph of Equation 7. Note that every solution is linear

and that some solutions can have negative values, or non-zero
values at budget zero. This is an artifact of using Lagrange mul-
tipliers and assuming the variables s1,...,s, can take on any
values, even negative ones. This is fixed in the section Undoing
the Effects of Negative Solutions.

n 1/a
_ B+ o Bl - \Ilij/ )
En C]'\Ifl/a

ji=1 ij

(7)

54

Note that all values are constants except for B, the sys-
tem budget; Eq 7 says the size of each hierarchy level in-
creases linearly with the amount of money to spend on
the system. The costs and access times (¢; and ¢;) are
constants derived from the chosen technologies. Note that
the denominator is different for each level in the hierarchy;
therefore the rate of increase is different for each level. The
y-intercept is also different for every level in the hierarchy.
The shape of the curves is shown in Fig 5.

B.3 Undoing the Effects of Negative Solutions

Eq 7 can yield negative values for s;, particularly for
small system budgets. As it is obviously impossible to
have negative amounts of memory, a level with negative
size should actually have zero size and not appear in an
optimal hierarchy. This leads to the concept of a crossover
budget for a hierarchy level ¢, called y;. Only when the
budget is greater than y; does the optimal system include
level ; for cheaper systems, money is best spent on other
hierarchy levels. When a hierarchy level is not part of the
system, it is not part of the system cost or the average
access time.
To find the crossover budgets, we note that the highest
level in the hierarchy has an optimal size less than zero at
small budgets. We calculate the budgets where the size is
negative and remove this level from consideration at these
budgets. The resulting equations are identical to the orig-
inal but with a few subscripts changed. This process is
repeated down the hierarchy to obtain the final equations.
The process is described by the following:
1. Each s; i1s a linear function of B with positive slope
since every cost and access time is positive and so every
\I’ij > 0.

2. Simple inspection of the relative costs and access
times of the technologies shows that ¥;; > 1 when
t < j, and, since ¥;; is the inverse of W;;, ¥;; < 1

when ¢ > j. Therefore, at least when ¢ = 1 (when
looking at the topmost cache level),
1/«

1-v.!

i <O0forall j,

and so the constant term (y-intercept) of the linear
equation (Eq 7) is negative; this means the optimal
size of level © = 1 at budget B = 0 is negative. When
1 = n, the y-intercept is positive for a similar reason;
the optimal size of level ¢ = n at budget B = 0 is pos-
itive. This means that the analytic optimal solution
has traded cache level 1 for more of level n.

3. A priori, we cannot tell whether any other s; has a
positive or negative y-intercept, so we look further at
s1. Eq 7 leads to positive solutions for level i when

B> epwl® - 1) (8)
ji=1

This then is the point where s; becomes non-negative;
the crossover point of s; is at budget value

B=Y c;p(w/" - 1)
ji=1

4. For system budgets less than this value, we remove
level 1 from consideration. Without level 1, we ap-
propriate the budget across the n — 1 remaining levels,
hierarchy levels 2 through n. This leads to a new equa-
tion similar to Eq 2 but with an integral from sy to
infinity, as well as a new equation similar to Eq 1 but
starting the sum at level 2. We can solve these new
n — 1 equations for n — 1 unknowns in the same man-
ner as before (but without reference to level 1). This
means the equations for 7" and B change to become
functions of one fewer variables, so that level 1 of the
hierarchy affects neither the average access time nor
the budget. We now obtain a general solution for the
size of the ith level in this reduced hierarchy:

n 1/a
_ B+ Z]’:2 ¢ B(1 - \I’ij/ )
Zn c>\Ill/a

j=2 Ci ¥ij

54

We have obtained a form identical to the original equa-
tion, except for the indices of the summations, which
now sum from level 2 to level n. This marks the end
of one iteration.

5. Applying the same procedure with the new set of
equations, we see that the size of sy i1s negative for
budget values

B> e p(w;] — 1)
ji=2

We can now remove level 2 from the analysis and ob-
tain a new equation for s;.
When this process is repeated down through every level
in the hierarchy, we find that the cross-over budget for each
level is given by
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n
i =y e A] —1) (9)
ji=1

where we define yg to be infinity for notational brevity.
In general, we find that xq > x2 > --- > xn, breaking up
the system budget domain into a convenient collection of
intervals. The values for a given s; (call it s; ;) are only
valid on the interval [xx, xx—1]:

o between B = x1 and B = oo, all levels in the hierarchy

appear,

o between B = x5 and B = x1, levels 2..n appear,

o between B = x3 and B = y3, levels 3..n appear, etc.

The value of s; on the interval [xg, xx—1] is then given

by:

0 when 7 < k
Bty ", s B(1-1/™)
ET.L_ cflll/a
i=k ij

Remember that B is the system budget, and the only
independent variable in the equation. Eqs 9 and 10 are
depicted graphically in Fig 6, picturing examples of 3- and
4-level hierarchies. The costs and access times for the tech-
nologies in the hierarchy are constants and need only be

(10)

Sik =

when ¢ > k

“realistic” values: costs should monotonically decrease and
access times should monotonically increase as one moves
down the hierarchy (to a larger i). The figures are ap-
plicable across all choices of technologies for the memory
hierarchy using realistic values for costs and access times.

Given a budget and a workload characterization, and
told to find the appropriate cache organization, one would
first find the crossover values for the levels in the hierarchy,
using Eq 9. This would indicate which cache levels should
be present in the hierarchy at that budget, and what value
of k to use in the next step. The next step is to use Eq
10 to find the sizes of each level at the budget value, on
the interval indicated by the value of k. Alternatively, one
could find the cache sizes for every realistic budget value
from zero up. Here, one would only need to use Eq 10, and
use all values of &k, from 0 to n.

IV. DiscussioN

We have found a closed-form solution for the size of each
level in a general memory hierarchy, given device parame-
ters (cost and speed), available system budget, and a mea-
sure of the workload’s temporal locality?. The solution is
given by Eqgs 9 and 10.

A. The Bottom Line

The solution indicates how one should spend one’s
money. The first dollar should go to the lowest level in

3The workload’s locality is represented by two numbers which can
be obtained very easily through numerical analysis, such as curve-
fitting. One can fit a polynomial of the form P(z) in Eq 5 to a
roughly estimated hit rate curve to find o and 3, without having to
do a stack distance measurement of a real workload. Two points will
suffice, for example the cache sizes where one would expect to catch
50% and 95% of the reference stream.
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the hierarchy. As money is added to the system, the size
of this level should increase, until it becomes cost-effective
to purchase some of the next level up. From that point
on, every dollar spent on the system should be divided be-
tween the two levels in a fixed proportion, with more bytes
being added to the lower level than the higher level. This
does not necessarily mean that more money is spent on
the lower level. Every dollar is split this way until it be-
comes cost-effective to add another hierarchy level on top,
and from that point on every dollar is split three ways,
with more bytes being added to the lower levels than the
higher levels, until it becomes cost-effective to add another
level on top. Since real technologies do not come in arbi-
trary sizes, hierarchy levels will increase as step functions
approximating the slopes of straight lines.

B. A More In-Depth Look at the Analysis

The closed-form solution has several implications.

First, note that the crossover budget for level ¢ is always
larger than the crossover budget for level i+ 1 and that the
crossover budget for level n is 0. This means that the opti-
mum hierarchy with a small budget (between 0 and x,-1)
consists solely of the slowest, cheapest cache level; all other
levels do not exist. This is counter-intuitive—we (includ-
ing the authors) normally think of adding the fastest cache
level first in an attempt to speed up the average access
without concern for the worst-case access. Our solution
shows that this intuition is incorrect—the slower, cheaper
cache level can capture more of the misses to backing store,
and it is far more valuable to prevent references from hav-
ing to be satisfied by a tape drive with a 15-second access
time than to optimize the access time of hits higher up in
the hierarchy. Once the slowest cache level is large enough
to divert a large fraction of the misses to backing store (at
system budget xn_1), we then start increasing the next
higher cache level (n — 1) along with the lowest level.

The crossover budget for a given level 7 depends on work-
load and device parameters (Eq 9):

o x; decreases with better temporal locality, that is,
smaller values of  or larger values of a. As expected,
better temporal locality favors adding higher cache
levels sooner.

o x; decreases as the devices for the higher cache levels
improve in cost and speed. W¥;; decreases with lower
cost and faster times (described in detail later); both
these technology improvements decrease the crossover
budget.

To summarize our first conclusion, money spent on a
given level is money wasted if the level below 1t is not large
enough. If the lower level is not large enough, it allows too
many performance-crippling accesses to the backing store.

Second, we see that, within each region [y;, xi—1], the
size of each level increases linearly with system budget.
That is, within each region, additional dollars are spent
according to a fixed proportion.

Third, note that the slope of s; between any two
crossover budgets is higher for larger values of ¢, because
W¥;; decreases with ¢ and is in the denominator of the slope
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Fig. 6. An example of solutions for two larger hierarchies. A three-level hierarchy is shown on the left; a four-level hierarchy is shown on the
right. The X_1,X_2 labels represent crossover values x;. The crossover budget for the lowest level in the hierarchy is always zero. The
crossover budget for the next highest cache level follows, and so on. Between crossover budgets the equations are linear, and the curves
simply change slopes at the crossover budgets to adjust for the cost of a new level in the hierarchy. These graphs were produced with

values of ¢; and ¢; similar to those found in Tables I and II.

in Eq 10. Thus, even when one allocates money to increase
the size of a fast cache level, one still should increase the
size of the lower cache level even faster*. The rate at which
level 7 increases depends on workload and device parame-
ters (Eq 10):

o The difference in slopes between higher and lower
cache levels decreases with better temporal locality,
that is, with larger values of . With high locality,
cache levels increase in size at nearly the same rate.

o The slope for a cache level increases as the devices
for the cache level improve. ¥;; decreases with lower
cost and faster times®; both these technology improve-
ments decrease the denominator of Eq 10 and hence
increase the rate that the size of this level increases.

C. Meanings and Interactions of U;;, o, and (3
Remember that ¥;; has the following form:

¢ /tita
¢/t

_ Citj-}-l _
] -
citiy

o

W;; is the ratio of cost-performances between two lev-
els. This suggests that each level in the hierarchy can be
characterized by two numbers; the cost of the technology
at that level and the speed of the technology in the level
beneath it. This is the effectiveness of a given cache level;
it explains how good a job the level does in cost per second
cut, or how many dollars per byte it costs to save a second
of references to the next lower level. These ratios com-
bine to characterize the entire hierarchy; every level gets
compared against each other in the equations.

The temporal locality of a workload is characterized by
the two variables a and #. The variables o and ¥;; always

4Tts size increases faster; its cost may or may not increase faster.

5Since t; does not appear in W;; it is a bit more accurate to say
that W;; decreases as the cost of level 7 decreases and as the access
times of all other technologies increase relative to that of level <.

appear together (1/a is always in the exponent of ¥;;).
The cost-performance ratio ¥;; indicates how good a job
one level does at reducing access time compared to another
level, and scales how large each of the levels should be in
relation to one another. The a term tempers the effect of
the cost-performance ratio. For example, when locality 1s
good, «a is large (the shape of the locality curve is steep),
so 1/a is small, and the effect of the cost-performance ra-
tio in differentiating the levels is small. The result is that
crossover budgets will be closer to the y-axis; it will make
more sense to include the upper cache levels at smaller
budgets. The size of different levels will increase at simi-
lar rates. In the traditional characterization of a memory
hierarchy as a pyramid, the difference in sizes between one
level and the next will be much less than if the locality
were poor; when locality is good, it will be a narrow and
tall pyramid.

When locality is poor, the shape of the differential curve
will be less steep and « will be closer to 1. The effect of
W¥;; will be more pronounced: the size of different levels will
increase at different rates, and the crossover budgets will
be much further out—when crossover budgets do occur,
the sizes of the existing levels will be much larger than in
the case where locality is high. The result will be a much
broader hierarchy than in the previous case; it will take
more money to add on the higher levels; and the base levels
will be much larger when the higher levels do get added.
Just as a workload with good locality results in a tall and
thin hierarchy, a workload with poor locality results in a
short and wide hierarchy.

The  term is a scaling factor; its units are the same as
si (be it bytes, kilobytes, megabytes, etc.) and its effect is
to scale where the crossover budgets occur on the x-axis by
scaling the y-intercepts. When the workload spans an enor-
mous amount of data and a convenient unit for graphing is
chosen to be MBytes, # will tend to be large, pushing the
crossover budgets further out. When the workload spans a



108

smaller range and a smaller unit for 3 is chosen, g will be
smaller, drawing the crossover budgets in.

D. Using the Model to Choose a Subset of Technologies

The model specifies the optimal size of each level with
a given set of technologies. By finding the crossover bud-
gets, the model also determines when higher levels in the
hierarchy should not exist. However, the model does not
automatically determine if technologies in the middle of the
hierarchy should be removed. For instance, consider a hier-
archy of RAM, disk, and tape, where the disk is almost as
expensive as RAM and almost as slow as tape. The model
will suggest the best way to arrange the three levels, given
an operating budget. The model does not attempt to find
any weak links in the hierarchy, except for levels from the
top down. If the model decides that the RAM should be
part of the hierarchy, the disk will also be kept. In this
example, the model may suggest a configuration where the
disk level is only slightly larger than the RAM level, in-
directly showing that the disk technology is useless in the
hierarchy.

Since the model takes only a moment to recommend a
configuration, we can easily use it to choose a subset of
devices from a larger pool of technologies. This is similar
to Przybylski’s dynamic programming approach to hierar-
chy optimization [12], but it is much simpler because we
can quickly search through all possible subsets. This pro-
cess will find the best organization of the best subset of
technologies at a given budget point.

V. VERIFICATION

The analysis in Section IIT makes the following simplifi-

cations:

o The polynomial stack distance curves do not perfectly
model a real workload. In particular, a cache would
need to be infinitely large to achieve a 100% hit rate
with a polynomial stack distance curve, while only a
finite size i1s needed to achieve this with a real work-
load. At large budget values, our solutions recommend
endlessly increasing the size of all levels; the optimal
design would cease increasing the size of a level once
it contained all data in the trace.

¢ The model assumes a fully associative cache model at
all levels of the hierarchy.

o The model ignores the effects of a block size, including
a certain amount of prefetching and cache pollution.

o The model does not distinguish between read and write
behavior. All accesses are treated as reads—they incur
delay when issued rather than when forced out of the
cache for consistency or cache overflow.

o The model ignores compulsory misses. This affects
the performance predicted by Eq 2. However, it has
no effect on the optimal hierarchy design, since cache
levels of all sizes will miss these references (assuming
no prefetching).

o The performance of each technology is characterized
by a single access time that does not change as the
size of the cache grows.
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o The cost function for each technology is strictly pro-
portional to size; there is no extra cost for the first
byte.

These simplifications make Eq 2 less accurate at predict-
ing hierarchy performance, possibly affecting the optimal
hierarchy recommended by Eqs 9 and 10. The goal of this
section is to verify that the general hierarchy configurations
recommended by Eqs 9 and 10 do indeed achieve close to
optimal performance. To this end, we compare the model’s
ability to recommend specific sizes for general hierarchies
against simulations of real technologies. We performed ex-
haustive, detailed simulation of two hierarchies, using two
different traces from real applications, and specifications
from real technologies. The first simulation is of an AFS
server with memory, disk, and optical disk; it uses a month
of network file requests as the trace. The second is of a
memory hierarchy with on-chip cache, off-chip cache, and
main memory; it uses an application-level, virtual address
trace as the workload.

A. Simulator Description

Our simulator connects together device modules such as
CPU caches, main memory, disk drives, optical disks, and
cartridge tape robots. The device modules simulate the
various caches and keep track of usage statistics. At each
level, if the item requested is not present it is requested
from the next level down. The request time at each level 1s
the time to first access plus the amount of data to transfer
divided by the transfer rate.

In the storage hierarchy simulations, all caches were
modeled as write-through with fetch-on-write [17]. In
the processor-cache hierarchy simulations, the caches were
modeled as writeback with fetch-on-write. None of the sim-
ulated caches are fully associative. The I/O caches are set-
associative; the RAM file cache is 256-way set-associative,
and the disk cache i1s 1024-way set-associative. The off-
chip cache is 4-way set associative, and the on-chip cache
is modeled as direct-mapped.

We simulate different ways to allocate money, where the
quantum of money was $256 for the storage hierarchy simu-
lation and $64 for the processor-cache hierarchy simulation.

B. Storage Hierarchy Stmulations

We simulated a storage hierarchy similar to that of Plan
9 [11, 13], where the file system lives entirely on an optical
disk jukebox and is cached by DRAM and magnetic disk.
Table T describes the specifications used in the simulator
and analytical calculations for the constant values of the
various ¢; and t; (specifications taken from [6, 14]).

B.1 Workload

The data that was used for the workload in the I/O hier-
archy simulations was collected by a logging AFS server [1].
The server sees all requests not serviced from the client’s
local AFS disk cache®. We used one month’s worth of trace

8 This client cache was found to capture only a few MB of data for
this server.
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TABLE 1
SUMMARY OF SPECS USED FOR STORAGE HIERARCHY SIMULATION
Simulated Time to Access
Technology | Capacities Block Size | Cost per MB Startup Time | Bandwidth | 1 Block
DRAM 8MB-64MB | 8 KBytes | $32.00 0 ms 160 MB/sec | 0.05 ms
($256 buys 8MB)
Magnetic 512MB-6GB | 16 KBytes | $0.50 15 ms 10 MB/sec 16 ms
Disk ($256 buys 0.5GB)
Optical unlimited 64 KBytes | $0.001 1 sec 1 MB/sec 1063 ms
Jukebox (3256 buys 256 GB)
data from a single file server; April 14, 1992 through May
8, 1992. The full traces represent over 20 million records 80000
of several different types of AFS server requests. We 70000 J
extracted references to the relevant commands fetchdata, §
storedata, remouvefile, createfile, removedir, and makedir. % 60000 ]
The rest of the commands do not read and write data; £ 50000 1
for example, AFS uses fetchstatus to synchronize the local 2
. S 40000 B
cache with the server. S
The traces were analyzed for the measurement of their % 30000 |- Shimal Conauraiion ]
temporal locality, producing the stack distance curves in = E , 00| |~ Predicted Configuration ]
. . . - -~ Al RAM Configuration
Fig 7. By using a standard sum-of-squares technique to fit (% + Al RAM (extrapolated)
Eq 5 to the data, we found that o = 2.91 and 3 = 439.68. 10000 [ | = o Cane (omancrated) ]
0 ‘ ‘ ‘ ‘ ‘
B2 Optlmal Conﬁgurations 0 1000 2000 3000 4000 5000
System Budget (dollars)
Fig 8a shows the optimal sizes of the hierarchy levels as Fig. 9. Performance comparisons for the storage hierarchy. The

predicted by our analysis (Eqs 9 and 10). The crossover
budget for the disk level is zero since it is the lowest cache
level in the hierarchy; the crossover budget for DRAM is
around $3800, implying that with less than $3800 to spend
on cache levels (disk and RAM), all the money should be
allocated to disk.

Fig 8b shows the optimal sizes of the hierarchy levels as
determined by the simulator. The simulator was written
to take into account effects that the model ignores, and
the results are noticeably different. Instead of two regions
there are really three; the model predicts that the size of
the topmost level in the hierarchy will remain zero until
the crossover budget; clearly, the crossover budget appears
earlier in the simulated results. Also, the model predicts
that after the crossover budget, the slope of the RAM line
will be constant; this is not the case in the simulated re-
sults. Instead, the crossover budget appears earlier and
the slope is steady for the middle region, and in the gen-
eral area of where the model predicts the crossover budget
to occur, the slope of the RAM curve really takes off. The
region between $1500 and $4000 shows that locality can be
exploited by a small amount of RAM, due to an effect that
the model ignores.

As 1s evident, the analysis predicts values that are sim-
ilar to, but not the same as, the optimal values as deter-
mined by the simulator. However, this measurement is not
enough; what is more important is performance lost by
using the optimal configuration from the analysis. Fig 9
shows the performance of four configurations:

x-axis represents system budget; the y-axis represents the aver-
age time per simulated reference. The times include compulsory
misses. The hierarchy consists of two levels, RAM and mag-
netic disk; backing store is an optical jukebox. The comparison
is between the measured optimal running times and the running
times of the predicted optimal configurations. Also shown are
the running times of an all-RAM system and the worst observed
configuration—one with a half gigabyte cache on disk and the rest
of the budget devoted entirely to RAM. The amounts of RAM in
the last two configurations are not insignificant; they approached
200MB at high budget values.

o+ the optimal configuration found by simulation,

o the configuration recommended by the analysis,

o an all-DRAM configuration, and

o aconfiguration with 512 MB of disk with the remaining
funds devoted to DRAM (worst observed case).

As Fig 9 shows, the predicted optimal configuration
never performs more than 5% off the real optimal con-
figuration. In contrast, two reasonable configurations (all
DRAM with no disk; 512 MB disk with the remainder going
to DRAM) perform as much as 50% worse. Thus, though
the configurations recommended by the analysis differs from
the optimal configuration, no performance is lost by using
the analytic model. However, the time saved by not needing
the simulations was substantial, as the simulations ran for
many months of computer time while applying the analy-
sis took about 30 minutes to write an appropriate Maple
script, and less than a second to execute it.
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Fig. 8. Optimal configurations of the storage hierarchy. The optimal configurations, both predicted (a) and measured (b), as functions

of system budget. The x-axis represents the amount of money available and the y-axis represents the optimal size of each level in the
hierarchy. The optimal configurations measured by simulation are more accurate, as the simulator takes into account a number of things
ignored by the model: writes, block size, access time variance, and real traces.

(L2), and main memory. We used pizie-generated traces
of several programs from the SPEC92 benchmark suite:
dnasa7, espresso, hydro2d, mdljdp2, mdljsp2, su2cor, and

C. Processor-Cache Hierarchy Stmulations

We also simulated a typical three-level virtual memory
hierarchy consisting of on-chip cache (L1), off-chip cache
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waves. These programs were chosen above others because
of their large cache footprints, necessary for making multi-
level cache simulations run in a reasonable amount of time.
Table IT describes the specifications used in the simulator
and analytical calculations for the constant values of the
various ¢; and t;.

The cost of on-chip cache needs a bit of explanation. In
one sense, on-chip cache i1s completely free; it is a neces-
sary part of the design and cache appears on nearly all
microprocessors. On the other hand, it is infinitely expen-
sive because you cannot arbitrarily increase its size. In an
attempt to find a feasible analytical medium, we assumed
that a CPU costs around $1K, roughly half its space is de-
voted to cache, and a typical cache these days is around 32
KBytes. Thus the $16K per megabyte number.

C.1 Workload

The traces were analyzed for the measurement of their
temporal locality, producing the stack distance curves in
Fig 10. By using a standard sum-of-squares technique to
fit Eq b to the data, we found that « = 2.05 and 8 = 24.52.

C.2 Optimal Configurations

Fig 11a shows the optimal sizes of the hierarchy levels
as predicted by our analysis. The crossover budget for the
L2 cache is zero since it is the lowest cache level in the
hierarchy; the crossover budget for the L1 cache 1s around
$500. Since the curve fit is so inaccurate, we applied our
analytical approach to the raw data instead of a polynomial
and obtained the graphs in Fig 11b. The configurations
that were optimal according to the simulations are shown in
Fig 11c, with error bars demonstrating the configurations
that will perform within 10% of optimal (any appropriation
of system budget within the error bars would result in a
performance within 10% of the simulated optimal). Note
that the granularity of the analytical graph is smaller than
the simulations; the simulations allocate funds across the
hierarchy in $64 quanta while the analytical scripts allocate
funds in $16 quanta.

Fig 11c shows the optimal sizes of the hierarchy levels
as determined by the simulator. Again, the simulator was
written to take into account effects that the model ignores,
and the results are slightly different. Compared to the
results taken from the polynomial curve fit, the simula-
tor results are much like the /O hierarchy results; the
model predicts two regions where the slopes will be con-
stant, where the simulated results have several regions and
the slopes are not constant. The L1 cache appears ear-
lier, but its size does not really take off until after our
predicted cross-over budget. For small budgets, the data
suggests that L1 cache is more effective at reducing access
time than L2 cache; this is consistent with the probability
density curve in Fig 10. Most of the references lie within a
125KB stack distance, and very little lies in the region be-
tween 125KB and 500KB, which suggests that the L2 cache
will not be truly effective until the budget allows a cache
size of 500KB. This compares well with the sharp jump in
the L2 cache size (and sharp decline of the L1 cache size)

at the $500 budget point.
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Fig. 12. Performance comparisons for the processor-cache hierarchy.
The x-axis represents system budget; the y-axis represents the
average time per simulated reference. Note that the times do
include compulsory misses. The hierarchy consists of two levels;
On-Chip cache (L1) and Off-Chip cache (L2); backing store is
main memory (DRAM). The comparison is between the mea-
sured optimal running times and the running times of the pre-
dicted optimal configurations. Also shown are the running times
of an all-LL1 system and an all-L.2 system. The worst observed
configuration is exactly the all-L1 configuration.

If we compare the simulated results to the analytical re-
sults taken from the raw data, there is much more simi-
larity; both show that L1 should be present at small bud-
get values, and its size should take off around a budget of
$1000. However, this is less informative than the actual
system performance. As before, we compare the perfor-
mance of the simulated configurations to that of the opti-
mal configurations. Fig 12 shows the performance of five
configurations:

o the optimal configuration found by simulation,

o the configuration recommended by the analysis applied
to the polynomial curve fit,

o the configuration recommended by the analysis applied
to the raw locality data,

o an all-L.2 cache configuration, and

o the worst observed case (which happens to be an all-L1
configuration).

As Fig 12 shows, the configuration predicted via the raw
data performs within 5% of the real optimal configuration,
except for the one place where it predicts that the L1 cache
size should be 0. Here, the performance is several times
worse than the simulated optimal configuration. The ana-
lytical results using the polynomial fitted curve are equal to
the all-L2 configuration until the crossover point (at $500)
and from there, drop down to within 5% of the optimal
curve, and remain within 5% from that point on.

In contrast, two perfectly reasonable configurations (all
L1 with no L2; all L2 with no L1) perform as much as 800%
worse. Again, though the configurations recommended by
the analysis differ from the optimal configuration, no per-
formance is lost.
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TABLE II
SUMMARY OF SPECS USED FOR PROCESSOR-CACHE HIERARCHY SIMULATION

Simulated Time to Access
Technology | Capacities Block Size | Cost per MB Startup Time | Bandwidth | 1 Block
On-Chip 0KB-64KB 16 Bytes $16384 0 cycles 4 B/cycle 1 cycle
Cache ($64 buys 4 KB)
Off-Chip 0KB-1536KB | 64 Bytes $1024 4 cycles 1 B/cycle 20 cycles
Cache ($64 buys 64 KB)
DRAM unlimited 64 Bytes $64 20 cycles 0.1 B/cycle | 660 cycles

($64 buys 1 MB)
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Stack distance curves for SPEC traces. The cumulative probability curve is shown with its curve fit on the left, the probability

density is shown on the right. Collected data is shown with dotted lines; the curves fit to the data are shown in solid lines. The region
between 125KB and 600KB of the probability curve is non-zero; the scale required to show the other data obscures this.

VI. CONCLUSIONS

In this paper, we have derived a simple model for de-
termining the optimal size of each cache level in an n-level
cache hierarchy. The model is based on the access time (¢;)
and unit cost (¢;) for each level, the total system budget
for the cache levels (B), and a two-parameter characteri-
zation of workload locality (a and 3). By using a specific
form for the stack distance curves, we were able to derive
closed-form solutions for the size of each cache level s; on
the interval [y, xi—1] to be:

0 when 7 < k
B+Y7_ eif(1-0/)
ET%_ c]'\Ill/0
i=k ij

Sik =

when ¢ > k

n

Xi = chﬁ(\p;j/a - 1)

W = Citj+1
citigr

These equations successfully recommended configura-
tions with performance within 5% of optimal, as verified
by exhaustive simulations of a three-level storage hierar-
chy and a three-level processor-cache hierarchy.

Our model led to four observations about configuring
cache hierarchies. First, it is common to focus erroneously
on hit time rather than miss time in designing hierarchies.
In contrast, the model shows that miss time is more im-
portant until the system budget is large enough to achieve
high hit ratios in the lowest cache level. This implies that
the first place to spend money when designing a cache hi-
erarchy is the cheapest level, rather than the fastest level.
As specific applications of this principle, CPU cache de-
signers should be aware that a larger off-chip cache may
yield better performance than a faster, but smaller, on-
chip cache. Also, when tertiary storage becomes more com-
mon, storage hierarchy designers should be aware that hav-
ing enough disk will be much more important than having
enough RAM.

As a corollary to our first observation, the model recom-
mends increasing the size of the slower cache levels faster
than the size of the faster cache levels, even when it makes
sense to include those faster cache levels.

Third, we saw from the model that within each crossover
budget interval [x;, xi—1], the size of each level increases
linearly with system budget.

Fourth, we observed that the workload locality had an
interesting effect on the shape of the memory hierarchy.
For workloads with good locality (large @ and small 3),
the optimal memory hierarchy is narrow. That is, the dif-
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(c) Simulation of processor-cache hierarchy
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11. Optimal configurations of the processor-cache hierarchy. The optimal configurations, both predicted (a, b) and measured (c), as
functions of system budget. The x-axis represents the amount of money available and the y-axis represents the optimal size of each
level in the hierarchy. The optimal configurations determined by simulation are more accurate, as the simulator takes into account
items ignored by the model, including writes, block size, access time variance, and real traces. The data in (a) were obtained from the
polynomial curve fit, while the data in (b) were obtained from the raw cumulative probability data itself. The error bars in (c) indicate

the configuration ranges of .1 and L2 that will give performances within 10% of the optimal configuration.

workloads with poor locality (small o and large /), the op- size between cache levels is large.

timal memory hierarchy is wide; that is, the difference in
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