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Abstract—Exascale promotes numerous new challenges in su-
percomputer designs; Interconnect topology is one of them.
Emerging interconnect topologies have been proposed but have
not been thoroughly studied at large scale. In this study, we
use a cycle-accurate simulator to conduct a design space ex-
ploration for both new and traditional interconnect topologies
at the scale of 50,000 and 100,000 node networks. For each
topology, we evaluate the performance with various network
parameters (link latency and bandwidth), routing algorithms
and multiple prevalent MPI workloads. Using these, we are
able to characterize these topologies with regards to workloads,
network parameters, and scalability to provide insights on the
network system design for future Exascale systems.

1. Introduction & Related Work
For decades, data movement has been a challenging

factor for supercomputer systems and it has bounded their
computation efficiency [1], [2]. Nowadays, the top super-
computers in the Top500 List [3] would only achieve a
fraction of their designed peak performance on a benchmark
with significant data movement, such as HPCG [2], [4]. For
example, today’s No. 1 supercomputer, Sunway TaihuLight,
has a designed peak floating point performance of 125.4
Pflop/s and can achieve 93 Pflop/s on Linpack, which is
74% of peak performance. However, its HPCG benchmark
performance is only 0.3% of peak [5], more than two orders
of magnitude lower. Moving data around in a system more
efficiently is clearly a significant aspect of improving perfor-
mance in supercomputer systems and it will be a foreseeable
challenge for Exascale systems.

To address this problem, numerous interconnect topol-
ogy models were proposed in recent years [6], [7], [8].
In addition to interconnect topology, there are many addi-
tional factors that could influence the performance of data
movement for a supercomputer system, including routing
and flow control, interface technology, and physical link
properties (latency, bandwidth). It is also worth noting that
software stack and application behaviors can significantly
affect the network’s performance [9]. Therefore, these pa-
rameters need to be carefully chosen to meet the design re-
quirements for an Exascale-class system. In order to do this,

a thorough comparison across all the dimensions is needed
to fully comprehend the characteristics of the topologies.

In this paper, we examine several promising interconnect
topologies for Exascale systems. We are first to propose
more efficient routing algorithms for the Fishnet topology
[7]. We extend the Structural Simulation Toolkit (SST) [10],
[11] to support the concerned topologies for accurate simula-
tion and evaluation. We conduct cycle-accurate simulations
and sweep through a design space of various network config-
urations under different types of MPI workloads. Based on
the simulation results, we present a topology characteriza-
tion and network parameter exploration for Exascale-system
network design.

A summary of our simulated configurations and work-
loads can be found in Table 1, and we will describe these
parameters in more detail later in the paper.

TABLE 1: Simulated Configurations and Workloads

System Size * 50,000 and 100,000

Topology
Dragonfly, Slimfly, Fat-tree (3 to 4 levels),
Fishnet, Fishnet-Lite

Routing Algorithm † Minimal, Valiant, Adaptive(UGAL)
Link Latency 10ns, 20ns, 50ns, 100ns, 200ns
Link Bandwidth 8GB/s, 16GB/s, 32GB/s, 48GB/s, 64GB/s
MPI Workloads AllPingPong, AllReduce, Halo, Random
Total # configurations > 3000
*Note that the system size here is approximate since most
topologies cannot be configured to be these exact numbers.
† Not all topologies supports all of these routing algorithms.
e.g. We only simulated deterministic and adaptive routing for Fat-tree.

With the help of the large volume of data obtained from
simulation, we are able to gain a comprehensive view of
these topologies and it is therefore helpful for assessing
their usage in Exascale. To conclude, we summarize our
contributions in this paper as follows:

• We perform large scale, fine grained network simula-
tions and design space explorations. We simulate the
network size with up to 100,000 nodes and collect more
than 3,000 data points. To our knowledge, it is by far
the largest design space exploration at such large scale.

• We propose and evaluate adaptive routing algorithms
tailored for Fishnet and Fishnet-lite topologies. Our



evaluation shows properly implemented routing can
reduce the execution slowdown by 20x under heavy
adversarial workloads.

• We show how the different network parameters influ-
ence the performance of each topology under different
workloads. We observe that most topologies benefit
from an increasing link bandwidth while they are less
sensitive to longer link latency.

• We evaluate the interconnect topologies for their scal-
ing efficiency and their capability to handle increasing
workloads, which provides useful insights on the inter-
connect system design for Exascale.

The rest of the paper describes the background and
related work, routing schemes, our experimental setup, and
our experimental results and conclusions.

1.1. Related Work

Studying large scale interconnection networks has al-
ways been challenging. On the one hand, simulating a
system with even thousands of nodes is difficult (let alone
millions), because it can require significant resources and
time. Therefore, carefully engineered tools are required to
perform such simulations in an efficient way. Jiang et al.
developed Booksim, a cycle accurate interconnection net-
work simulator [12], but its single-threaded design makes
it very hard to simulate large scale network. Carothers et
al. designed and implemented the Rensselaer Optimistic
Simulation System (ROSS) simulator [13] based on time
warp technique and is highly efficient on parallel execution.
Rodrigues et al. developed Structural Simulation Toolkit
(SST) [10], a parallel discrete event simulation toolkit that
aims to help design and evaluate supercomputer systems. Its
modular design makes it easier to extend their models.

On the other hand, there are many factors that could
influence the performance and cost of large scale intercon-
nection networks and a variety of studies exist on char-
acterizing such interconnection networks. Mubarak et al.
has studied and simulated high dimension torus networks
with up to 1 million nodes and showed that large scale
simulations are critical for designing Exascale systems [14].
[15], [16], [17], [18] studied different aspects of Dragonfly
networks and characterized Dragonfly as a highly scalable
and efficient interconnect. [19], [20] evaluated diameter-
2 topologies with various routing algorithms and traffic
patterns. Li et al. introduced more scalable Fishnet and
Fishnet-lite diameter-4 interconnect topology and performed
a preliminary performance/cost analysis [7]. [6]

2. Topologies

In this section we introduce some background knowl-
edge of interconnect topologies and their relevance to this
study.

Fat-Tree, also referred as a folded Clos topology [21],
[22], enables low latency and high bisection bandwidth us-
ing high-radix routers. The architecture of Fat-tree provides

very high bisection bandwidth and is used in real world
supercomputer systems [23]. The disadvantage of the fat-
tree topology is its scalability: for example, a 2-level Fat-
tree would require 100 ports per router to scale to 50,000
nodes. The port cost and its associated power cost would
be prohibitively expensive for building an Exascale network
within 2 levels. Increasing the number of levels of a Fat-tree
will alleviate its scalability issues but would also introduce
more end-to-end latencies. Given the network scale that we
target (100k node), we focus on 3- and 4-level Fat-tree
topologies, which could scale to 100k node within 100 ports
per router.

Dragonfly [24] was proposed to address the scalability
issues of previous topologies such as Fat-tree networks and
flattened butterfly topologies [25]. The concept of a virtual
router was introduced here as a means to reduce the port
cost and achieve scalability. A virtual router is essentially
a hierarchical design that groups routers and treats them as
one, thereby reducing the number of expensive global links.
There are different ways of setting up a Dragonfly topology
so that one can obtain high efficiency (by maximizing
system size with minimal number of ports per router) or
high performance (by adding more global links per router).
In Figure 2 we show how different setups of Dragonfly can
result in very different scalability (“Dragonfly (max)” in
Figure 2 refers to the high efficiency setup while “Dragonfly
(min)” refers to high performance setup). Because our goal
is to explore extremely large scale networks, we follow the
efficiency setup recommended by [24], which allows us to
scale up to 100k nodes with only 51 ports per router.

Slimfly: Bao et al. first proposed using Hoffman-
Singleton graph (a 50-node diameter-2 graph) as an inter-
connection topology for high density servers [26]. Besta
et al further proposed Slimfly topology to construct much
larger scale networks based on Moore graphs [8]. The low
network diameter provides potentially lower latency and the
Moore graph architecture provides high path diversity. An
example of 10 node, diameter-2 Moore graph is shown in
Figure 1a. In Slimfly, assuming the number of links of a
nodes that connects to other nodes in the network is k′ and
number of endpoints attached to a node is p, then the number
of endpoints in a system will be approximately k′2 × p.
To avoid oversubscribing a router, a setup of p ≤ k′/2 is
recommended by [8]. Following this setup, we are able to
construct a network with k′ = 79 and p = 18 to get a
101,124 node network within 100 ports per router. We do
not want to oversubscribe the router for it would not be a
fair comparison against other topologies.

Fishnet is a recently proposed topology [7] that builds
on top of diameter-2 graphs and yields a diameter-4 topol-
ogy. Here we briefly summarize how to construct a Fishnet
based on a diameter-2 graph.

First, assuming we are using a diameter-2 Moore graph
as a basic building unit and there are n nodes in the Moore
graph with k′ links from each node to other nodes. We make
n + 1 copies of the diameter-2 graph and number them as
subnet 0 to n, and within each subnet, we number their n
nodes from 0 to n, skipping their subnet number. e.g. for



(a) A diameter-2 graph (n = 10, k′ = 3) (b) 3-level Fattree (c) Dragonfly

(d) Fishnet-lite, 1 link between subnets (n = 5, k′ = 2) (e) Fishnet, k′ links between subnets (n = 5, k′ = 2)

Figure 1: Illustration of topologies studied, for simplicity not all nodes and links are presented in the graph.

subnet 1, the nodes are numbered as 0, 2, ... n. We use the
notation of (i, j) to refer subnet i, node j.

Then, we make connections between the subnets with the
following rule: To connect subnet i to subnet j, we find the
k′ adjacent nodes of (i, j), and k′ adjacent nodes of (j, i),
and connects these k′ pair of nodes. Finally we follow this
procedure to connect all the subnets, and we will have a
N = n(n + 1) node Fishnet, with n + 1 subnets, and k′
links between any two subnets.

In this way, if any node in subnet i tries to talk to any
node in subnet j, it takes at most one hop to get to one of
the adjacent nodes of (i, j), then it takes one more hop to
get to subnet j, and finally from there at most 2 hops to get
to any node in subnet j.

A lite version of fishnet can also be constructed at
an even lower cost. The difference from Fishnet is when
making connections between subnets, we only connect (i, j)
to (j, i) directly, producing a N = n(n + 1) node network
with only 1 global link between any two subnets. It has a
diameter of 5 but can be constructed at a much lower cost.

Both Fishnet and Fishnet-lite show great scalability, the
can scale up to 1 million node within 80 ports, making them
promising candidates for Exascale network.

A brief graphic illustration of the aforementioned topolo-
gies can be found in Figure 1. The scalability comparison
of different topologies (router radix versus system size) can
be found in Figure 2.

3. Routing Algorithms

Routing algorithms play an important role in fully ex-
ploring the potentials of an interconnect topology. Previous
studies have shown that applying proper routing algorithms

Figure 2: Scalability of different topologies studied in this
work

could result in significant latency and throughput improve-
ments [15], [19], [27] on various topologies. In this section,
we will explore routing algorithms for recently proposed
topologies as well as review options for traditional topolo-
gies.

3.1. Routing for Fishnet Family

Fishnet and Fishnet-lite interconnects were proposed in
[7] but only minimal routing was discussed in their study. It
is necessary to further study more efficient routing schemes
for such topologies to fully explore their potentials. Espe-
cially for Fishnet-lite, where only one global link is used
to connect between subnets, using minimal routing could



congest the global link easily and thus leads to performance
degradation.

To address this problem, we propose Valiant random
routing and adaptive routing algorithms tailored for the
architecture of Fishnet and Fishnet-Lite.

3.1.1. Valiant Random Routing Algorithm (VAL). The
Valiant Random Routing algorithm [28] is used in multiple
interconnect topologies to alleviate adversarial traffics [8],
[24]. The idea of Valiant routing is to randomly select a
intermediate router (other than the source and destination
router) and route the packet through 2 shortest paths between
the source to intermediate and between the intermediate to
destination, respectively. By doing so, additional end-to-end
distance is added into the path, but it may also avoid a
congested link and balance the load on more links, and lower
the overall latency.

Applying Valiant routing to Fishnet family will be sim-
ilar to Dragonfly topology, where global links between
groups/subnets are more likely to be congested when
the traffic pattern requires more communication between
groups/subnets. In Dragonfly, a random intermediate group
is used to reroute the packet to the target group.

Similarly, for Fishnet-lite, we randomly select a interme-
diate subnet and route the packet to the intermediate subnet
and then to its destination subnet. This could increase the
worst case hop count from 5 to 8, but would also increase
the path diversity, with k′ − 1 more paths, and reduce the
minimal route link load to 1/k′ of its previous value.

For Fishnet, we apply a similar technique, which will
result in a hop count from 4 to 6 in worst case, but expand
the path diversity from k′ to k′2.

3.1.2. Adaptive Routing. The idea of adaptive routing is
to make routing decisions based on route informations. One
of the widely used adaptive routing schemes, Universal
Globally-Adaptive Load-balanced Algorithm (UGAL), [29]
takes VAL generated routes and compares them with the
minimal route, selecting the one with less congestion. The
key here is to decide which route has less congestion.
Ideally, if we have global information of all routes and all
routers, it would be easy to make such decisions. However,
in real systems, it is impractical to have such information
across the system. Therefore, a more reasonable approach is
to only use local information, (UGAL-Local, or UGAL-L)
such as examining the depth/usage of local output buffers.

UGAL-L works well on topologies such as Dragonfly
and Slimfly. However, its effectiveness will be limited in
Fishnet since the local information obtained from output
buffer cannot reflect route congestion accurately when the
next link is congested and the information is not propagated
back. This also happens in Dragonfly networks, as described
in [30].

An example of how traditional UGAL-L might not work
well for Fishnet-lite is shown in Figure 3. Imagine the worst
case scenario where all k′ nodes in the source subnet want to
send packets to the destination subnet. Because in Fishnet-
lite there is only one global link connecting between the

Figure 3: Example of how inappropriate adaptive routing in
Fishnet-lite will cause congestion. Green tiles means low
buffer usage while red tiles means high buffer usage.

source and destination subnet, all the minimal routes will
pass through that router (router 0 in fig. 3). If all the output
buffers towards that router have very low usage, traditional
adaptive routing will prefer the minimal path over Valiant
path. This would keep happening until the intermediate
buffers are almost full, and by then there will be a lot
of packets in the buffers waiting for the global link to be
available, jamming routers on both side of the global link.

To avoid this situation, we have tailored adaptive routing
for the Fishnet family in the following way: When the router
connects to the destination subnet is not greater than 1 hop
away, we adapt the minimal path, otherwise use a VAL
path. By doing this, we effectively enforce the path diversity
between subnets from 1 to k and reduce the number of
packets to be routed minimally to the congested link from
k′2 to k′ in the worst case traffic pattern. Moreover, because
all other k2 − k packets are routed randomly to other k− 1
intermediate subnets through k−1 global links, those global
links will route k packets per link as well. Therefore, all the
global links will have equal workloads in worst case traffic
pattern.

For Fishnet, there is another place where adaptive rout-
ing decision can be made. Since there are k′ links between
any two subnets, minimal routing would arbitrarily route
to one of them. For adaptive routing, we can examine the
output buffer usage to those k′ routers that offer global
links to the destination subnet and choose the one with the
lowest buffer usage. Because there are at most 2 hops in this
process, the back propagation problem discussed earlier will
be less severe here.

We refer these routing algorithms as “adaptive rout-
ing” for the rest of the paper and we will evaluate the
effectiveness of these routing algorithms along with other
comprehensive evaluations in the later parts of this paper.

3.2. Routing for Other Topologies

There are already a variety of established routing al-
gorithms for other topologies involved in this study. For
example, [27] proposed and compared deterministic routing
and adaptive routing for Fat-tree. Their evaluation show both
deterministic and adaptive routing are effective in reducing



packet latencies. Minimal, VAL, and UGAL are successfully
used in Dragonfly and diameter-2 topologies [8], [19], [24].
We will implement these routing algorithms and evaluate
them by simulation to get a comprehensive understanding
of the effectiveness of routing algorithms.

3.3. Deadlock Avoidance

In this study, we will adapt and implement the virtual
channel method proposed in [31] for each topology. Since
previous studies have illustrated how to implement such
methods, we will not repeat the details here.

4. Simulation Setup

In this section we describe how our simulation is set up.
We introduce the simulator used in this study, SST, and the
network parameters and workloads chosen for this study.

4.1. Simulation Environments

We use SST as our simulator for this study. SST is a
discrete event simulator developed by Sandia National Lab,
designed for modeling and simulating DOE supercomputer
systems [10], [11]. To support massively parallel simulation,
SST is built on top of MPI and is able to partition simulated
objects across multiple MPI ranks; this can significantly
speed up simulations. SST has a modular design that sepa-
rate router models and end-point models. SST’s Merlin high-
radix router model has built-in support for torus, Fat-tree,
and Dragonfly topologies, and it also provides a set of MPI
workloads (by its Ember endpoint model). Additionally, SST
also has built in configurable NIC model and middleware
model such as firefly and hermes which provide the ability to
simulate low-level protocols and message passing interfaces.

We extended SST’s Merlin router model to support
Slimfly, Fishnet and Fishnet-lite topologies along with their
routing algorithms, and open sourced the code (link is not
provided here for reviewing purposes). An overview of our
simulated system can be found in Figure 4.

Figure 4: Overview of Simulation Setup

Each simulation is configured to run 10 iterations, and
simulated execution time data is collected as the metric for
performance.

4.2. Network Parameters and Workloads

In this subsection, we justify the considerations in se-
lecting the network parameters and workloads that are used
in the simulations.

4.2.1. Network parameters. In this study we primarily fo-
cus on link bandwidth and link latency as network parameter
variables. Not only do these parameters have a significant
influence on system performance, they also represent one of
the more significant physical costs of the system.

To focus the range of the simulation parameters appro-
priately, we referenced some real world systems to get a
perspective. Sunway TaihuLight reports the communication
between nodes via MPI has a bandwidth of 12GB/s and
a latency of 1μs [5]. The Tianhe-2 (MilkyWay-2) super-
computer has a MPI broadcast bandwidth of 6.36GB/s and
latency of 9μs [23]. The Titan supercomputer is built on
Cray’s Gemini interconnect, which can achieve a peak band-
width of 6.9GB/s and has a latency of 1μs [32]. The Sequoia
supercomputer has a 5D torus network, and each node has
ten 2GB/s links [33].

For Exascale, we are envisioning better physical inter-
connection technologies than today, with 400Gbps fabric
and even 1Tb Ethernet is on the way [34], [35], [36].
Therefore, we will simulate physical link bandwidth from
8GB/s to 64GB/s and latency from 10ns to 200ns, which
are likely to be achieved in the foreseeable future. Note
that these are just the the properties of physical links; there
are also other network parameters that are tunable in SST.
However, simulating all of them is impractical and out of
the scope of this study, therefore we use typical or default
values for those parameters unless otherwise specified. For
example, the flit size is 64 Bytes and each MPI message
size (payload) is 4KB; the input latency (queuing/buffering)
is 30ns and output latency (switching and routing decision)
is 30ns. There are also delays introduced on the host side,
e.g. router to host NIC latency is 4ns, etc.

4.2.2. Workloads. As for workloads, many previous studies
of such large-scale networks have used synthetic traffic
patterns [7], [8], [12], [14], [20], [24], [37], e.g. uni-
form random traffic, nearest neighbor traffic, etc. While
it is a simple way to characterize networks, it also hides
communication overheads, which can be significant [38].
Therefore, we chose to use more fine-grained simulated MPI
workloads offered by the SST simulator’s Ember endpoint
model [10]. SST not only generates traffic to the network,
but also simulates the real-world behaviors during the entire
lifecycle of an MPI program, as well as low level protocol
and interfaces. Here are brief descriptions of the workloads.

Halo-2D: Halo exchange pattern is a commonly used
communication pattern for domain decomposition problems
[39]. Data is partitioned into grids which are mapped to MPI
ranks, and at each time step, adjacent ranks exchange their
boundary data.

AllPingPong: AllPingPong is a communication pattern
that tests the network’s bisection bandwidth performance:



half of the ranks in the network send/receive packages
to/from the other half of the network.

AllReduce: AllReduce tests the network’s capability of
data aggregation. The communication pattern resembles traf-
fic from a tree’s leaf nodes to its root. It is the reverse
process of “mapping”.

Random: Random pattern does as the name suggests:
each node sending packets to uniformly random target nodes
within the network. So unlike previous workloads which all
have some locality or certain traffic patterns, Random does
not has locality and could thus test the network’s ability to
handle global traffics.

5. Evaluation & Characterization

As mentioned earlier, our experiments cover the effective
cross-product of the parameter ranges given in Table 1. We
present slices through the dataset, from different angles, to
provide the full scope of our results.

In each of the following subsections, we will discuss one
aspect from our dataset.

Also, to increase the readability of data visualization,
we applied the following general rules to process the graphs
plotted from the dataset:

• We only present at most 2 routing algorithms for
each topology in the graph to reduce the number of
datapoints in each graph. For example, the difference
between deterministic and adaptive routing for Fat-
tree is relatively small (comparing to Dragonfly and
Fishnet-Lite) in most cases and therefore we only show
the results of its adaptive routing. For those topologies
with minimal, Valiant, and adaptive routings, we only
present the results of adaptive and minimal routings
in the graphs as they usually deliver best/worst results
while VAL is often in between the two.

• In cases where the data points are too close to each
other to tell apart, we provide a table below the graph.
(for example, Figure 5)

• We use the following abbreviations in graphs and ta-
bles for simplicity: FT3=3-level Fat-Tree, FT4=4-level
Fat-Tree, DF=Dragonfly, SF=Slimfly, FN=Fishnet,
FL=Fishnet-Lite, min=minimal routing, ada=adaptive
routing. For example, DF-ada will refer to Dragonfly
with adaptive routing.

5.1. Link Bandwidth

In this subsection we study the effects of link bandwidth
while keeping the network scale and link latency constant,
(100k-node and 100ns, respectively). We then break down
our data sets by 4 workloads and plot each subset. In each
plot, we use the execution time of DF-ada at 8GB/s as a
performance baseline and the execution time ratio of other
configurations to represent their relative performance. Each
bar cluster in every graph is ordered in SF-ada, SF-min, DF-
ada, DF-min, FT3-ada, FT4-ada, FL-ada, FL-min, FN-ada,
FN-min from left to right

Figure 5: AllReduce workload comparison for all topology-
routing combinations

AllReduce Figure 5 shows the performance of different
topology-routing configurations under AllReduce workloads
at different bandwidths limits. AllReduce aggregates traffic
from all leaf nodes to one root node recursively. This traffic
pattern is beneficial for topologies like Fat-tree, whose archi-
tecture resembles the software behavior, and is adversarial
for irregularly constructed topologies. From Figure 5, we
can see Dragonfly and Fishnet-lite suffers greatly when
using minimal routing. Adaptive routing helps improve the
performance by a factor of 5 in such cases.

We can also see that the advantage brought by topology
is significant when lower bandwidths are available. e.g. both
3 level and 4 level Fat-trees have relatively better perfor-
mances at 8GB/s bandwidth limits. As bandwidth limits
increases, the difference in performance between topologies
decreases, and ones with lower diameter and higher bisec-
tion bandwidth start to outperform others (although with thin
margins).

AllPingPong The performance of AllPingPong work-
loads can represent the bisection bandwidth capability of
a network. Not surprisingly, Fat-tree topologies again per-
forms very well when the bandwidth limit is lower due to
its high bisection bandwidth design as shown in Figure 6.
But as the bandwidth limit increases, other topologies are
no longer bounded by bandwidth and start to outperform
Fat-trees.

Halo: Halo represents a nearest neighbor communica-
tion pattern, therefore topologies with better locality gener-
ally perform better. Consequently, without sufficient band-
width, Fat-trees performs better than other topologies. Also
note that DF-ada performs almost as good as Fat-trees
at 8GB/s bandwidth, while DF-min is the slowest among
all setups. Part of the reason, as previously mentioned, is
the global link between groups gets congested. The other
part of the reason is that Dragonfly has better “locality”
because all the routers within a group are fully connected
and can guarantee 1 router hop for the hosts within a group.
While Slimfly connects even more hosts within 1 router
hop, it’s not as good as Dragonfly under 8GB/s and 16GB/s
bandwidth limit. The reason behind this is consecutive MPI



Figure 6: AllPingpong workload comparison for all
topology-routing combinations

Figure 7: Halo workload comparison for all topology-
routing combinations

Ranks (logical ranks) will be mapped to the hosts within
a group for Dragonfly, but they are not guaranteed to be
mapped to the adjacent routers in Slimfly. Consequently,
some of the consecutive ranks in Slimfly will sometimes
have 2-hop latency instead of 1-hop as in Dragonfly.

Random The results of random are largely different
from all other workloads as shown in Figure 8. This is
because random workloads generates uniform traffic pattern
across all nodes, which would make use of almost no
locality and the load on all the links are inherently balanced.

As a result, low diameter topologies with more path
diversities, such as Fishnet, outperforms other topologies at
lower bandwidth limits. The differences between topologies
at lower bandwidth limits also significantly drops to a factor
of less than 2 (comparing to a factor of 5 to 7 for other work-
loads). At higher bandwidth limit (64GB/s), the performance
differences are still very significant where diameter-2 graphs
beats 4-level Fat-tree by 20.5%.

Discussion We now compare across the 4 workloads and
see how bandwidth affects performance for each topology.
Dragonfly and Fishnet-lite with minimal routing benefit
most from the growths of global link bandwidth. Increasing
the bandwidth from 8GB/s to 64GB/s decreases the exe-
cution time by up to 6 to 7 times. Other topology/routing

Figure 8: Random workload comparison for all topology-
routing combinations

combinations tend not to gain as much performance from
the bandwidth increase, but there is still an average 20% to
50% performance gain from 8GB/s to 16GB/s. To be more
specific, FN-ada has a gain of 17%, SF-ada 26%, FT3-ada
36%, FL-ada 43% and DF-ada 56%.

Under our setup, bandwidth will no longer be a ma-
jor bottleneck from 32GB/s and beyond as evident from
Figures 5 to 8. Moving forward, this is not saying that
bandwidth is unimportant once it’s greater than 32GB/s; the
demand for bandwidth can always be elevated by factors
such as application behavior or node level architecture, e.g.
if an endpoint utilizes GPUs or other accelerators that gener-
ate significantly more throughput, its demand for bandwidth
can be very high. Therefore it might be more reasonable to
assume that bandwidth demands will not be easily satisfied,
and that the data points transition from 8GB/s to 16GB/s
will be more likely to represent the real-world situations of
how bandwidth increases can benefit performance.

5.2. Link Latency

In this section we will discuss how global link latency
can affect network performance. We configured the physical
link latency from 10ns to 200ns, and within this range, most
network topologies only suffers a less than 20% slowdown
moving from 10ns links to 200ns links. This indicates that
most of these configurations are not latency sensitive in this
range.

The only two exceptions here are Dragonfly and Fishnet-
lite with minimal routing, both of which witness a slowdown
of a factor of 2 moving from 10ns to 200ns latency. The
global links between router groups here once again becomes
the bottleneck, and it can be alleviated by using adaptive
routing algorithms.

These results imply that within 200ns, link latency does
not significantly sway the overall performance. Therefore,
system architects may be able to exchange an increase in
link latency, for greater benefits elsewhere in the system. For
example, allowing more latency will extend the maximum
allowable physical space to build the system, enabling more
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flexibility in physical cabinets placement, cable manage-
ment, and thermal dissipation, etc.

5.3. Performance Scaling Efficiency

All the topologies that we choose to study in this paper
have constant network diameters with regards to the scale of
the network. So, as the network size scales up, the average
distance between 2 nodes will remain the same. This does
not mean there will be no performance degradations, as we
will explain later with examples from our simulation data.

We simulated both 50k-node and 100k-node scale net-
works, each with more than 1,000 data points, on different
topologies, workloads, and network parameters. By looking
at this broad range of configurations, we are able to get a
comprehensive view of how each topology scales.

To measure the scaling efficiency, we first find a pair of
simulation data points that have the exact same configuration
except for the number of nodes. Then we take the ratio of
execution time of the one with 50k-node to the one with
100k-node. If there is performance degradation, meaning
the same amount of workload takes more time to finish on
100k-node than 50k-node network, then this ratio will be
less than 1. So the closer this ratio is to one, the better
scaling efficiency the topology has.

By doing so, we obtain more than 1,000 scaling effi-
ciency ratios for different workload, topology, and network
parameter combinations. Due to the large volume of the
data, we turn to a statistical approach. We observed that the
scaling efficiency is relatively consistent for each workload-
topology-routing combination, therefore we took the average
of all the data points with the same workload-topology-
routing configuration, and further reduced the number of
data points to 40, as shown in Figure 9. We calculated
the standard deviation for the averaged data points, and
most standard deviations are below 0.01 (about 1% of the
basis), indicating these averaged numbers are representative
for their samples.

One would immediately notice in Figure 9 that unlike all
other setups, Dragonfly and Fishnet-lite both have poor scal-
ing efficiency when using minimal routing. The reason being
that, even though the network diameter does not change, the
number of nodes within a group/subnet increases. Dragonfly
and Fishnet-lite both only have one global link per router
group, and they will be more likely to be congested under
non-uniform pattern workloads. For Random workload, the
increased traffic generated by the host in the group/subnet
are evenly distributed to more global links instead of a
specific global link, thus it has good scaling efficiency.
(In fact, for the same reason, Random has the best scaling
efficiency over almost all setups)

Also note that the scaling efficiency for 4-level Fat-tree
with Halo workload exceeds 1. This is because when we
scale from 50,000 to 100,000 nodes, the number of nodes
per router at bottom level of the Fat-tree increases, therefore
more “neighbor” nodes are available within a shorter dis-
tance, which benefits nearest neighbor traffic such as Halo.

To conclude, all the topologies studied in this paper have
decent scaling efficiency (greater than 0.9) with appropriate
routing algorithms, which is a desired feature when moving
to even larger system.

5.4. Stress Test

In this subsection, we stress test topologies with increas-
ing workloads. We will keep the network parameters con-
stant and increase the workload on each topology. Then we
evaluate the topology’s ability to handle increasing workload
by observing the increase in execution time.

In this series of tests, we limit the physical link band-
width to 8GB/s to make sure that light workloads are
also able to cause congestions in the network, so that the
efforts of increasing workloads will not be offset by high
performance network parameters.

As for workloads, previous results have shown AllRe-
duce generates adversarial traffics for most topologies while
Random is benign to most topologies. Therefore we choose
these two workloads for this test. To increase the workload,
we double the MPI message size each time, from 512 Bytes
to 64KB, which results in: 1) more packets to be sent for
a message and thus more congestion in a network; 2) the
input/output buffers will be filled more quickly, and NICs
will have to stall to wait until the buffer is available.

Figure 10 shows the execution slowdown of different
topologies under increasing AllReduce and Random work-
loads, respectively. The execution time of 512B message
size for each configuration is chosen as the baseline (1).

Looking at the upper row of Figure 10, we can tell that
Fishnet and Fishnet-lite has the modest slowdown of less
than 20x in AllReduce workload when using adaptive rout-
ing, while all other configurations have more than 20x slow-
down. This indicates the high bisection bandwidth and high
path diversity designs of Fishnet/Fishnet-lite contributes to
their performance in handling adversarial workloads.

The lower row of Figure 10 shows the slowdown of
Random workload. Due to the benign nature of Random



Figure 10: Execution slowdown of different topologies under increasing workload

workload, the difference in performance is not as huge as
it is for AllReduce workloads when the workload increases,
but it can still be seen that high bisection bandwidth ar-
chitectures such as Fishnet, and Fat-tree outperform others
under increasing workloads.

The effectiveness of routing algorithms against adversar-
ial traffics could also be reflected here. By applying proper
routing algorithms, the topology’s ability to handle heavy
workloads can be strengthened. For example, Fishnet-lite
reduced the slowdown from 40x to 20x in AllReduce work-
load when moving from minimal routing to adaptive routing.
This further proves the effectiveness of our proposed routing
algorithms for Fishnet topologies.

The performance difference from routing algorithm for
Fat-tree is almost negligible for AllReduce workload. This
is because AllReduce is considered to be a benign traffic
pattern for Fat-tree, and increasing workload does not affect
the routing decision heavily. As a contrast, routing algorithm
under Random workload, which causes packets to traverse
more distances than AllReduce, makes more of a difference
for Fat-tree, as shown in Figure 10.

6. Conclusion

In this paper, we study a wide range of network topolo-
gies that are promising candidates for Exascale high perfor-
mance computing systems. We extend SST to perform large
scale, fine-grained simulations for each concerned topology
with different routing algorithms, various workloads and
network parameters at different scales.

From a network parameter perspective, our study shows
all topologies can gain a decent amount of performance
from the increase of physical link bandwidth. However, the
amount of performance gain from the growth of bandwidth
differs greatly from topology to topology (ranging from
17% to 56%), as shown in Section 5.1. As for physical
link latency, topologies with higher network diameters are

naturally more sensitive to link latency, but in general,
the latency range studied in this paper (10ns to 200ns)
makes less contributions to the overall system performance.
If allowing more latency will be beneficial for the overall
system design, it might be a worthy trade-off.

The results of performance scaling efficiency and the
stress test show that the studied topologies all have good
performance scaling efficiency if properly set up, but their
ability to handle increased workloads differs. This provides
useful insights on the scenarios that we are yet unable to
simulate in this study. e.g. larger scale network with even
heavier workloads.

Furthermore, we identified various cases during our
study where software behavior can result in significant dif-
ferences in system performance. Although it is well known,
we are the first to provide examples based on simulation
data for a lot of the recently proposed topologies combined
with network parameters, and these examples will be helpful
for software optimization.
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