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ABSTRACT
The growing complexity of embedded applications and pressure
on time-to-market has resulted in the increasing use of embedded
real-time operating systems. Unfortunately, RTOSes can introduce
a significant performance degradation. This paper presents the
Real-Time Task Manager (RTM)—a processor extension that
minimizes the performance drawbacks associated with RTOSes.
The RTM accomplishes this by supporting, in hardware, a few of
the common RTOS operations that are performance bottlenecks:
task scheduling, time management, and event management. By
exploiting the inherent parallelism of these operations, the RTM
completes them in constant time, thereby significantly reducing
RTOS overhead. It decreases both the processor time used by the
RTOS and the maximum response time by an order of magnitude. 

Categories and Subject Descriptors
A.0 [General]: Conference Proceedings 

General Terms
 Performance, Design, Experimentation.

Keywords
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1. MOTIVATION
RTOSes have become extremely important to the development
of real-time systems as reflected by the growing market for
RTOSes; half a billion dollars in shipments of RTOSes will be
sold in 2002 [5]. RTOSes provide services for better hardware
abstraction multitasking, task synchronization etc. However,
the benefits that RTOSes provide do not come for free. The use
of RTOSes has several important effects on various
performance parameters of real-time systems. 

Processor Utilization: The fraction of processing power that
an application is able to use. In order to provide services like
multitasking, preemption, and numerous others, the RTOS
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introduces an overhead which lowers the processing power
available to the application.

Response Time: The time it takes for a real-time system to
response to external stimuli. This delay is highly dependent on
several factors, including whether or not the RTOS is
preemptive and whether polling or interrupts are used to sense
the stimulus. The effects of RTOSes on response time vary
widely, but, in general, RTOSes increase response time to
varying degrees. 

Much of the performance degradation caused by RTOSes can
be traced to their core operations, namely task scheduling, time
management, and event management. Analysis of these
functions reveals that they are executed frequently, that they
perform inter-related actions, and that these actions exhibit
parallelism. That parallelism cannot be exploited by software-
based implementations; however, hardware-based solutions
can exploit this parallelism and lower the performance
degradation. Also, the rapidly dropping cost of logic [7] has
made it possible to put custom hardware for enhancing
frequently executing operations on embedded processors,
without increasing costs significantly.

These factors suggest that RTOSes would greatly benefit from
a custom hardware solution. This is the motivation for the
Real-Time Task Manager (RTM), a memory-mapped on-chip
peripheral designed to optimize task scheduling, time
management, and event management that is compatible with a
wide range of RTOSes. Measurements have been taken of the
performance impact of the RTM on models of realistic real
time systems. These measurements show that processor
utilization and maximum response time are both reduced by an
order of magnitude. 

2. BACKGROUND
To better understand that the commonly seen bottlenecks in
RTOSes, we present some of the details regarding their nature
— what they are, how they are implemented and how often
they are invoked. 

Task Scheduling: Process of determining which task should
be running at any given time. The most commonly
implemented approach to scheduling in commercial RTOSes is
based on task priorities [8]. Priority-driven schedulers assign
each task a priority and execute the task with the highest
priority that is ready. 

Time Management: The RTOS gets its sense of time by a
periodic interrupt generated every clock tick by a hardware
timer. The rate of the generation of this clock tick is the system
clock frequency which is not to be confused with the CPU
clock frequency. Typically the system clock frequency is on



the order of kHz while the CPU clock is on the order of MHz.
Time management refers to the RTOS’s ability to allow tasks
to use this mechanism to be scheduled at specific times i.e.
have the tasks block for a specific time before becoming ready. 

Event Management: Most real-time operating systems
provide services for communication and synchronization
between tasks—known as interprocess communication (IPC).
Examples are semaphores, message queues etc. Event
management involves keeping track of which tasks are blocked
i.e. waiting for IPC and which tasks should be released i.e.
have to receive IPC on resource availability. 

Note that as shown in Table 1, the overhead of the RTOS due
to these operations is proportional to the product of frequency
and complexity. Since both of these components may increase
linearly with the number of tasks, there may be a quadratic
relationship between the number of tasks in the system and the
RTOS overhead due to them. In addition the overhead of task
scheduling and time management increases linearly with the
system clock frequency.

The longest time that it takes to perform any critical section of
code (including task scheduling, event or time management)
adds to the maximum response time in preemptive systems.
However, in non-preemptive systems where interrupts are
polled, a response task is delayed more by executing
workloads than by RTOS operations. This is because
workloads execute for longer periods than RTOS operations
and thus disable interrupt response for longer periods.

3. RELATED WORK
Dick, Lakshminarayana, Raghunathan, and Jha first published
a study of the power consumption of RTOSes in embedded

systems [4] on an instruction-level simulator of the Fujitsu
SPARClite processor, using embedded applications running on
µC/OS. They suggested ways in which to design application
software so that the power consumption is minimized. 

Adomat, Furunäs, Lindh, and Stärner described the Real-Time
Unit (RTU)—an external hardware module designed to
perform RTOS functions [1]. The RTM-based RTOS lies at an
intermediate point in the design spectrum whose two
extremities are represented by a purely software based RTOS
and the RTU  — an exclusively hardware-based design. The
RTU improves performance, but it does not allow for existing
RTOSes to easily take advantage of its offerings. 

Mooney and his co-authors [12,13] have explored hardware
implementations of lock synchronization, deadlock detection,
dynamic memory management in a multi processor system.
These schemes effectively solve problems seen in a multi-
processor system namely atomic access of data, potential
resource conflicts. Our scheme is orthogonal to their scheme
because it explores hardware acceleration for basic RTOS
operations. In addition Mooney et al [14] have looked at
building a cyclic scheduler in hardware. Unlike our design it is
application specific and does not investigate support for
alternate scheduling mechanisms like EDF etc.

4. REAL-TIME TASK MANAGER
The RTM is a hardware module that implements a task
database and thus supports the key RTOS operations: task
scheduling, time management, and event management. It is an
on-chip peripheral that communicates with the core via a
memory-mapped interface. 

Table 1. RTOS Function Details

Implementation / Overhead Performed When

Scheduling • Unsorted Ready List - Task Selection has
Linear Overhead

• Sorted Ready List -Task Selection has
Constant small overhead, Task Insertion on
Ready Queue has Linear Overhead

• Bit-Vectors[6] - Constant Overhead
implementation for systems with unique and
static priorities.

• System calls which change task
status e.g. Priority Change. Scales
with workload size.

• Preemptive System- After Timer
Interrupt. Scales with system clock
frequency.

• Non Preemptive System - Task
Completion Points, After Timer
Interrupt if System is Idling. Scales
with workload size.

Time 
Management 

• Each task has individual delay counter
containing its absolute delay. Timer Update
requires updating each counter and has a
linear overhead

• UNIX Callout Table[2]. Delay counters hold
delays relative to that of previous element.
Updates have variable overhead. Task
Insertions has linear overhead.

• Preemptive System - After Timer
Interrupt. Scales linearly with
system clock frequency.

• Non Preemptive System - Task
Completion Points, After Timer
Interrupt if System is Idling. Scales
with workload size.

Event 
Management 

Similar to Task Scheduling with each event having 
its own Blocked Queue.

• Tasks use IPC. Dependent on
extent to which workload uses IPC.



The RTM is pictured in Figure 1; where each record contains
information about a single task. The RTM is accessed through
the global address space and each record can be read from or
written to as if it were any other array of structures. 

A record is composed of four individually addressable fields.
Each record contains a status field, containing several bits that
describe the status of the corresponding record. The valid bit is
necessary to indicate if that the record is used by a task. The
delayed bit indicates that the task is waiting for the amount of
clock ticks specified by the delay field before being ready-to-
run. The event bit indicates that the task is pending on the
event with the identifier specified by the event ID field. The

suspended bit indicates that the task has been suspended. If the
valid bit is set, but the delayed, event, and suspended bits are
clear, then the task is ready-to-run. Finally, the priority field
indicates the task’s priority. Also, the maximum number of
records is some fixed constant, such as 64 or 256. The RTOS
can issue instructions to or retrieve certain information from
the RTM via a set of memory mapped registers.

The RTM can be queried for the highest priority ready task and
thus supports static-priority scheduling. The RTM does time
management by decrementing the delay fields of all records by
the number of clock ticks specified by the RTOS and updating
the delay bit if this value reaches zero. Event management is

Status (8) Priority (8) Event ID (8) Delay (16)

Valid Delayed Event Suspended

Figure 1. Reference RTM Data Structure

The reference RTM architecture has 64 records. The status, priority and event ID fields are each 8 bits wide and the delay field is 16 bits
wide. Each record uses 40 bits of storage but is mapped into the I/O space at even-word (64 bit) boundaries to simplify and speed up
addressing.
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Figure 2. Reference RTM Task Scheduling Architecture

a) Topology (note: for clarity, not all interconnects are shown). b)
Ready Test cell with three inverters and an AND gate c) Nth Order
Priority Test cell.Each Nth order Priority Test cell contains an 8-bit
comparator, an 8-bit 2:1 MUX, an (N-1)-bit 2:1 MUX, an OR gate,
an AND gate, and a NAND gate (d) Event- Test cell
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very similar to static-priority scheduling. The RTM queries for
the highest priority task that is pending on a given event
identifier, instead of querying its data structure for the highest
priority ready task.

5. ARCHITECTURE
A reference architecture is presented here to illustrate the
complexity and scalability of implementing the hardware
architecture of the RTM. For a 64 record RTM with entries as
shown in the figure the total number of flip-flops required is
2304, which is small enough to easily be implemented. These
parameters are based on common limits and are sufficient for
the majority of real-time applications.

Task scheduling is performed using 64 Ready Test cells and a
binary tree of 63 Priority Test cells. Owing to space
considerations we show this for a 32 entry case in Figure 2.
The Ready Test cells simply determine which tasks are ready-
to-run. Each Priority Test cell takes in as input two task
priorities and ready bits. It then outputs which of these is the
highest priority ready task. These priority values propagate
down the comparator tree until the single sixth order cell where
the index of the overall highest priority ready task is output.
Each Nth order Priority Test cell contains an 8-bit comparator,
an 8-bit 2:1 MUX, an (N-1)-bit 2:1 MUX, an OR gate, an AND
gate, and a NAND gate. The logic required task scheduling
scales linearly with the number of records in the RTM (n RTM
records requires n RT cells plus n-1 PT cells). The
computational delay is proportional to the logarithm of the
number of records. For a reasonable number of records i.e. the
numbers typically used in production RTOSes, this
implementation of task scheduling will be sufficiently fast and
small. 

In order to implement time management, 64 delay decrement
cells are all that is required, as shown in Figure 3. Delay
decrement cells consists of a simplified 16-bit adder and an
AND gate. Delay cells decrement the delay field and perform a
comparison to clear the delay bit when necessary. In this
implementation, the logic scales linearly with the number of
records; however, the computational delay is a constant. In
designs where the CPU clock frequency is lower than the
system clock frequency, the delay decrement cells can be
reused and thus lower the number of delay cells required.

The event management is almost exactly the same as task
scheduling. The only difference is that instead of Ready Test

cells, it has Event Test cells, as seen in Figure 2. This allows
the binary tree of Priority Test cells to be used for both
scheduling and event management. The Event Test cells just
check if the event bit is set and if the event ID of the resource
being released matches the event ID in a specific record. They
each use an 8-bit comparator and an AND gate. The
combinational logic required for event management scales
linearly, except that the majority can be shared with the task
scheduler. Also, the computational delay is O(log(n)), as it is
with scheduling.

The die area that the RTM needs is important in determining
its feasibility. Based on existing area models for register files
and caches [9], the RTM reference architecture requires
approximately 2600 register-bit equivalents (RBEs). This is
roughly equivalent to the die area used by a 32-bit by 64-word
register file making it feasible to implement the RTM in
hardware. This number is large compared to a simple core but
is small compared to the whole chip. This is because a typical
embedded processor consists of the core and other on-chip
devices like memory and various I/O devices.

6. EXPERIMENTS
In order to formally justify the use of the Real-Time Task
Manager in actual real-time systems, an accurate quantification
of the effects that it has on performance is done by analyzing
models of real-time systems that use RTOSes. All
measurements are made on a inhouse cycle-accurate C-based
simulator of the Texas Instruments TMS320C6201. The

Figure 3. Reference RTM Event and Time Management 
Architecture

a) Topology (note: for clarity, not all interconnects are shown). b)
Delay Decrement Cell.
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Table 2. Details of RTOSes used in study

µC/OS-II NOS

Preemptive Yes No

IPC? Yes No

Task Scheduling Constant -Bit Vector Linear - Sorted Ready Queue

Time Management Linear - Unsorted Queue Linear - UNIX Callout Queue 

Event Management Constant - Bit Vector n/a

The table gives details of the RTOSes used in the study. The details regarding the overhead of the implementation of the
RTOS functions (scheduling, time management and event management) are given along with the method employed.



processor is a high-performance 32-bit VLIW fixed-point DSP
with a 200 MHz clock that can issue eight 32-bit instructions
per cycle [11]. The simulator is capable of loading the same
executable binary files that run in actual systems and executing
them exactly as they would on a real processor.

Two differing RTOSes have been used in this study: µC/OS-II,
a popular commercial preemptive RTOS [6]; and NOS, a
“homegrown” non-preemptive RTOS, that is representative of
over 25% of RTOSes which are merely subsets of complete
RTOSes [5]. More details are given in table below.

Several applications from the MediaBench suite [7] are used in
this analysis including workloads like GSM decompress,
ADPCM encode and decode and the encryption and decryption
benchmark Pegwit. The benchmarks are modified so that they
are separated into two periodic tasks, an input processing task
and an output task, with periods of 20 ms. In µC/OS,
semaphores are used to synchronize the access of the data
channel by the two tasks. An additional noise task (with a
period of 32 ms) purpose is to insert the type of background
noise commonly present in real-time applications, e.g., many
systems have LCD displays which have to be periodically
refreshed. Aperiodic tasks which respond to external stimuli,
such as I/O events are simulated as a polling task in NOS or by
interrupts in µC/OS systems. The I/O events arrival times are
geometrically distributed with an average arrival rate of 10
milliseconds. 

7. RESULTS
The goal of the Real-Time Task Manager is to reduce the
performance loss problem associated with RTOSes. In order to

validate the success of the RTM, we characterize its effects on
processor utilization, response time. 

7.1 RTOS Overhead
For purposes of brevity we present the average processor
utilization across 5 benchmarks for different workloads. For all
benchmarks the performance was reasonably close to the
average and for no benchmark did the configurations with the
RTM perform worse than those without.

µC/OS-II: The RTOS processor utilization has been divided
into five categories for system configurations that use µC/OS.
These five categories include Scheduling, Interprocess
Communication i.e. Event Management, Timer Interrupts,
Processing Clock Ticks i.e. Time Management or updating the
timer queue and a Miscellaneous category which includes task
Creation etc.

As seen in the graph in fig. 4, the RTOS processor utilization
without the RTM can be quite significant. The bulk of the
reduction comes from converting the overhead of time
management operations that ready tasks that reach their release
times at every clock tick from a linear one to a constant one.
The gains in event management and scheduling are lower, 14%
and 30% respectively, because of the effectiveness of the
software-based bit vector scheme employed in µC/OS. The
timer interrupt overhead and miscellaneous category which are
not optimized account for a constant less than 1% of the
processor utilization, both with and without the RTM. The
basic RTOS operations that the RTM implements result in the
processing overhead required by µC/OS to be reduced by 60%
to 90%. 

Figure 4. Processor Utilization Using µC/OS-II and NOS

The percent of the total processing time spent executing the operations in each of these categories and how they vary with system
load, for every benchmark tested, both with and without using the RTM. System load refers to the amount of processing power used
by the application, which, in this case, is determined by the number of data channels processed in the application
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Function % Reduction

Scheduling 31

Processing Time 83 (average)

Event Management 14

Miscellaneous
Polling
Processing Clock Ticks
Processing Release Times
Scheduling
Timer Interrupt Overhead

Table 3. NOS 

Function % Reduction

Scheduling 98

Processing Time 85 (average)

Event Management 14

Polling Increase 25%

Release Times 95%



NOS: For NOS, the processor utilization has been divided
into six categories. These categories include Scheduling,
Processing Release Times i.e. inserting a task onto the pause
queue or timeout queue, Polling i.e. selecting a task to run
while idling, Timer Interrupt Overhead, Processing Clock
Ticks and Miscellaneous.   As seen in the graphs, the RTOS
processor utilization is not quite as large as it is for µC/OS,
however, it is still significant enough to be worth optimizing. 

Polling is the processing done to call the highest priority task’s
function, if any or to enter idling otherwise. It occurs after a
task completes and when the processor is idle, after every
timer interrupt. Unfortunately, the RTM can increase the
processing time consumed by the polling operations by up to
25%. This is because without the RTM, polling is as simple as
looking at the head of the ready queue. The RTM-based
approach has an additional overhead associated with
communicating the request to the RTM. The category of
processing clock ticks execute at the same instances as polling.
But in this case, the RTM reduces the magnitude of the
overhead by around 85%. 

Both scheduling and processing the release times utilizations
increase quadratically with the system load for systems that do
not use the RTM. This is because of the linear dependence of
their computational complexity and frequency of invocation on
the workload. The utilization is constant and trivial for systems
with the RTM and it is not even visible on some graphs. The
bulk of the lowering of the overhead comes from the nearly
98% reduction in scheduling overhead. The basic RTOS
operations that the RTM implements result in the processing
overhead required by ΝΟS to be reduced by 20% to 65%. 

7.2 Response Time
µC/OS-II: As seen in the graphs, the majority of the

response time measurements are a constant value of 1.8
microseconds without the RTM and 1.4 microseconds with the
RTM. This is because µC/OS is a preemptive RTOS and it
responds to interrupts right away. Deviations from the main
value are due to the effects of disabling interrupts while
responding to timer interrupts and aperiodic interrupts. When
the RTM is not used, the execution time of the timer interrupt
ISR is dominated by the time management operation, which
scales linearly with the number of tasks. The effect on the
response time, as seen in the graphs, is a uniform distribution
of values, ranging from the common 1.8 microsecond value to
an upper limit, that increases with system load, (up to 11.8

microseconds for the loads studied). However, by using the
RTM, the time management operation is always performed in
trivial time. The effect of the timer interrupt on response time
when using the RTM is a uniform distribution of
measurements, ranging from 1.4 microseconds to 2.2
microseconds, an 83% decrease on average. 

NOS: Unlike with µC/OS, the response time with NOS has
little to do with the effects of the RTOS. Instead, the biggest
determining factor has to do with the application code. During
the execution of a task, responses to interrupts cannot occur
until that task completes. Thus the response time numbers are a
uniform distribution of values from the minimum idling
response time of 1.4 microseconds to some limit that is only
dependent upon the benchmark. 

For most applications NOS, being a non-preemptive OS, has
virtually no effect on the response time. It is the duration of the
processing task and the system load that dictate the response
time. However, for small applications whose task invocations
finish quickly, NOS does have an effect on response time, and
the RTM is able to eliminate this increase.

8. CONCLUSIONS
In this paper we presented the Real-Time Task Manager
(RTM)—a hardware module that implements a few common
RTOS operations: task scheduling, time management, and
event management. By exploiting the inherent parallelism of
these operations, the RTM is able to complete them in trivial
time, thereby minimizing RTOS overhead. It decreases the
processing time used by the RTOS by up to 90% and decreases
the maximum response time by up to 81%. 
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