
al world.
ned with
mance
eal-time

anging
us data
. 1994,

runtime
here will

s conflict
describe

ubset
in non-
cution,
e cache’s
ogram
l size of

nts of the
ict-free

k-

is
? Each
t
es the

ject’s
ock-

Presented atCASES’99: Workshop on Compiler and Architecture Support for Embedded Systems. Washington DC, October 1999.
1

Hardware/Software Architectures for Real-Time Caching
Bruce Jacob

Electrical & Computer Engineering
University of Maryland, College Park
blj@eng.umd.edu

There are two fundamental problems in guaranteeing cache performance for real-time embedded systems:
conflict andcapacity misses. Though fully associative caches would solve conflict misses, they are too
expensive to implement in embedded systems. There are two alternatives: a real-time cache (a software-
managed fully associative cache with extremely large cache blocks) and a virtually addressed cache. To
address capacity misses, one can dynamically (and predictably) manage the cache contents.

Introduction
Real-time embedded systems require guaranteed performance behavior because they interact with the re
Today’s embedded microprocessors are yesterday’s high-performance desktop processors; they were desig
instruction throughput in mind—not predictable real-time behavior. Therefore, they cannot guarantee perfor
behavior, especially for inherently probabilistic mechanisms such as caches, and so are unsuitable for use in r
embedded systems. As a result, real-time embedded systems often run with caches disabled.

It is difficult for software to make up for hardware’s inadequacy. There have been numerous studies rearr
code and data to better fit into a cache: examples include cache blocking, page coloring, cache-conscio
placement, loop interchange, unroll-and-jam, etc. [McFarling 1989, Carr 1993, Bershad et al. 1994, Carr et al
Calder et al. 1998]. Most of these mechanisms have the goal ofincreasingthe number of cache hits, notguaranteeing
the number of cache hits: not surprisingly, guaranteeing cache performance requires considerably more work.

This abstract shows that a combination of both hardware and software—variations on traditional cache and
system architectures—can solve the problem. The problem reduces to two components: (1) guaranteeing that t
be noconflict misses in the cache, and (2) guaranteeing that there will be nocapacitymisses in the cache.Compulsory
misses do not present a problem because they are statically predictable. A fully associative cache can addres
misses, and we present two relatively low-overhead alternative designs. To address capacity misses, we briefly
a real-time cache management scheme.

Conflict Misses: Virtual Addressing = Full Associativity
Assume that through code inspection or application profiling or compiler optimization it is possible to identify a s
of the program (chosen at a cache-block granularity) that should be cached. The rest of the program will rema
cached for the duration of application execution. To guarantee there will be no cache conflict problems during exe
it is necessary to arrange the cached items so that the maximum degree of overlap in the cache is less than th
degree of associativity. The intuitive picture is shown in Figure 1: there are a number of atomic objects in the pr
that cannot be broken up any further. Portions of these objects may be cached or uncached. Assuming the tota
the regions to be cached does not exceed the size of the cache, there are a number of potential arrangeme
objects in the memory space, each of which might yield a conflict-free cache arrangement. Finding such a confl
arrangement of code and data objects is a non-trivial problem, given in the following formal description:

CONFLICT-FREE CACHE PLACEMENT

INSTANCE: <memory sizeM, cache sizeC, cache associativityA, setO of memory objects,v:{block} → {0,1}>,
whereM andC are in units of cache blocks,A ∈ Z+ ≤ C, and anobjectis an ordered set of contiguous cache-bloc
sized regions. We write setO as follows:O = { { b11, b12, ...b1n}, { b21, b22, ...b2n}, ... { bZ1, bZ2, ...bZz} }, where bij
is thejth block-sized portion of objecti (termedoi) and has the associated valuev(bij), which is 1 or 0 depending on
whether blockbij is to becached or non-cached, respectively.

QUESTION: Does there exist a realistic mappingσ:{oi} → Z0
+ such that the degree of overlap in the cache

consistent with the cache associativity (thereby producing a memory footprint that is without cache conflicts)
objectoi can be mapped via a functionσ onto the memory spaceZ0

+ < M. This function indicates the starting poin
of each object. Because the objects are collections of contiguous regions, the mapping also implicitly defin
memory location for each individual block within each object: the first block-sized region must lie at the ob
memory location (i.e.,σ(bi1) = σ(oi)). The second block-sized region must lie at the next sequential (also bl

t

number

am

gree of
ce class;

ss, etc.).

lt that
d blocks,
l: if the
emory

ociative
ign that
1998b,

hange
0 bytes

M: if
—the
lacing
t of the
fore,
its of
t it is a
ss that an

and data
sized) memory location (i.e.,σ(bi2) = σ(bi1) + 1 = σ(oi) + 1). The third block-sized region must lie at the nex
sequential memory location (i.e.,σ(bi3) = σ(bi2) + 1 = σ(bi1) + 2 = σ(oi) + 2), etc. This places the block-sized
regions of each object intoC/Adifferent equivalence classes {E0, E1, ...EC/A-1 } which correspond to cache sets: a
region’s equivalence class is the cache set to which it maps, determined by its memory location modulo the
of sets in the cache (C/A). Therefore, by definition, .

To have a realistic mappingσ with a conflict-free cache layout, we must satisfy the following. First, the progr
must fit into the memory space.

(1)

Second, there must be no overlap among objects in the memory space (informally,∀a≠b, oa ∩ ob = Ø).

(2)

Last, for the cached objects, the number of overlaps in the cache must be consistent with the cache’s de
associativity (e.g. for a direct-mapped cache, there should be at most one cached element in each equivalen
for a two-way set associative cache, there should be at most two cached elements in each equivalence cla

(3)

This decision problem is NP-complete for A=1. Notice that for A=C (a fully associative cache) we have the resu
all cached memory blocks map to the same equivalence class, but there can be no more than A such cache
assuming that the cache is large enough. Therefore, for a fully associative cache, the decision problem is trivia
sum of the sizes of the objects is less than or equal to the size of the cache, Eq. (3) is trivially satisfiable, and all m
arrangements are conflict-free.

A quick conclusion is that we should use fully associative caches in embedded systems. However, fully ass
caches burn too much power to be useful at large sizes (several kilobytes or larger). One alternative is a des
disassociates naming from storage in the same vein as virtual memory [Jacob & Mudge 1998a, Jacob & Mudge
Jacob & Mudge 1998c]. This design allows one to freely locate objects in a tagless SRAM without having to c
their location in physical memory. Objects are relocated at the granularity of pages, which are on the order of 10
(128 bytes, 256 bytes, etc.). To provide real-time guarantees, every page of the SRAM is mapped in hardware.

The architecture is illustrated in Figure 2. A translation lookaside buffer (TLB) maps the contents of the SRA
a chunk of data is in the SRAM, its mapping is held in the TLB. As in normal TLBs, the search is fully-associative
TLB is a content-addressable memory (set-associative TLBs are possible and simply limit one’s flexibility in p
items in the memory space but are still more flexible than an ordinary cache). The difference is that the equivalen
page frame number (the “SRAM offset”) is not actually held in the TLB. It is inferred from the slot number. There
if the matching page number is found in slot 0, it refers to the first page within the SRAM, etc. The bottommost b
the physical address are an offset into this page. If the page number is not found in the TLB, it is assumed tha
valid physical address, and the address is sent to the primary memory system as-is. Thus, every physical addre
application generates may or may not reference an item held in the SRAM, and the caching is transparent.

Clearly, this organization supports the static management of data. One need only choose the subset of code

Figure 1: Possible layouts of cached and uncached objects in the memory space.

A

A

A

B

C

C

D

UNCACHED

CACHED

A

A

A

B

C

C

D

A

A

A

B

C

C

D

A

A

A

B

C

C

D

A

A

A

B

C

C

D

bij Eσ bij() mod C A⁄∈

oi
oi O∈
∑ M≤ 

  max σ bij()() M<()∧

σ bij() σ bxy()= i x=() j y=()∧⇒

k v bij()
bij Ek∈
∑∀ A≤
2

From
AM of
used to

ch-pad
es the
page-
t in the

block
gs in this

hat the
is large

che
as two
ached.
rary size
a] or a
slot to
of the

scheme.

contents
and both
t-in-time
de and
cache

lines of
l. 1996].
onflict
s an idea
:

f. If so,
that is to be held in the SRAM, copy that code and/or data into the SRAM, and initialize the TLB appropriately.
that moment on, all references to the cached information would go to the SRAM, not main memory. For an SR
8Kbytes and a granularity of 256 bytes (the page size), the TLB would have 32 entries. Larger page sizes can be
reduce the size of the TLB, at the expense of flexibility. This organization is also much more flexible than a scrat
RAM (i.e. the cache organization typically found in DSP architectures, in which an item’s address determin
memory structure in which it is held [Lapsley et al. 1994]) in that it allows the arbitrary arrangement of data at a
sized granularity, without regards to contiguity or inter-object distances. For example, items that are adjacen
memory space can be cached or not cached without creating any cache conflicts or addressing problems.

Note that this architecture is logically equivalent to a fully associative cache (a CAM) with an unusually large
size. The differences are that the system uses physical addresses, not virtual addresses, and the cache ta
organization are loaded by software, not by hardware (much like a software-managed TLB).

Note also that there is another way to make the decision problem solvable in polynomial time, assuming t
cached/non-cached regions have a simple organization (for example, one cached region per atomic object): if M
enough, then we can simply choose mappings from {oi} to Z0

+ such that each cached region begins exactly one ca
block beyond the previous object’s cached region. This fails to work when we have odd organizations, such
arrays, one in which every other block should be cached, the other in which every third block should be c
However, if the application has well-behaved cached/non-cached regions, M can be increased to (almost) arbit
by using virtual addressing. Hardware support includes a software-managed cache [Jacob & Mudge 1998
traditional TLB+cache, provided that the TLB is software-managed and fully maps the cache with at least one
spare, using the uppermost TLB slots for cached data and the remaining TLB slot/s for translating the rest
application in memory. This scheme requires translation forall memory locations, not justcachedmemory locations,
which means we need a small memory space, a large TLB, a large page size, or a well-thought-out translation

Capacity Misses: An Architecture for Real-Time Cache Management
If the cache is statically managed—that is, the decision of what to cache or not cache is made statically, and the
of the cache do not change during program execution—then all addresses are either cached or non-cached,
types of access have absolutely deterministic access times. The challenge is to determine at compile time (or jus
before program execution) what will be the most important page-sized regions of memory, and to rearrange co
data so that a page’s contents hold either “hot” data or “cold” data, but not a combination of both, otherwise the
would contain cold data that is referenced infrequently. These are jobs for a compiler and code profiler, along the
work done on DSP dataflow models and memory buffer usage [Lee & Messerschmitt 1987, Bhattacharyya et a

However, what if we cannot fit everything we want cached into the cache? The previous section solves c
issues for us, but what about capacity issues? The cache can also be dynamically managed—Figure 3 illustrate
similar to virtual memory. All code and data in a real-time application (as well as the RTOS itself) is categorized

1. Always to be cached
2. Never to be cached
3. Exhibits periodic locality

The first two categories speak for themselves. Hopefully, the size of category #1 is smaller than the SRAM itsel

Figure 2: A real-time cache architecture.

Page Offset

Physical Address

Page Number

Page NumbersSRAM Offsets

Translation Lookaside Buffer:

Page within SRAM

SEARCH
ON
PAGE
NUMBER

Tagless SRAM:

SRAM
INDEX PAGE

INDEX
3

tedly for
e loop

ould not

will call
at of the
aps the

block
utine is
identify
always-
fied such

es.” In

ications

e table
ems
the third category represents items that exhibit predictable burstiness in their locality—items that are used repea
a short duration and then not referenced at all for a long period. Examples that immediately come to mind includ
code and data. These items should be cached, but only while the loop is active—at other times the items sh
occupy cache space.

The real-time management of these items is effected by placing code at their beginning and endpoints. We
these code blocks the start-block and the end-block. The start-block brings the loop code and data (at least, th
loop code and data that will be cached) into the cache, and sets the TLB appropriately. The end-block unm
cached items from the TLB and writes out any data to the memory space that requires it.

Since the size of loops is usually known in advance for most DSP algorithms, the execution time for the entire
(including start-block and end-block regions) can be calculated statically. Thus, this cache management ro
deterministic and offers real-time memory management. The issues to explore are how well one can statically
blocks of code that are disjoint in their execution and small enough to fit into the cache at the same time as the
cached code and data. Current DSP analysis [Bhattacharyya et al. 1998, Bhattacharyya et al. 1996] has identi
blocks; the challenge will be to do the same for general embedded systems.

References
B. N. Bershad, D. Lee, T. H. Romer, and J. B. Chen. 1994. “Avoiding conflict misses dynamically in large direct-mapped cach

Proc. Sixth Int’l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS’94), pages 158–
170, San Jose CA.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. 1996.Software Synthesis from Dataflow Graphs. Kluwer Academic Publishers.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. 1998. “Synthesis of embedded software from synchronous dataflow specif
(invited paper).”Journal of VLSI Signal Processing.

B. Calder, C. Krintz, S. John, and T. Austin. 1998. “Cache-conscious data placement.” InProc. Eighth Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’98), pages 139–149, San Jose CA.

S. Carr. 1993.Memory-Hierarchy Management. PhD thesis, Rice University.

S. Carr, K. S. McKinley, and C. Tseng. 1994. “Compiler optimizations for improving data locality.” InProc. Sixth Int’l Conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’94), pages 252–262, San Jose CA.

B. L. Jacob and T. N. Mudge. 1998a. “A look at several memory-management units, TLB-refill mechanisms, and pag
organizations.” InProc. Eighth Int’l Conf. on Architectural Support for Programming Languages and Operating Syst
(ASPLOS’98), pages 295–306, San Jose CA.

B. L. Jacob and T. N. Mudge. 1998b. “Virtual memory in contemporary microprocessors.”IEEE Micro, 18(4):60–75.

B. L. Jacob and T. N. Mudge. 1998c. “Virtual memory: Issues of implementation.”IEEE Computer, 31(6):33–43.

P. Lapsley, J. Bier, A. Shoham, and E. A. Lee. 1994.DSP Processor Fundamentals. Berkeley Design Technology, Inc.

E. A. Lee and D. G. Messerschmitt. 1987. “Synchronous dataflow.”Proceedings of the IEEE, 75(9):1235–1245.

S. McFarling. 1989. “Program optimization for instruction caches.” InProc. Third Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’89), pages 183–191.

Brought in at start

Brought in
on demand

SRAM

PHYSICAL
MEMORY

Figure 3: Dynamic management of the real-time cache architecture.
4

	Hardware/Software Architectures for Real-Time Caching
	Introduction
	Conflict Misses: Virtual Addressing = Full Associativity
	Figure 1: Possible layouts of cached and uncached objects in the memory space
	(1)
	(2)
	(3)
	Figure 2: A real-time cache architecture

	Capacity Misses: An Architecture for Real-Time Cache Management
	Figure 3: Dynamic management of the real-time cache architecture
	1. Always to be cached
	2. Never to be cached
	3. Exhibits periodic locality

	References

