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ABSTRACT

 

The development of energy-conscious embedded and/or mobile sys-
tems exposes a trade-off between energy consumption and system
performance. Recent microprocessors have incorporated dynamic
voltage scaling as a tool that system software can use to explore this
trade-off. Developing appropriate heuristics to control this feature is
a non-trivial venture; as has been shown in the past, voltage-scaling
heuristics that closely track perceived performance requirements do
not save much energy, while those that save the most energy tend to
do so at the expense of performance—resulting in poor response
time, for example. We note that the task of dynamically scaling pro-
cessor speed and voltage to meet changing performance require-
ments resembles a classical control-systems problem, and so we
apply a bit of control theory to the task in order to define a new volt-
age-scaling algorithm. We find that, using our nqPID (not quite PID)
algorithm, one can improve upon the current best-of-class heuris-
tic—Pering’s AVG

 

N 

 

algorithm, based on Govil’s
AGED_AVERAGES algorithm and Weiser’s PAST algorithm—in
both energy consumption and performance. The study is execution-
based, not trace-based; the voltage-scaling heuristics were integrated
into an embedded operating system running on a Motorola M-
CORE processor model. The applications studied are all members of
the MediaBench benchmark suite.

 

Categories and Subject Descriptors

 

C.3[Special-purpose and Application-based systems]Real-time and
Embedded Systems.

 

General Terms

 

Algorithms, Performance, Design.

 

Keywords

 

Low-power, dynamic voltage scaling, PID, nqPID.

 

1. INTRODUCTION

 

Battery life (i.e. energy supply and rate of depletion) and execution-
time performance are arguably the two chief parameters determining
the usability of mobile embedded devices such as PDAs, cellphones,
wearables, and handheld/notebook computers. The problem is that
the goals of high performance and low energy consumption are at
odds with each other: while successive generations of general-pur-
pose microprocessors have realized improved performance levels,
they have also become more power-hungry. Users demand higher
performance without an accompanying cost in battery life or heat
dissipation, but it is not always possible to deliver this. Until Intel’s
recent emphasis on low power, many mobile computers used less-
than-cutting-edge processors because the longer battery life and
lower heat dissipation of those processors made them more attractive
in mobile environments despite their lower performance levels—for
example, P3 notebooks when P4 was the norm for desktops, or
handhelds that were MIPS-based rather than Pentium-based. 

The demand for extracting good performance while having low
energy consumption has caused processor manufacturers to take a
closer look at power-management strategies. More and more chips
supporting dynamic power-management are rolling out everyday,
with one of the more popular mechanisms being dynamic voltage-
frequency scaling (called simply “dynamic voltage scaling” or DVS
[9]), in which the processor’s clock frequency and supply voltage
can be changed in tandem by software during the course of opera-
tion. 

Using such a mechanism, a processor can be set to use the most
appropriate performance level at any given moment, spreading
bursty traffic out over time and avoiding hurry-up-and-wait scenar-
ios that consume more energy than is truly required for the computa-
tion at hand (see Figure 1). As Weiser points out, idle time represents
wasted energy, even if the CPU is stopped [16].

Voltage and frequency are scaled together to achieve reductions in
energy per computation. Scaling frequency alone is insufficient
because, while reducing the clock frequency does reduce a proces-
sor’s power consumption, a computation’s execution time is to a first
approximation linearly dependent on clock frequency, and the clock-
speed reduction can result in the computation taking more time but
using the same total energy. Because power consumption is quadrat-
ically dependent on voltage level, scaling the voltage level propor-
tionally along with the clock frequency offers a significant total
energy reduction while running a processor at a reduced perfor-
mance level. Transmeta’s Crusoe, AMD’s K-6, and Intel’s XScale
(née Digital StrongARM) and Pentium III & IV are all examples of
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advanced high-performance microprocessors that support dynamic
voltage scaling for power management.

However, it is not sufficient to merely have a chip that 

 

supports

 

voltage scaling. There must exist an entity, whether hardware or
software, that decides when to scale the voltage and by how much to
scale it. This decision is essentially a prediction of the near-future
computational needs of the system and is generally made on the
basis of the recent computing requirements of all tasks and threads
running at the time. The sole entity that has access to all of this glo-
bal information (resource usage, demand, and availability) is the
operating system [7], because all tasks are visible to it even if the
system design makes them invisible to each other. Thus, in actual
implementations, the decision to change the processor speed and
voltage level is typically made by the OS.

The goal of a voltage-scaling heuristic is to adapt the processor’s
performance level to match the expected performance requirements.
The development of good heuristics is a tricky problem, as pointed
out by Weiser et al. [16]: heuristics that closely track performance
requirements save little energy, while those that save the most
energy tend to do so at the expense of performance—resulting in
poor response time, for example. 

Recent studies [16, 6, 9, 10, 7, 12] investigate numerous different
heuristics that estimate near-future computational load and set the
processor’s speed and voltage level accordingly. Nearly all of the
algorithms studied represent different trade-offs in assigning weights
to recent observed processing requirements. The only dynamic vari-
ability in the assignment of weights has been through recognizing
and exploiting patterns in the performance requirements. For exam-
ple, a system could predict its future needs from an average of the
most recently observed needs unless the recent requirements match

some pattern of behavior observed in the distant past, in which case
the prediction is based on the distant past behavior instead of the
average of recent behavior. However, such schemes have been found
to perform no better than static weighted averages [6]. 

To our knowledge, no published heuristic has incorporated the

 

rate of change

 

 in a system’s processing requirements—the rate of
change, the derivative, is a powerful tool at the heart of control-sys-
tems theory [3] and well worth exploring in the context of dynamic
voltage scaling, as it indicates the rapidity with which a heuristic
ought to respond to changes in a system’s processing requirements.
Without considering the derivative, any heuristic using a fixed
assignment of weights will always respond to changes in computing
requirements at the same rate. When a relatively idle system is pre-
sented with a burst of activity, such a heuristic will take too long to
bring the speed of the processor up to the appropriate level, resulting
in a window of time during which the energy consumption is low but
the system’s performance is poor.

This paper presents a heuristic for dynamic voltage scaling that
incorporates the rate of change in the recent processing require-
ments. We took the equation describing a PID controller (

 

Propor-
tional-Integral-Derivative

 

), a classical control-systems algorithm [3,
8, 17] as our starting point, and modified it to suit the application at
hand 

 

-

 

 dynamic voltage scaling. We used this new nqPID (not quite
PID) algorithm and executed a full system (applications plus embed-
ded OS with the nqPID controller integrated into the OS) running on

 

SimBed

 

, an embedded-systems simulation testbed that accurately
models the performance and energy consumption of an embedded
microprocessor, complete with I/O and timing interrupts, system-
level support, and the ability to run the same unmodified binaries
that execute on our hardware reference platforms [2]. 

Figure 1: Energy consumption vs. power consumption.   Not every task needs the CPU’s full computational power. In many cases, for example the
processing of video and audio streams, the only performance requirement is that the task meet a deadline, see Fig. (a). Such cases create opportunities to run
the CPU at a lower performance level and achieve the same perceived performance while consuming less energy. As Fig. (b) shows, reducing the clock
frequency of a processor reduces power consumption but simply spreads a computation out over time, thereby consuming the same total energy as before. As
Fig. (c) shows, reducing the voltage level as well as the clock frequency achieves the desired goal of reduced energy consumption and appropriate performance
level.
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Most studies of dynamic voltage scaling have been trace-based,
with Grunwald et al. [7] providing one of the few execution-based
studies. We have implemented the most efficient of the published
heuristics, as determined by Grunwald (Pering’s AVG

 

N 

 

algorithm
[9], based on Govil’s AGED_AVERAGES algorithm [6] and
Weiser’s PAST algorithm [16]), and compared its performance and
energy behavior with our scheme. We find that the nqPID scheme
reduces CPU energy of an embedded system between 70 and 80%

 

1

 

(an improvement over AVG

 

N 

 

of 10–50%), while maintaining real-
time behavior: specifically, the jitter in task execution time is limited
to roughly 2% (an improvement over AVG

 

N

 

 of a factor of two).
An interesting point is that the algorithm’s effectiveness is not

obtained through careful tuning of parameters; our results are for a
set of controller parameters that were chosen to be conservative.
Fine-tuning of the parameters can yield jitter improvements of a fac-
tor of two and further energy reductions of 30%. 

A sensitivity analysis shows that neither system performance nor
energy consumption is particularly sensitive to the nqPID control-
ler’s parameters. The jitter values are under 4% of the desired period
for all parameter configurations, and more than half of the configura-
tions yield jitter less than 1%. The energy consumption results vary
by roughly a factor of two from worst configuration to best: The
energy consumed by systems with different nqPID configurations
ranges from 17% to 39% of the energy consumed by a system with-
out dynamic voltage scaling. More than half of the configurations
yield energy results within 25% of the optimum. We conclude from
this experiment that classical control-systems theory is very applica-
ble to dynamic voltage scaling, and we intend to explore the synergy
further.

 

2. BACKGROUND

 

This section presents brief backgrounds on dynamic voltage scaling,
voltage scheduling algorithms, related work, and the structure and
behavior of classical PID control algorithms. 

 

2.1. Energy Reduction in CMOS

 

The instantaneous power consumption of CMOS devices, such as
microprocessors, is measured in Watts (W) and, to a first approxima-
tion, is directly proportional to V

 

2

 

F:

where V is the voltage supply and F is the clock frequency. The
energy consumed by a computation that requires T seconds is mea-
sured in Joules (J) and is equal to the integral of the instantaneous
power over time T. If the power consumption remains constant over
T, the resultant energy drain is simply the product of power and time. 

It is possible to save energy by reducing V, F, or both. In practice,
V is not scaled by itself. For high-speed digital CMOS, the maxi-
mum clock frequency is limited by the following relation [1]: 

where V

 

THN

 

 is the threshold voltage. The threshold voltage must be
large enough to overcome noise in the circuit, so the right hand side
in practice ends up being a constant proportion of V, for given tech-
nology characteristics. Usually microprocessors operate at the low-

est voltage level that will support the desired clock frequency, so
there is not much headroom to lower the voltage level by itself. 

The term 

 

voltage scaling

 

 refers to changing the voltage and the
frequency together, typically in proportional amounts. The term 

 

volt-
age scheduling

 

 refers to operating-system scheduling policies that
use a processor’s voltage scaling facility to achieve higher levels of
energy efficiency. For example, it is more efficient to run a processor
at a continuous lower speed than to run it at full speed until the task
is completed and then idling, as is illustrated in Figure 1.

 

2.2. Clock/Voltage Scheduling Algorithms

 

Voltage scheduling can be separated into two tasks [6]:

 

•

 

Load Prediction

 

: predicting the future system load based on 
past behavior.

 

•

 

Speed-Setting

 

: Using the load prediction to set the voltage level 
and clock frequency.

The schedulers we have implemented are 

 

interval schedulers 

 

[16].
They perform the load prediction and speed-setting tasks at regular
intervals as the system runs. Interval schedulers use the global sys-
tem state to calculate how busy the system is and typically do not
use knowledge of individual task threads.

The primary trade-off is between energy and performance. Weiser
observed that a system attempting to run at a flat optimal speed will
have significant energy savings, but it will do so at the cost of miss-
ing deadlines. On the other hand, a system that responds quickly to
changes in the workload will not be as energy-optimal [16].

In the choice of algorithm, this becomes a choice between

 

smoothing

 

 and 

 

prediction

 

 [6]. A policy that tries to smooth out
changes in speed will reduce energy cost, while one that does accu-
rate prediction will improve performance. In theory, it should be
possible to achieve both goals to a reasonable degree. 

 

2.3. Related Work

 

Weiser’s seminal 1994 paper on voltage scheduling [16] described
the PAST algorithm, along with two other ideal (unimplementable)
algorithms. The PAST heuristic predicts that the current interval will
be as busy as the immediately preceding interval. To date, it is still
one of the best-performing algorithms, as shown by Grunwald [7]. 

Simulation-based and execution-based analysis of various voltage
scaling strategies has been done for workstations [6, 16, 5] and,
more recently, low-power embedded devices [12] and PDAs [7, 10].
Govil et al. study a wide range of heuristics from weighted averages
of past behavior to pattern matching of processor utilization [6]. Per-
ing et al. look at another range of heuristics and use a “clipped-
delay” metric (inspired by Endo et al. [4]) to quantify the resilience
of an application to slight degradations in performance [9]. Whereas
other studies have used processor idle time as the primary means of
predicting future performance requirements, Flautner et al. propose
a heuristic that observes inter-process communication patterns to
identify scenarios in which the OS can delay tasks until their results
are used by another process [5].

Most studies have been trace-driven and/or have considered ideal,
oracle-based heuristics to ascertain the optimal energy-performance
trade-off. Execution-driven studies, in which a real operating system
is instrumented with realizable heuristics, include those by Pering
[11], Grunwald [7], and Pillai [12]. Pering investigates design
options for extremely low-power general-purpose microprocessors;
Grunwald implements the best-of-class voltage-scheduling heuris-
tics in a Linux-based PDA environment; and Pillai simulates an
extensive range of parameters, then implements heuristics using a
chosen parameter set on an AMD K6-2-based laptop.

 

1. The resultant energy consumption of the dynamic voltage scaled system 
is 20–30% of the energy consumed by a system without dynamic volt-
age scaling. 
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As far as heuristics go, the cutting edge so far seems to be Per-
ing’s AVG

 

N 

 

algorithm, as demonstrated by Grunwald comparing a
number of different algorithms on the Itsy handheld computer [7].
AVG

 

N

 

 is a subset and simplification of Govil’s AGED_AVERAGES
algorithm and reminiscent of Weiser’s PAST algorithm. Under
AVG

 

N

 

, an exponential moving average with decay N of the previous
intervals is used. That is, at each interval, it computes a “weighted
utilization” at time t, 

which is a function of the utilization of the previous interval U[t].
The AGED_AVERAGES algorithm allows any geometrically
decaying factor, not just N/N+1.

Grunwald’s findings indicate that AVG

 

N

 

 cannot settle on a clock
speed that maximizes CPU utilization. The set of parameters chosen
could result in optimal performance for a single application, but
these tuned parameters need not work for other applications. How-
ever, they found that the AVG

 

N

 

 policy resulted in both the most
responsive system behavior and the most significant energy reduc-
tion of all the policies they examined.

 

2.4. PID Control

 

A PID (Proportional-Integral-Derivative) controller [17] is often
used in control systems to make the value of one variable “track”, or
follow, the value of another with minimum error. In other words, the
controller ensures that when the controlling variable changes its
value, the controlled variable changes accordingly. Usually, this
involves keeping track of past values of both controlling and con-
trolled variables. A full PID control algorithm with feedback has the
following equation:

in which 

 

y

 

 is the output of the controller at time 

 

t ,

 

 and 

 

x 

 

is the input
at time 

 

t

 

. In our case, the input is the measured workload and the out-
put is the estimated workload.

 

•

 

The 

 

Proportional

 

 part of the equation (the first term) makes 
sure the system reacts as soon as there is a change in the input, 
and the change in new output tries to follow the input.

 

•

 

The 

 

Integral

 

 part of the equation (the second term) is referred 
to as the error term or the feedback term, since it measures the 
net difference between the output an the input so far. It provides 
the stability in the circuit by making sure that the output 
follows the input, keeping the system stable.

 

•

 

The 

 

Derivative

 

 part of the equation (the third term) makes sure 
that the system responds to steady changes in the input 
efficiently. A rising input corresponds to a positive derivative 
term, causing the output to rise too.

Simpler control schemes often use just PI or PD controllers for effi-
cient control. However, the PID controller is the one used where effi-
ciency, stability and performance are all required. We show in this
paper how an adaptation of this kind of function can be used for effi-
cient voltage scaling in today’s microprocessors. 

 

3. METHODOLOGY

3.1. The nqPID Function

 

Equation  gives the equation for a full-blown continuous-time PID
controller. We need to simplify this equation and tailor it to the task

of voltage scaling before we can implement it as a software algo-
rithm executing on a discrete-time digital computer. We make the
following changes:

 

•

 

We convert the equation from continuous-time to discrete-time, 
replacing the integral with a summation.

 

•

 

Similarly, we replace the derivative with the difference between 
the current and the previous value of 

 

x

 

.

 

•

 

We remove the term 

 

y

 

 from the right hand side and thereby 
remove the feedback loop. Systems without feedback have 
simpler behavior than systems with feedback

 

2

 

. Because our 
goal was to perform a first-order exploration of control-systems 
theory to the task of dynamic voltage scaling, we felt this an 
appropriate step. Systems with feedback loops are much more 
complex than systems without, but they often provide better 
performance. In future work, we intend to delve into feedback-
based algorithms.

 

•

 

We cut the summation in the remaining integral term (now an 
average) from an infinite series of terms to a finite series of 
terms. It now represents the average value of 

 

x

 

 over the past 

 

m

 

 
intervals. 

 

•

 

We define 

 

utilization 

 

(also called the 

 

system load

 

) as the 
fraction of cycles that are busy in a given interval, and 

 

workload

 

 as the product of utilization and CPU speed.

Applying these changes to Equation  yields the following discrete-
time equation, where the 

 

y

 

 terms are the predicted loads and the 

 

x

 

terms are the measured workloads:

This equation represents a function that uses the previous 

 

m

 

 values
of the workload to predict what the next value of the workload will
be. This estimate of the workload is used to set the processor’s speed
and voltage level for the next time quantum. Throughout this paper,
“nqPID” will refer voltage-scaling strategies based on this equation.
The pseudo-code for the simplified, discrete-time algorithm is given
in Figure 2.

We revisit the different terms of the equation to see how this sim-
plified algorithm compares to the full PID algorithm of Equation :

 

•

 

The 

 

Proportional

 

 part of the equation (the first term) predicts 
that the next value of the load will be the same as that seen the 
last time. It makes sure that the system can react quickly to 
changes in workload. If the workload changes suddenly, the 
operating system can react to it appropriately in the next 
interval. This is similar to Weiser et. al.’s PAST algorithm [16].

 

•

 

The 

 

Integral

 

 part of the equation (the second term) predicts 
that the next workload will be the same as the average 
workload measured in the past few intervals. By averaging and 
“smoothing the ripples” in the workload, it tries to run the 
system at a constant optimal speed, thus reducing energy.

 

•

 

The 

 

Derivative

 

 part of the equation (the third term) predicts 
that if the workload increased in the last interval, it is likely to 

t[ ] N W t 1–[ ]× U t 1–[ ]+
N 1+

-----------------------------------------------------------=

y t( ) KPx KI x y–( ) td
0

t

∫ KD
dx
dt
------+ +=

 

2. For example, finite impulse response (FIR) filters are simpler to analyze 
than infinite impulse response (IIR) filters. In an IIR system, a pulse’s 
effects will never die due to the feedback loop; transient input signals 
will continue to affect the output forever. To make analysis more tracta-
ble, FIR systems put a finite window of time on the effects of any given 
input signal. 
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increase again and at the same rate. This is the real predictive 
part of the equation, because it anticipates the changes that 
might occur in the workload and lets the operating system 
make a better choice of the required speed setting.

By themselves, these are not very efficient. For example, the propor-
tional part does not adequately study past behavior, and so cannot
optimize power requirements. The integral part optimizes energy at
the cost of performance by not reacting fast enough (as it is an aver-
age of n values). The derivative part by itself cannot predict the
actual workload, only changes in the workload, so it is unsuitable for
steady-state operation. However, the consensus of all of these can
provide a very good estimate of what the next value of the workload
is likely to be. We take all three effects into account by taking a
weighted sum of them. 

There are several different but equivalent ways of looking at the
nqPID equation:

• From the mathematical point of view, this is a function that 
extrapolates the value of a given variable based on its previous 
values.

• From the control-systems point of view, this kind of transfer 
function provides fast response times and low errors.

• From the computer engineering point of view, this is just a data 
value prediction algorithm that is predicting the value of the 
system load based on its previous behavior.

Another advantage of this type of control is that it is relatively insen-
sitive to changes in its parameters: it provides good response for an
entire range, rather than a few values, of the coefficients. In other
words, the same coefficients could be used across all applications,
while still giving good performance. This is quantified later in our
sensitivity analysis.

3.2. System Issues

For this project, Motorola’s 32-bit M-CORE architecture [14, 13,
15] was used as the model architecture for our emulator. This archi-
tecture was chosen because it is one of the cutting edge embedded

processors on the market today, and the M-CORE was designed for
high performance and very low power operation. The M-CORE
allows 36 voltage scaling levels, corresponding to clock frequencies
from 2 to 20MHz.

As the target operating system, we used NOS [2], a bare-bones
multi-rate task scheduler reminiscent of typical “roll-your-own”
RTOSs found in many commercial embedded systems. We made
modifications to the NOS kernel that enable us to choose between a
system with no voltage scaling, an nqPID algorithm (with m=10,
Kp=0.4, Ki=0.2, Kd=0.4) and the AVGN algorithm (with N=3 [9,
10, 7]). The nqPID coefficients were chosen to reflect a middle-of-
the-road configuration that would not be fine-tuned to any particular
benchmark (cf. Figure 6). At any rate, as the figure shows, the
nqPID controller is only weakly sensitive to changes in moderate
values of these parameters. 

Care was taken to implement the Grunwald implementation faith-
fully. All parameters other than the algorithms themselves were kept
the same to ensure a fair algorithm-to-algorithm comparison. The
AVG algorithm was set to change speed whenever the workload
drifted out of its optimum range of 50-70% [7].

For benchmarks we used several benchmarks from the Media-
Bench suite [18]. To assess the effects of an increasing workload,
readings were taken with different numbers of tasks running simul-
taneously (2, 4, and 8), and with tasks having different periods.
More than eight tasks could not be run together without completely
missing deadlines, and in nearly all cases even 8 tasks represents a
workload level at which most deadlines are missed.

Lastly, note that a microprocessor cannot process data while its
core voltage or operating frequency is changing. It takes a finite
amount of time, and a finite amount of energy, to effect this change.
Changing voltage levels and clock frequencies lowers performance
and has a “cost” in terms of energy that must be made up by the
energy it saves. We use the same time values presented by Grun-
wald: clock scaling takes 200 microseconds; voltage scaling takes
250 microseconds. The energy consumed during the transition is
modelled as if the processor is executing the most energy-intensive
instructions. 

Figure 2: Psuedo-code for the nqPID algorithm.   The code shows only the speed-setting portion of the algorithm; as a result of the calculations, the CPU’s
speed is set to be directly proportional to the estimated load. Not shown is the update of the load[] array, any error-checking, etc.

// window of previous N actual system loads
load_t load[WINDOW_SIZE]; 

// Proportional term
estimated_load = Kp * load[0];

// Integral term
for (i=0;, tmp=0; i<WINDOW_SIZE; i++) {

tmp += load[i] / WINDOW_SIZE;
}
estimated_load += Ki * tmp;

// Derivative term
estimated_load += Kd * (load[0] - load[1]);

// Speed Setting
setPercentSpeed = estimated_load / MAX_LOAD;

The proportional term attempts to keep up
with changes in the measured system load.

The integral term attempts to average out 
noise in the system load and thereby 
avoid switching clock speeds and voltage 
levels unnecessarily  for example, as
would happen in response to a brief spike
of processor activity during an otherwise 
idle period.

The derivative term attempts to identify
rapid changes in system load so as to keep
up when the system suddenly needs high 
levels of performance, but also to quickly 
scale performance levels down when the 
system becomes idle.
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4. RESULTS

We present a comparison of the two heuristics in terms of how well
they trade-off energy and performance; we present a sensitivity anal-
ysis; and we discuss how the run-time behavior of the algorithms
affects their efficiency.

4.1. Energy and Performance

Our experiments use programs from the MediaBench suite of
embedded-systems applications [18] that we have ported to the NOS
embedded operating system. To vary the load on the system, two dif-

ferent periods were used for each benchmark, and 2, 4, and 8 tasks
were run simultaneously. Each “task” here refers to a producer-con-
sumer pair of processes. To measure the efficiency of the voltage-
scaling heuristics, we measure total CPU energy consumed by the
system (over a set number of user-level instructions) and the vari-
ability in a task’s execution time. Energy is reported in milliJoules;
jitter is reported as a percentage of the task’s desired period. Note
that many real-time control systems require accurate timing of task
invocations; jitter around a percent or two is perfectly acceptable,
while jitter of more than four or five percent can make the operating
system completely unusable [17].

Figure 3 compares the efficiency of the nqPID and AVGN algo-
rithms for the ADPCM_DECODE benchmark. Figure 4 shows

Figure 3: Energy consumption and jitter for ADPCM_DECODE.   The graphs on the left represent task periods of 120ms; the graphs on the right represent
task periods of 72ms. Energy consumption of the non-DVS-enabled system is reported numerically in the energy graphs. 
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results for GSM_DECODE, and Figure 5 shows results for
ADPCM_ENCODE.

For each of the figures, the graphs on the left-hand side represent
different task periods than those on the right-hand side. For example,
in Figure 4, the graphs on the left-hand side represent task periods of
160ms; the graphs on the right-hand side represent task periods of
80ms. Each graph shows results for 2, 4, and 8 simultaneous tasks
executing. In all but one case, the workload at 8 tasks represents sys-
tem overload (the one exception is the 8-task nqPID controller con-
figuration running the 12K-cycle ADPCM_DECODE benchmark,
top left of Figure 3 … in this case the jitter is roughly 4%).

We find consistent behavior across all benchmarks and load con-
figurations. The nqPID scheme reduces CPU energy of an embed-
ded system to a point that is 20–30% of what a non-DVS-enabled
system would consume. This represents a 75% reduction in energy
and is an improvement over AVGN of 10–50%. The nqPID control-
ler manages to reduce energy to this level while maintaining jitter in

task execution time to roughly 2% (for tractable workloads). This
represents an improvement over AVGN of a factor of four.

4.2. Sensitivity Analysis

It can be argued that choosing the nqPID coefficients (the KP KI and
KD terms) is difficult to do well and can skew the results if the coef-
ficients are highly tuned for a particular benchmark or set of bench-
marks. 

Figure 6 shows the sensitivity of the system to choices of coeffi-
cients. We chose coefficients so as to sum to 100% (for purposes of
the graph, KP + KI + KD = 100%). This represents a planar cut
through the design space and simplifies design exploration. This
choice is justified so long as analysis shows that the design space is
relatively flat, otherwise a larger portion of the space would need to
be searched. 

Figure 4: Energy consumption and jitter for GSM_DECODE.   The graphs on the left represent task periods of 160ms; the graphs on the right represent
task periods of 80ms. Energy of the non-DVS-enabled system is reported numerically in the energy graphs. 
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Note that the graphs only show different values for KP and KI;
because we are searching a planar section of the space (not all com-
binations of Kj are valid), KD need not be shown as it can be easily
calculated. In the figures, circles are drawn around the points corre-
sponding to the coefficients chosen for our experiments: As men-
tioned earlier, we chose KP = 40%, KI = 20%, and KD = 40%.

The graphs represent the averages over all configurations of all
benchmarks—except for 8-task configurations which in most cases
represent intractable workloads.

As the graphs show, the design space is relatively flat, and most of
the designs lie within 25% of the optimal configuration. For exam-
ple, in the Energy graph, more than half of the designs lie below the
300mJ mark. In the Jitter graph, we see that the design space is a bit
more chaotic, but two-thirds of the designs lie below 1.5% jitter, and
no design exceeds 4%. Moreover, there is a large region of the

design space, corresponding to values of KI between 40 and 80
inclusive, that has very flat behavior and excellent jitter values, most
under 1%.

Why did we not choose one of these optimal points to begin with,
for purposes of comparison? Why did we choose the proportion 40-
20-40 for our coefficients? It is often found that coefficients chosen
for voltage-scaling studies are extremely benchmark-specific. A par-
ticular set of coefficients may run extremely well for a particular
benchmark and completely fail to deliver for others. Also, even the
values of the coefficients for a particular application cannot be
known on an a priori basis. We felt that to present the algorithm in
the most appropriate light, we must not tailor our parameters to the
applications we run, so that our results would indicate how the
design would likely fare in a typical real-world implementation.
Thus, the proportions chosen are conservative.

Figure 5: Energy consumption and jitter for ADPCM_ENCODE.   The graphs on the left represent task periods of 160ms; the graphs on the right represent
task periods of 80ms. Energy of the non-DVS-enabled system is reported numerically in the energy graphs. 
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4.3. Run-Time Traces

For a better understanding of our results, we took snapshots of the
systems during execution. Figures 7 and 8 show how the AVGN and
nqPID heuristics respond to system load over a brief window of exe-
cution, for two different combinations of benchmark and workload
profile. In each graph, the x-axis represents time in µsec. In the top
two graphs of each figure, the system load is plotted over time,
where 1 is maximum load, 0 is non-loaded. One graph is system
load for the operating system using the AVGN heuristic; the other

graph presents system load for the operating system that uses the
nqPID heuristic. Note that the two graphs should not be identical, as
each heuristic sets the voltage level and CPU speed differently,
thereby changing the future system load differently. 

In the bottom two graphs of each figure, the CPU speed that the
heuristic chose for each time quantum is plotted over time for the
same interval shown in the graph above it. Because the voltage level
is scaled proportionally with the CPU speed, the CPU-speed graphs
also indicate the voltage level at which the processor is running.

Several things are immediately clear when looking at the graphs:

Figure 6: Sensitivity of the system to choices of nqPID coefficients.   The coefficients were chosen to add to 100% (Kp + Ki + Kd = 100). Thus, the
graphs show different choices for Kp and Ki, as Kd can be easily calculated. Circles are drawn around the points corresponding to the coefficients chosen for
our experiments: We chose Kp = 40, Ki = 20, Kd = 40. As the graphs show, the design space is relatively flat.
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• The AVGN algorithm cannot converge to a solution and keeps 
oscillating. This behavior of the algorithm is expected, and it 
was analyzed by Grunwald [7]. 

• The nqPID algorithm settles down fast as soon as the workload 
stabilizes (it accurately tracks the workload).

• When the utilization rises sharply and then suddenly stops 
rising, the nqPID function slightly overshoots it, and 
sometimes oscillates a little bit before stabilizing. This is as 
expected. The derivative part of the equation predicts that there 
will be an upward slope, so this is tracked faithfully. However, 
it has no way of knowing that the workload will stop rising 
suddenly, hence the overshoot. The slight oscillation before 
settling down is expected and comes from the control dynamics 
of the nqPID equation. Intuitively, it is because the when the 
workload stabilized, the differential part of the equation went to 
zero, but the integral part of the equation had not caught up yet 
(because most of the terms in the integral were lower), hence 
the slight undershoot.

• The nqPID algorithm has less swing in voltage and does not 
respond to short-duration drops or rises in workload as much. 
This leads to both energy and performance benefits.

In general, both algorithms make use of the relatively wide range of
CPU speed settings available. Weiser points out that a wide range of
values can be a dangerous thing, because if a processor is in the low
range of performance settings, it might take far too long to get up to
an appropriate level when the system load rises rapidly, thereby both
reducing performance and wasting energy. However, we have found
that the nqPID algorithm, with its ability to track rate of change in
system load, seems to respond quickly and appropriately. The over-
shoot behavior is a hallmark feature of fast response time based on
the previously observed rate of change in the system, and one of its
great benefits is that it works in both directions: when the system
load scales rapidly in both the positive and negative directions,
allowing a controller that exploits this information to obtain both
appropriate performance when needed and energy savings when
system load is light.

5. CONCLUSIONS

Dynamic voltage scaling, or DVS, is a mechanism that enables soft-
ware to change the operating frequency and voltage level of a micro-
processor at run-time and thereby explore trade-offs between
performance and energy consumption. Numerous heuristics have
been explored with the goal of achieving the best trade-off possible,

Figure 7: System trace for ADPCM_ENCODE, 4 tasks, 160ms period.   The graphs plot the system activity (system load and CPU speed) over the same
window of time for the two voltage-scaling heuristics. Time is in milliseconds. CPU speed is in MHz, and system load is between 0 and 1.
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and nearly all of these heuristics are variations on weighted averages
of past system load. 

We have developed an nqPID function as a heuristic to control
DVS on an embedded microcontroller. The primary strength of our
heuristic compared to previous work is that it considers the rate of
change in the system load when it predicts what the next system load
will be.

We implement the controller in an execution-driven environment:
a simulation model of Motorola’s M-CORE microcontroller that is
realistic enough to run the same unmodified operating system and
application binaries that run on hardware platforms [2]. The simula-
tion model is instrumented to measure performance as well as
energy consumption. The controller is integrated into the embedded
operating system that executes a multitasking workload. As a com-
parison, we also implement the AVGN heuristic, as it was found by
Grunwald to have the best trade-off between energy and perfor-
mance when implemented on an actual PDA system [7].

We find that the nqPID algorithm reduces energy consumption of
the embedded processor significantly. Energy is reduced to roughly
one quarter of what it would have been without voltage scaling, and
jitter in the system is kept to a small percentage of the tasks’ periods.
The scheme outperforms AVGN in both energy consumption and
performance as measured by jitter in the periodic task’s execution
time. Moreover, the algorithm’s coefficients were chosen to be very

conservative, and a sensitivity analysis shows that the design space
is not particularly sensitive to changes in these parameters.

We note that the nqPID algorithm is able to quickly settle to an
optimum operating point, whereas a simple running average oscil-
lates about the optimum (this latter feature is not surprising and was
already analyzed by Grunwald [7]). In general, control-systems
algorithms seem quite promising for voltage scheduling policies. 

Our future work will be to investigate more sophisticated control
algorithms and to perform a comprehensive comparison and charac-
terization of existing DVS heuristics.
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