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Abstract—We present a system architecture that uses high-efficiency processors as opposed to high-performance processors, NAND
flash as byte-addressable main memory, and high-speed DRAM as a cache front-end for the flash. The main memory system is
interconnected and presents a unified global address space to the client microprocessors. A single cabinet contains 2550 nodes,
networked in a highly redundant modified Moore graph that yields a bisection bandwidth of 9.1 TB/s and a worst-case latency of four
hops from any node to any other. At a per-cabinet level, the system supports a minimum of 2.6 petabytes of main memory, dissipates
90 kW, and achieves 2.2 PetaFLOPS. The system architecture provides several features desirable in today’s large-scale systems,
including a global shared physical address space (and optional support for a global shared virtual space as well), the ability to partition
the physical space unequally among clients as in a unified cache architecture (e.g., so as to support multiple VMs in a datacenter),
pairwise system-wide sequential consistency on user-specified address sets, built-in checkpointing via journaled non-volatile main
memory, memory cost-per-bit approaching that of NAND flash, and memory performance approaching that of pure DRAM.

F

1 MOTIVATION

CURRENT HIGH-PERFORMANCE SYSTEMS fill rooms and dis-
sipate on the order of 10 megawatts. To reach exascale,

high-performance systems will have to increase performance
by 100⇥ without dissipating any more power—i.e., more per-
formance, more capacity, and more bandwidth must all be
delivered at no cost. A system design is proposed, targeting
computation efficiency and addressing current limitations:

• Large systems dissipate significant power, often in the
megawatt range for petascale computing capabilities,
with the most efficient high-performance machines run-
ning in the range of 1–5 GFLOPS per Watt [10][11].

• Large systems either have limited per-socket main mem-
ory capacity [2][3], or they provide high capacity at ex-
tremely high price points (factors of 10–100x the cost/bit
of consumer main-memory systems) [9].

• The per-node power is high: for example, the POWER8
chip alone dissipates 350W, and the per-node memory
systems often dissipate power on par with that of the
processing components [7]. Note that 1TB of DRAM
dissipates roughly 100W, just in refresh.

• The network file systems can represent a significant
bottleneck, particularly in those systems that use check-
pointing to extend their application runtimes.

• The programming models typically do not allow easy
sharing of data across the machine, for instance by
allowing shared pointers system-wide.

• Systems are not easily partitioned, such that different
threads (e.g., different VMs) can be assigned different
amounts of memory, beyond what is on a single node.

Our proposed system uses low-power microprocessors [6] in-
stead of high-performance processors, for high-density system
packaging and better energy efficiency. It uses NAND flash as a
load/store-addressable main memory to reduce both memory
power and memory cost-per-bit; also, larger per-socket capac-
ities reduce the need for network data movement. The system
uses DRAM as a last-level cache to approach DRAM perfor-
mance [5]. It journals the flash main memory system, to obviate
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Fig. 1. Networking the memory system

the need for a separate file system. It networks the memory
system to produce a flat, global memory space. It uses node-
to-node signaling based on Moore graphs [1] to achieve low
latency between remote nodes. As a result, the system supports
2.6 PB of main memory, achieves 2.2 PetaFLOPS, and dissipates
under 90 kilowatts per cabinet. The resulting 20+ GFLOPS per
Watt would put the design in the top tier of HPC efficiency
(for comparison, the top computer in the most recent Green500
ranking achieves 5.3 GFLOPS per Watt [10]). Moreover, given
enough I/O ports, it could scale to 200 PFLOPS, 250 PB of main
memory, and a bisection bandwidth of 3,000 TB/s, at 10 MW.

2 SYSTEM ARCHITECTURE

As shown in Fig. 1, typical systems network together their pro-
cessing components; this complicates addressing across nodes,
as pointers are not easily shared. Instead, by networking the
memory, it becomes trivial to export a system-wide global phys-
ical (or virtual) address space, facilitating applications such as
large graph algorithms. In general, the processor interconnect
could still remain, for example to provide a facility for explicit
message-passing or to handle coherence traffic for any caches.

2.1 The Move to Flash for Main Memory
Once, SRAM was the storage technology of choice for all main
memory systems [13][12]. However, when DRAM hit volume
production in the 1970s and 80s, it supplanted SRAM as a
main memory technology because it was cheaper and denser.
Though DRAM was slower than SRAM, it was argued that
an appropriately designed memory hierarchy, built of DRAM
as main memory and SRAM as a cache, would approach the
performance of SRAM, at the price-per-bit of DRAM [8]. Today,
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we could speed computers by up to an order of magnitude if we
built main memory out of multiple gigabytes of SRAM instead
of DRAM—but this option is not even considered, because to
build that system would be prohibitively expensive.

Today we face a similar inflection point. For reasons both
technical and economic, we can no longer afford to build ever-
larger main memory systems out of DRAM. Flash memory,
on the other hand, is significantly cheaper, denser, and lower
power than DRAM and therefore should take its place. It is
now time for DRAM to go the way that SRAM went: move out
of the way for a cheaper, slower, denser storage technology, and
become a cache instead. While it is true that flash is significantly
slower than DRAM, one can afford to build much larger main
memories out of flash than out of DRAM, and we have shown
that an appropriately designed memory hierarchy, built of flash
as main memory and DRAM as a cache, will approach the
performance of DRAM, at the price-per-bit of flash [5].

Our memory organization is shown in Fig. 2: NAND flash
is used as the main memory technology, and DRAM is a cache
for flash. Among other things, this allows per-node capacities
starting at 1TB, without an increase in power dissipation,
and no significant loss of performance [5]. The performance
difference is roughly a factor of two compared to a 1TB DRAM
system (which would be prohibitively expensive to build).

2.2 Network Topology
The cabinet network is partitioned into a two-part hierarchy,
shown in Fig. 3. The system is a collection of boards, each a
collection of nodes. The network topology is based on Moore
graphs, from early computing systems [1]; Fig. 4 illustrates,
using the Petersen graph as an easily-visualized example. These
high-radix networks maximize the total nodes, given a max
latency (node-to-node hops) and a fixed number of I/O ports
per node. For example, the Petersen graph has ten nodes, each
with three nearest neighbors, and a maximum latency of two
hops between any two nodes. These tend to compare favorably
with meshes and even high-radix networks such as butterfly
and dragonfly topologies. For instance, a 2-hop dragonfly or
flattened butterfly network (e.g., rook’s graph) with 2n ports
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Fig. 5. Hoffman-Singleton graph as five disjoint Petersen graphs
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per node supports a maximum of (n + 1)2 nodes (n+1 fully-
connected nodes in each dimension), whereas a 2-hop Moore
network using 2n ports has an upper bound of 4n2 + 1 nodes.

Each rack contains 51 boards, each of which has 50 nodes.
The nodes on each board are connected in a Hoffman-Singleton
topology (illustrated in Fig. 5), a collection of fifty nodes, each
of which has seven ports, with a maximum latency across the
board of two hops. As the figure shows, the Hoffman-Singleton
graph contains five disjoint copies of the Petersen graph, and
clustering nodes this way reduces the inter-cluster wiring.

To support static routing, and to use the same layout for
each board (no need to custom design each board), we connect
every pair of boards through additional ports. In general, one
can construct, for any n-node board-area network, a rack-area
network of n2 + n nodes. For instance, the 10-node Petersen
graph yields a 110-node rack-area network comprised of eleven
boards. Fig. 6 shows the resulting rack-area network, based on
the Petersen graph. The nodes in Board 0 are labeled 1..10 (no
node 0); the nodes in Board 1 are labeled 0,2..10 (no node 1); the
nodes in Board 2 are labeled 0..1,3..10 (no node 2); etc.; ... the
nodes in Board 10 are labeled 0..9 (no node 10).

For all boards and nodes, the controller at Board X, Node Y



COMPUTER ARCHITECTURE LETTERS, PUBLISHED ON-LINE JUNE 2015 3

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

0

8

5

9

3

7

1

4

6

2

Fig. 7. Each node in the Petersen graph defines a unique 3-node subset
lying at a distance of 2 from each other and a distance of 1 from the rest

is logically paired with the controller at Board Y, Node X: each
controller has n neighbors, and we connect those neighbors to
each other (the n neighbors of Node Y on Board X connect to
the n neighbors of Node X on Board Y). In a two-hop network,
each node defines an n-node subset of nodes that are two hops
from each other, and any other node in the graph is at most a
distance of 1 from a node in the subset. Fig. 7 illustrates this in
a 10-node Petersen graph.

In our network of 51 boards of 50 nodes each, every unique
node has seven unique neighbors, and so there are seven links
from Board 0 to Board 1, seven links from Board 1 to Board
2, and, generally, seven links from Board i to Board j. This
doubles the I/O ports on each node, from seven to fourteen
ports. It also increases the maximum hop count from two to
to four, but it extends the network to 2550 nodes. A reference
to a node within the same board will take at most two hops.
A reference to a remote board will first go to a gateway node
for that remote board, and, by definition, a gateway node is
at most a distance of one hop from every node on the board.
Thus, the maximum number of hops is four: at most one local,
one board-to-board, and at most two across the remote board.

The bisection bandwidth is relatively high. Each node has
14 inter-node links; 7 connecting to nodes on the same board;
7 to other boards. Each link is bidirectional at a conservative
2GB/s, for low power link I/O. Two 1024-byte messages can
be sent in opposite directions on a link every microsecond.
35,700 simultaneous messages can be in-flight at any given
moment, half of those between nodes on different boards.
Cutting through the middle of the network, at the narrowest
part, yields 26⇥ 25⇥ 7 links ⇥ 2GB/s, for a total of 9.1 TB/s.

2.3 Network Redundancy
In general, the redundancy in networks based on Moore graphs
is similar to that of meshes or butterfly/dragonfly networks.
When a link goes down, all nodes in the system are still
reachable; the latency simply increases for a subset of the nodes.
Fig. 8 shows the Hoffman-Singleton graph (relevant links only,
for clarity), with the link between nodes 0 and 1 cut. Node 1 and
its remaining nearest neighbors are shaded in dark grey; node
0 and its remaining nearest neighbors are shaded in medium
grey. As the figure shows, only communications involving node
0 or node 1 are affected: the latency between node 0 and node 1
is now 4 and can take any route, and the latency between these
nodes and the neighbors of the other is now 3 and can take any
route (we use random routing in the case of link failure).

2.4 Global Memory System
The per-node capacity is extremely large, to reduce inter-node
data movement as much as possible. At each node, a highly
banked, multi-channel DRAM system serves as a cache for
a highly banked, multi-channel flash system, and the DRAM
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cache uses a large block size that matches the flash page size.
Due to the large latency disparity, is important to prefetch con-
stantly, and we have found that even simple n-block lookahead
works well, as do the aggressive SSD-prefetching heuristics in
the Linux file system [5]. Each flash channel can operate at up to
800 MB/s [4], and using multiple channels enables prefetching
on otherwise idle channels while handling demand-page data
(which occupies a channel for a long time: ⇠10,000 cycles).

To simplify the development of extremely large inter-node
address spaces, we have networked the memory system, such
that a global 64-bit address space can be exported and shared
across multiple clients without need for pointer swizzling
or any other translation. Among other things, this supports
applications with extremely large data sets, such as irregular
graph applications and in-memory databases. It also supports
the easy partitioning of the entire space into different sections to
support different applications, such as VMs, that require their
own dedicated resources, though some of those resources may
be remote. As described earlier, the latency between nodes is
at most four network hops, and the topology and its bisection
bandwidth support thousands of simultaneous transfers.

While the system offers a global address space, it does not,
however, offer coherent caches; if cache coherence is desired, it
must be provided by the user application. The memory system
provides a primitive that guarantees pairwise sequential con-
sistency between data objects, across all 2.6PB of main memory,
by co-locating objects thus paired on the same home node, and
therefore access to the object pairs is serialized by definition [5].
However, as should be obvious, this guarantee does not hold if
the user code caches the data objects.

2.5 Node-Level Power and Processing Capabilities
Computation at each node is handled by a low-power, high-
performance multicore processor. Our initial design targets the
64-bit Bostan chip from Kalray, which combines 256 VLIW cores
on one chip. These chips run Linux, support MPI and OpenMP,
and are programmed in C, C++, and Fortran. Each chip delivers
max 845 GFLOPS and dissipates 24W at 800 MHz [6]. Each
node has 64GB of DDR3 SDRAM and 1TB of NAND flash, each
of which dissipates 4W under load. The I/O links dissipate
an additional 3W, giving 35 Watts per node, and a cabinet-
level total under 90 kW. The peak rate is 0.845 TFLOPS per
node, for 0.845 ⇥ 2550 = 2155 TFLOPS at the rack level. This
yields a power-efficiency rating of over 20 GFLOPS per Watt,
comparing favorably with typical high-performance systems,
which are typically well below 10 GFLOPS per Watt.

For larger systems, though we could use a more tradi-
tional multi-cabinet fabric like InfiniBand, we would prefer to



COMPUTER ARCHITECTURE LETTERS, PUBLISHED ON-LINE JUNE 2015 4

continue scaling out the Moore-graph network topology. This
would require a chip design with significant I/O requirements
(several dozen I/O ports for chip-to-chip communication),
which no current commercial CPU offers. We are leaning to-
ward the option of designing a custom NIC for this purpose.
For example, were one able to build a 50-port low-power NIC,
one could connect 100 racks at 2,500 nodes per rack, with a
system-wide four-hop maximum latency (all 250,000 nodes in
the system would lie at a max distance of 4 from each other),
and a bisection bandwidth of 3,000 TB/s.
2.6 Journaled Main Memory
Flash memory lends itself to a journaled organization, if one
retains the most recently overwritten values instead of imme-
diately garbage-collecting them. When new data is written to
an existing page, NAND-type flash requires the new data to be
written to a new flash page. Typically, the new flash page is
taken from a free list maintained by the controller, and the old
page is placed on a dead list of pages to garbage collect, and the
mapping for that page is changed to point to the new location.

Instead of deleting or overwriting the old mapping informa-
tion, we keep it. Using flash makes main memory “permanent”
in the same sense as a traditional file system, and retaining
the previously written values makes the virtual address space
recoverable as well. This effectively unifies the virtual memory
system with the file system, thereby simplifying the operating
system’s design and providing built-in checkpointing. Nu-
merous applications in the high-performance space rely upon
checkpointing to make forward progress in the face of frequent
device failures (in large-scale systems with millions of semicon-
ductor devices, one-per-million failures become commonplace);
journaling the main memory system means that, instead of
dumping the entire address space’s contents to a remote I/O
device, a checkpoint is merely a synchronized cache flush.

Our design uses a direct-indexed mapping table kept in
flash, cached in dedicated DRAM while the system is operating.
Each entry of the table contains the following:

34 bits Flash Page Mapping
30 bits Previous Mapping Index
32 bits Sub-Page Valid Bits & Remapping Indicator
24 bits Time Written
8 bits Page-Level Status & Permissions
———— ————————————————————
16 Bytes Total Size

The Flash Page Mapping locates the virtual page within the
physical flash-memory system. A virtual page must reside in a
single flash block, but it need not reside in contiguous pages
within that block. The Previous Index points to the mapping
for the previously written page data. Time Written keeps track
of the data’s age, for use in garbage collection. The Sub-Page
Valid Bits and Remapping Indicator allow the data for a 64KB
page to be mapped across multiple page versions written at
different times and also allow for pages within the flash block to
wear out. The Virtual Page Number directly indexes the table;
the indexed entry contains the mapping for the most recently
written data. As pages are overwritten, old mapping info is
moved to free locations in the table, maintaining a linked list,
and the indexed entry is the head of the list. Fig. 9 illustrates.

When new mapping information is inserted into the table,
it goes to the indexed entry, and the previous entry is copied
to an unused slot. Note the pointer value in the old entry is
still valid after it is copied. The indexed entry is updated to
point to the previous entry. The Previous Mapping Index is 30
bits, for a maximum 1B table entries, meaning that it can hold
three previous versions for every virtual page in the system.

Table State 
After Page 
Modification

Mapping for 0x1234ABCD, v2

Mapping for 0x1234ABCD, v1

Mapping for 0x1234ABCD, v3

VPN 0x123ABCD

28-bit index

256M table entries
28-bit VPN is an index into 

the bottom 256M table 
entries, which require 4GB 
of storage. The rest of the 

table holds mapping 
entries for previously 

written versions of pages.

…

Free Space
Topmost entries of table 

hold mappings for previous 
versions of pages.

Mapping for 0x1234ABCD, v2

Mapping for 0x1234ABCD, v1

Mapping for 0x1234ABCD, v4

Mapping for 0x1234ABCD, v3

…

Fig. 9. A page table for journaled flash main memory

The Virtual Page Size is 64KB, and pages are written to flash at
the granularity dictated by the flash device (for example, 8KB).

Note that the page size is simply a mapping construct: data
is moved into the CPU at a load/store granularity, and data is
moved between the DRAM cache and the flash backing store at
a flash page granularity. The 64KB size is not a data-movement
granularity; it is simply a mapping granularity that allows the
page table to be reasonably small and yet direct-mapped.

3 BOTTOM LINE

A new system architecture is presented that offers enormous
data footprint, significant compute performance, and yet rela-
tively low power dissipation. It offers a global physical/virtual
address space, journaled non-volatile main memory, high cross-
section bandwidth, low network latency, low per-bit memory
costs (approaching that of NAND flash) and high memory per-
formance (approaching that of DRAM). At the cabinet level, the
system provides 2.6 PB of main memory, achieves 2.2 petaflops,
and dissipates under 90 kilowatts. We have built a proof of
concept to test both inter- and intra-board communications; we
are currently developing our first full 50-node board.

We believe that this is an exciting building block for exascale
computing and big data applications, as it performs well and
can scale well. For instance, with a 50-port NIC at 10 W, one
could connect 100 racks at roughly 2,500 nodes per rack, with a
two-hop intra-rack latency, a four-hop inter-rack latency, and a
bisection bandwidth of 3,000 TB/s. This would support 250 PB
of main memory, exceed 200 PFLOPS, and dissipate 10 MW.
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