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Abstract

The Hybrid Memory Cube is an emerging main memory
technology that leverages advances in 3D fabrication tech-
niques to create a CMOS logic layer with DRAM dies stacked
on top. The logic layer contains several DRAM memory con-
trollers that receive requests from high speed serial links from
the host processor. Each memory controller is connected to
several memory banks in several DRAM dies with a vertical
through-silicon via (TSV). Since the TSVs form a dense in-
terconnect with short path lengths, the data bus between the
controller and banks can be operated at higher throughput and
lower energy per bit compared to traditional DDRx memory.

This technology represents a paradigm shift in main mem-
ory design that could potentially solve the bandwidth, capacity,
and power problems plaguing the main memory system today.
While the architecture is new we present several design param-
eter sweeps and performance characterizations to highlight
some interesting issues and trade-offs in the HMC architecture.
First, we discuss how to best select link and TSV bandwidths
to fully utilize the HMC'’s potential throughput. Next, we an-
alyze several different cube configurations that are resource
constrained to try to understand the trade-offs in choosing
the number of memory controllers, DRAM dies, and memory
banks in the system. Finally, to present a general characteriza-
tion of the HMC’s performance, we compare the execution of
HMC, Buffer-on-Board, and quad channel DDR3-1600 main
memory systems showing that for applications that can exploit
HMC'’s concurrency and bandwidth, a single HMC can reduce
full-system execution time over an extremely aggressive quad
channel DDR3-1600 system by a factor of two.

1. Introduction

In recent years, the modern main memory system has been

unable to maintain pace with ever-improving CPU designs.

With today’s multi-core and multi-threaded processors with

aggressive pipelines and out of order scheduling, the demands

on the main memory system are more onerous than ever. There
are three major problems that today’s systems encounter:

e Memory bandwidth is insufficient to meet the demands of
modern chip multiprocessors as the number of cores on chip
increases

e Memory capacity per core is insufficient to meet the needs
of server and high performance systems because the capac-
ity per channel is not increasing significantly [9, 10]

e Memory power consumption is beginning to dominate in
large systems (i.e., High Performance Computing) [19]

In this paper we examine a new memory technology called
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the hybrid memory cube which has the potential to address
all three of these problems at the same time. The HMC tech-
nology leverages advances in fabrication technology to create
a 3D stack that contains a CMOS logic layer with several
DRAM dies stacked on top. The logic layer contains several
memory controllers, a high speed serial link interface, and an
interconnect switch that connects the high speed links to the
memory controllers. By stacking memory elements on top of
controllers, the HMC can deliver data from memory banks to
controllers with much higher bandwidth and lower energy per
bit than a traditional memory system.

Although the HMC addresses the capacity and power prob-
lems, this paper will focus on attempting to characterize the
performance of the HMC, examining the issues that must be
considered in order to optimize a cube’s performance. The
rest of the paper is structured as follows: section 2 will briefly
review the operation and problems with current SDRAM mem-
ory systems and discuss some currently proposed solutions
to these problems, section 3 will give some background on
the HMC architecture and discuss some of the benefits of this
serially-attached stacked DRAM technology, section 4 pro-
vides an overview of our methodology, several design space
explorations follow in section 5; random stream and full sys-
tem performance results are presented in section 6; and finally
we discuss related work in section 7 and conclude.

2. SDRAM Issues and Proposed Solutions

The modern DDRx memory system consists of a memory
controller which issues commands to a set of memory de-
vices that are soldered to a DIMM which is plugged into the
motherboard. The memory controller issues commands over a
dedicated set of command wires (i.e., RAS, CAS, WE, etc.),
along with the addresses on a dedicated address bus. Data is
transferred to and from the memory controller over a wide bi-
directional 64-bit data bus. Transfers on the data bus happen
on both the rising and falling edges of the DRAM clock.

The wide parallel data bus in DDRx systems creates a scal-
ing problem. As the DRAM clock rates increase to try to
keep pace with CPU bandwidth demand, the signal integrity
degrades due to increased crosstalk and signal reflection. The
problem is exacerbated by the fact that electrical contact to
the DIMMs is maintained by physical pressure of the DIMM
slot and not a permanent connection such as with solder. This
has created a situation where as the DRAM clock increases,
motherboards support fewer and fewer DIMMs per channel.



2.1. Proposed DDRx Solutions

Recently, industry has come up with several solutions to try to
ameliorate the bandwidth and capacity issues while keeping
the core DDRx technology unchanged.

2.1.1. DDR4. At the time of this writing, JEDEC is working
to create a DDR4 standard which will serve as the replacement
for current DDR3 technology. DDR4 represents the most
incremental solution to the signal integrity problem: reduce
the load on the memory bus by only allowing a single DIMM
per memory channel. By limiting channels to a single DIMM,
DDR4 is expected to scale at least to 3.2GT/s (2x the data
rate of DDR3-1600 [1 1, 13]). Although this approach delivers
higher bandwidth, it exacerbates the capacity problem: it
is difficult to put hundreds of gigabytes of memory into a

server if one can only install a single DIMM per channel.

Since a single memory channel requires hundreds of CPU
pins, scaling the number of channels to compensate for the
loss of channel capacity seems an unlikely solution. Finally,
the low availability and high cost of high density DIMMs often
makes them impractical for big systems where the memory
might cost an order of magnitude more than the other hardware
in the system. However, the DDR4 standard will likely include
extensions for stacked memory devices using TSVs as well as
switch fabrics to help alleviate the capacity problem [13].

DDR4 introduces advanced I/0 techniques such as Dynamic
Bus Inversion, Pseudo Open Drain, along with new On Die
Termination techniques to reduce bus power consumption and
increase signal integrity. DDR4 devices will operate at 1.2V,
resulting in a substantial energy savings over current DDR3
devices, which run at 1.35V. In addition to an increased 1/O
data rate, bank groups in DDR4 will add an extra level of
parallelism inside of the DRAM device to help sustain higher
throughput.

As a solution, DDR4 is able to incrementally increase the

main memory bandwidth and lower the power consumption;
however it sacrifices significant main memory capacity by
requiring a single DIMM per channel.
2.1.2. LRDIMM. Load Reduced DIMM (LRDIMM) takes
the approach of reducing the capacitive load on the memory
bus by adding latching registers to the control, address, and
data lines'. Since the electrical connections on the bus are
now made to a single register as opposed to multiple devices
in multiple ranks, the loading on the bus is reduced. The
load reduction mitigates the capacity problem by allowing
more DIMMs to be placed per channel than traditional DDRx
while maintaining reasonably high clock speeds. For example,
LRDIMM allows three DIMMSs per channel at 1333MT/s
at 1.5V whereas Registered DIMM (RDIMM) only allows
two [&].

Although this is a step in the right direction, LRDIMM
targets primarily the capacity problem, as the transfer rates of

I'This is in contrast to a Registered DIMM that only latches the high
fan-out control and address signals, but not the data bus.

LRDIMM are the same as normal DDR3 devices. Other than
the register chip, the core memory technology is unchanged in
LRDIMM.

2.1.3. FB-DIMM. In 2007, JEDEC approved a new mem-
ory standard called Fully Buffered DIMM (FB-DIMM). FB-
DIMM places a slave memory controller called an Advanced
Memory Buffer (AMB) on each memory module. The mod-
ules communicate with the main memory controller using a
high speed, full-duplex point-to-point link instead of a wide
parallel bus. Since all connections between modules are point-
to-point, each memory module must capture the data from
the link and either process the request locally or forward the
request to the next module in the chain.

By replacing the wide DRAM buses with high speed, point-
to-point links, many more DIMMs can be placed in a chan-
nel while maintaining high data rate. Though FB-DIMM
addressed the bandwidth and capacity problems of the mem-
ory system, it was never widely adopted due to power issues:
the power consumption of the AMB proved to be the biggest
problem with FB-DIMM since the AMB added a non-trivial
power overhead to each DIMM. FB-DIMM allowed approxi-
mately 24x the number of DIMMs in the memory system [7]
as compared to a DDR3 system and added approximately 4W
of power overhead per DIMM [7, | 8] resulting in power over-
heads that could exceed 100W. The power overhead of the
memory was on par with CPU power consumption at the time.

In the end, FB-DIMM was abandoned by vendors and taken

off industry road maps altogether.
2.1.4. Buffer on Board. Yet another approach to increas-
ing capacity and bandwidth is the “buffer on board” (BOB)
memory system. This type of memory system has been imple-
mented by the major vendors (Intel, IBM, etc.) for their high
end server systems. The BOB memory system is comprised of
a master memory controller on the CPU die communicating
with several slave memory controllers on the motherboard
over high speed, full-duplex serial links. Whereas the CPU
communicates with each slave controller using a packet-based
protocol, the slave controllers communicate with commodity
DDR DIMMs over a standard DDR memory channel. Each
slave controller can control one or more DRAM channels.

By splitting off each slave controller and allowing it to act
as a buffer between the wide DRAM channel and the CPU,
the BOB memory system can achieve both high bandwidth
and very large capacity. The capacity is increased because
the serial interface requires far fewer CPU pins per channel
as compared to a DDR channel. A large number of memory
channels can use the same number of CPU pins as just a few
DDR channels. Unlike the FB-DIMM memory system, which
requires a slave controller for each memory module, the BOB
system only requires a slave controller at the channel level.
Although this reduces the number of extra controllers required
in the system, a non-trivial power penalty remains to run them.
2.1.5. Problems With Proposed Solutions. Most of the pre-
viously discussed solutions take the approach of tweaking the



electrical characteristics or adding additional logic to commod-
ity DIMMs. Overall, each of these solutions are reasonable
for the short term, but none is viable in the long term since
none addresses the main memory problem along all three di-
mensions. DDR4 lowers power consumption and increases
bandwidth but fails to address capacity. LRDIMM bolsters ca-
pacity but keeps bandwidth the same while slightly increasing
power consumption. FB-DIMM and Buffer on Board increase
both bandwidth and capacity but impose non-trivial power
overheads.

The reason none of these technologies can address the entire
problem is that they maintain the DDRx memory technology
at their core. In order to solve all three problems (bandwidth,
capacity, and power) at the same time, it appears that the core
DDRx memory technology must be abandoned and a new
paradigm established.

3. Hybrid Memory Cube

3.1. Architecture Overview

The Hybrid Memory Cube (HMC) [2,21] is a new memory
device which is comprised of a CMOS logic layer die with
several DRAM dies stacked on top. The logic layer contains
several memory controllers which communicate with the mem-
ory storage elements in the DRAM dies through a vertical set
of interconnects called Through-Silicon Vias (TSVs). Be-
cause the TSVs provide a very short interconnect path between
dies and have a lower capacitance than PCB traces, data can
be sent at a high data rate through the stack. Furthermore,
smaller I/O drivers and simplified routing allow for a high
density interconnect between the dies.

When stacked together, the logic layer die and the memory

dies form a cube. An illustration of the overall cube archi-
tecture can be seen in Figure 1. When discussing the hybrid
memory cube, we will use the terminology set forth in the
HMC specification [2].
3.1.1. TSVs & DRAM Stack. In order to increase the par-
allelism of the architecture, the dies are segmented vertically
into independent vaults. At the base of the DRAM stack, the
CMOS logic layer contains one vault controller per vault as
well as I/O and switch circuitry to move requests between the
high speed links and vaults. Each vault controller controls sev-
eral vertically stacked partitions having one or more memory
banks.

A vault is roughly the equivalent of a traditional DDRx
channel since it contains a controller and several independent
banks of memory that all share a bi-directional data bus. How-
ever, unlike a traditional DDRx system, these connections are
vastly shorter and more dense than the DDRx bus traces on
a motherboard. Each partition is akin to a rank in a tradi-
tional DDRx system since it shares a TSV bus with the other
partitions. Compared to a traditional DDRx system that may
have up to four independent channels per CPU socket, an
HMC could potentially provide the equivalent of 16 or more
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Figure 1: The HMC Architecture. Requests flow over the
high speed links to an interconnect that transmits
them to their target vault controller. Each vault con-
troller sends commands to write/read data to/from
the memory banks in each partition. After the DRAM
access completes, data is transferred back through
the interconnect to the high speed links where it is
sent toward the CPU.

independent channels for higher memory parallelism.

3.1.2. Logic Layer I/O. Each cube communicates with the
host processor or with other cubes over a series of full-duplex
links. Each link is comprised of several high speed lanes that
typically run at several gigabits per second per bit-lane (gi-
gabytes per second per link). A link contains independent
request and response paths that are unidirectional and differ-
entially signalled. Links contain buffers that queue requests
before serializing the data into 16 byte flits [2]. Upon arriving
at the other end of the link, the requests are de-serialized and
error checked. A switch interconnect implemented in the logic
layer routes requests and responses between the links and local
vault controllers. Requests from any link can access any vault
inside of a cube. If requests are not destined for a local cube,
they can be routed to another link to be transmitted to another
cube.

3.2. HMC Benefits

3.2.1. Capacity. One of the clear benefits of an HMC archi-
tecture is that it addresses the capacity and density problems of
current DRAM technology. The capacitors inside of a DRAM
die must maintain a minimum capacitance to be able to store
charge long enough to avoid corruption or incessant refreshing.
It is difficult to shrink the DRAM cell size while maintain-
ing the same capacitance, and thus improvements in DRAM
density have slowed in recent years. Due to the minimum
required capacitance, it is unclear how much longer DRAM
can continue to scale down to improve the density of a single
DRAM die.

Through-silicon vias allow multiple DRAM dies to be



stacked together (currently demonstrated parts have 4 dies,
but 8 dies have been mentioned). By adding dies vertically, a
single cube can contain 4 or 8 times the storage in the same
package footprint without having to further increase DRAM
cell density.

Furthermore, since multiple cubes can be chained together,
it is possible to add capacity by adding extra cubes. Since the
high speed link interfaces regenerate the signal at each link,
theoretically any number of cubes could be chained together
(though in practice this will be limited by latency and loading
considerations).

3.2.2. Parallelism and Aggregate Bandwidth. The TSVs
provide a high bandwidth connection between the logic layer
and the DRAM dies and can transfer data at over a hundred gi-
gabytes per second. Since there are many independent vaults,
each with one or more banks, there is a high level of paral-
lelism inside of the cube. The high level of parallelism and the
high density of the TSVs allow for a large number of relatively
slow DRAM devices to take advantage of the high aggregate
bandwidth provided by the links. Overall, the total aggregate
bandwidth can be an order of magnitude higher than current
DDRx systems (for example, [22] shows a sample HMC chip
running with a prototype Intel CPU at 121GB/s).

3.2.3. Energy Efficiency. By radically decreasing the length
and capacitance of the electrical connections the memory con-
troller and the DRAM devices, the HMC is more energy effi-
cient compared to DDRx memory devices. Additionally, since
much of the peripheral circuitry is moved into the logic layer,
the power cost of this circuitry is amortized over a large num-
ber of DRAM devices, saving on overall power consumption.
Claims about energy efficiency range anywhere from 7x [1] to
10x [17] over current generation memory systems.

3.2.4. Device Heterogeneity. Since a TSV process allows for
heterogeneous dies to be stacked together, each die can be opti-
mized for a specific purpose without having to make the typical
performance/power/density sacrifices required when using a
process not optimized for the application. The CMOS logic
layer is optimized for switching and I/O, while the DRAM
dies are optimized for density and data retention. If these
two dies were to co-exist in a single fabrication process, they
would both suffer (i.e., if DRAM is built in a logic process, it
can’t be dense; if switching logic is built in a DRAM process,
it can’t switch quickly). As a result of the stacking, each die
achieves good performance and energy efficiency while being
closely linked by a high speed TSV interface.

3.2.5. Interface Abstraction. The original SDRAM standard
purposely created many generations of “dumb” memory de-
vices: the memory controller was responsible for ensuring all
timing constraints were met. This enabled the DRAM devices
to contain a minimal amount of circuitry that wasn’t related
to reading the DRAM array or transferring data. While this
was a rational design decision at the time, it had the effect of
curtailing innovation in the memory system: once the standard
was written, nothing could be done to change the protocol.

Any deviations from the standard protocol required the agree-
ment of DRAM manufacturers, motherboard manufacturers,
CPU manufacturers, etc. Any additions inside of a DIMM
that were not protocol-visible would add to the product cost in
a commodity market where consumers make their decisions
based largely on price.

This problem was further exacerbated when the memory
controller migrated onto the CPU die. The CPU now had to
be intimately aware of the timing constraints of the particular
memory it was driving.

In the Hybrid Memory Cube, the device at the end of the
communication link is no longer “dumb” in that the CPU can
communicate with the cube over a general protocol that is
then converted into device-specific commands within the vault
controller. This allows for innovation in a number of differ-
ent ways. The first improvement is that the DRAM timing
inside of the cube can be changed without changing the CPU
interface. Furthermore, even the memory technology inside of
the stack could be completely changed without affecting the
interface. A second benefit of an abstract interface is that it
allows any communication medium that is capable of deliv-
ering packets between a CPU and cube to be used. Already,
researchers are thinking about how to replace electrical SerDes
with high speed optical interconnects [24,25,27] to decrease
power consumption.

4. Methodology

In the following experimental sections, we used HMCSim, a
cycle-based simulator developed by our research group for
Micron as part of their multi-year HMC design process.

For the first set of experiments (sections 5 and 6.1), we
perform limit-case studies by using “toy”” benchmarks such as
random stream that are designed to emulate the behavior of
HPC applications and systems, which can exploit extremely
high bandwidth and exhibit almost no locality whatsoever.

For the second set of experiments (section 6.2), we perform
full system simulation of applications from several benchmark
suites on Linux using the MARSSx86 full system simulator
[20], modeling a 16-core x86 CPU.

5. Design Space Exploration

The HMC architecture contains quite a large design space to
be explored in order to optimize the performance.

Within the DRAM stack, decisions must be made as to how
to expose the proper level of memory parallelism to effectively
utilize the available TSV and link bandwidth. This includes
choices such as the number of independent vaults, the number
of DRAM dies that should be stacked on top, and how many
banks are required. Each of these variables represent a perfor-
mance trade-off within the cube. Outside of the DRAM stack,
the choice of link bandwidth has a fundamental impact on the
performance.

First, we discuss how the effective link bandwidth varies
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with the request size and read/write ratio and how this impacts
the selection of TSV and link bandwidths. Then we explore
the trade-offs in stacking DRAM by modeling several “fixed
resource” configurations: different cube configurations that
have the same number of banks/TSVs/switch bandwidth/buffer
space but are organized in different ways. Through these ex-
periments, we show that, although the resources available are
identical, their organization can have a non-trivial performance
impact.

5.1. Link and TSV Bandwidth Selection

5.1.1. Packetization Overhead. The CPU communicates
with the HMC using symmetric full-duplex serial links that
transmit requests and data enclosed in packets. Similar to
network traffic, each packet contains information necessary
for routing, flow control, error checking, etc. in addition to
the request or data. Unlike a single bi-directional bus, each
link is composed of a dedicated request and response path
which makes it sensitive to the read/write ratio: write data
only flows on the request link while read data only flows on
the response link. For example, if the memory access stream
contains only writes, only the request link will be utilized,
while the response link will be idle.

We compute the theoretical peak link efficiency for differ-
ent read/write ratios by computing the ratio of data cycles to
total cycles (where total cycles include data cycles, idle link
cycles, and packet overhead cycles). It would be reasonable
to expect that for symmetric links the ideal read/write ratio
would be approximately 50%: write data would keep the re-
quest link busy while read data would keep the response link
busy. Figure 2 shows the impact of the read/write ratio on
the peak link efficiency for varying packet sizes with a 16
byte packet overhead. The interesting feature of this graph

Request Peak Raw Effective Peak

Size Efficiency Bandwidth Bandwidth
80 GB/s 44.4 GB/s

B 55.6% at 160 GB/s 88.9 GB/s
60% Reads 240 GB/s 133.3 GB/s

320 GB/s 177.8 GB/s

80 GB/s 57.6 GB/s

64B 71.9% at 160 GB/s 115.1 GB/s
56% Reads 240 GB/s 172.7 GB/s

320 GB/s 230.2 GB/s

80 GB/s 67.1 GB/s

1288 83.9% at 160 GB/s 134.2 GB/s
53% Reads 240 GB/s 201.3 GB/s

320 GB/s 268.5 GB/s

Table 1: Effective link bandwidth for various request sizes and
a 16 byte overhead. Larger requests achieve higher
effective bandwidth on the links.

is that the peak efficiency for all request sizes is greater than
50% reads. This is because of the fact that a read request
incurs a packet overhead twice (once for the request packet
and once for the response packet), and so the stream must con-
tain a greater number of read requests to keep both links fully
occupied. Table 1 summarizes the effective peak bandwidth
(corresponding to the peak of each curve in Figure 2 of various
link configurations and packet sizes.

It is also important to note that for all cases, it is impossible

to use 100% of the link bandwidth to transmit data, due to
packet overheads. As the request size becomes larger, the
peak efficiency grows and shifts toward lower read/write ratios
since the read request overhead is amortized over the larger
data size. Larger request sizes also help to increase the link
efficiency.
5.1.2. Selecting Link/TSV Bandwidth. From the discussion
in the previous section it can be concluded that in order to
counteract the reduction in effective link bandwidth, the link
throughput should be greater than the aggregate throughput of
the DRAM devices in order to maximize system-level through-
put. To determine the proper link bandwidth for a specific
aggregate TSV bandwidth, we configure two typical HMC
configurations: 128 total banks in 16 vaults and 4 DRAM dies
and 256 total banks in 16 vaults with 8§ DRAM dies [21]. Then
we select an aggregate TSV bandwidth and vary the aggregate
link bandwidth based on typical values given in the HMC
specification [2]. For this experiment, the switch parameters
are set to provide effectively unlimited bandwidth between
the links and the vaults so as to eliminate its impact. Figure 3
shows the results of several different link and TSV bandwidth
combinations for three read/write ratios for the 128 and 256
total bank configurations.

In all cases, increasing the TSV bandwidth beyond 160GB/s
yields diminishing returns (i.e., doubling the TSV bandwidth
from 160 GB/s to 320 GB/s results in a marginal performance
increase). 256 banks are able to provide a higher degree of
memory parallelism which are able to more effectively utilize
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higher TSV bandwidths. As the link bandwidth increases, the
overall throughput flattens out, indicating that the DRAM is
unable to utilize the extra available bandwidth. Since the link
overheads are significant at 66% and 76% reads, higher link
throughput is required to drive the DRAM to the peak band-
width. However, if the TSV bandwidth is fixed at 160 GB/s
as discussed above, increasing the link bandwidth beyond 240
GB/s does not yield a significant advantage (except in the 76%
case which must overcome a low effective link bandwidth).

Given these results, it appears that it is most efficient to pair
160 GB/s TSV bandwidth with 240 GB/s link bandwidth. This
result matches Figure 2 since the peak link bandwidth for 64
byte requests is 172.7 GB/s, which most closely matches the
160 GB/s TSV bandwidth.

5.2. Fixed Resource Configurations

The discussion in the previous section assumes a specific 128
and 256 bank configuration (16 vaults, 4 or 8 DRAM dies).
In this section we expand our design space by exploring a
group of configurations which are constrained by a fixed set
of resources but organized in different ways. That is, given a
fixed aggregate TSV bandwidth, fixed available queue space in
the logic layer, fixed switch bandwidth, fixed number of banks,
etc. is there an optimal way to structure these resources?

The first experiment focuses on choosing the number of
vaults and DRAM dies, while the second experiment examines
total bank allocation.

5.2.1. Number of Vaults and DRAM Dies. In this section,
we attempt to quantify the trade-offs of taking a fixed set

of banks and creating different cube configurations out of
them. For example, one can configure a cube with only a few
vault controllers and many DRAM dies stacked on top. This
would allow each vault controller to have extremely wide TSV
buses to the memory banks, but it could potentially be limited
by a lack of parallelism from having too few independent
channels. At the other end of the spectrum, one can envision a
cube with many vaults and fewer dies stacked on top. Such a
configuration would create more parallelism from independent
channels at the expense of having a narrower data path between
the controller and memory.

We use a random stream with 56% reads and hold the aggre-
gate TSV bandwidth at a constant 160 GB/s and the aggregate
link bandwidth at a constant 240 GB/s (as discussed in section
5.1.2). Note that in section 5.1.2 the switch bandwidth was
effectively infinite so as not to cause a bottleneck between
the link and DRAM, whereas in this experiment the aggre-
gate switch bandwidth is finite and held constant among all
configurations (i.e., doubling the number of vaults halves the
switch bandwidth available for an individual vault). Addition-
ally, we hold the total number of queue entries available in
the logic layer to be constant (such as command queues and
queues that hold return data) such that doubling the number of
vaults halves the available queue space in each vault. By also
holding the total number of banks constant, the bandwidth per
bank is also identical for all configurations. Therefore, the
performance differences are solely the result of the interaction
between the various components.

We track the utilization of each TSV bus by counting the
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Figure 4: TSV utilization of various 256 bank configurations
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The highest bandwidth configuration in each group
of bars is denoted by an asterisk. Note that some
configurations are invalid and are denoted by miss-
ing bars (ex: a configuration with 32 vaults and 16
dies would require 0.5 banks per partition, which is
considered invalid).

number of cycles a TSV is transmitting data or being idle.
Figure 4 shows the breakdown of TSV utilization averaged
among all the TSVs. The darker components represent the
portion of cycles spent transmitting useful data (reads and
writes) while the lighter components represent two kinds of
idle times when the TSVs are not being used to send data. The
“turnaround idle” component represents equivalent of rank-to-
rank switching time and write-to-read turnaround time in a
traditional DDRx system. Since partitions are analogous to
ranks in a traditional DDRx system (i.e., multiple partitions
share a common TSV bus), the simulator adds an idle cycle
between back-to-back data bursts from different partitions and
between reads and writes. The final idle component represents
the inability of the banks to utilize the TSVs for some reason
(e.g., bank conflicts, insufficient request rate, etc.)

Bars are grouped by the number of vaults, and each bar
within a group represents a different number of DRAM dies
in the stack. Configurations requiring less than one bank per
partition or greater than 16 banks per partition are considered

invalid. A bar with an asterisk top represents the highest
performing configuration for that group of bars.

It becomes immediately apparent that the configurations at
the extremes (4 vaults and 32 vaults) do not perform as well as
the others, as a large portion of their cycles are spent idling. In
the four vault case, this is due to the fact that the each vault has
a very wide TSV bus that transfers an entire 64 byte request
in much fewer cycles than the DRAM access time. Therefore,
the I/O and DRAM operations are not effectively overlapped,
causing an inefficient use of the TSVs.

At the other end of the spectrum, the 32 vault configuration
is limited by the interconnect between the links and the vaults.
Since the aggregate switch bandwidth is held constant, each
individual vault has limited switch paths to move requests in
and out of the controller, thus causing sub-optimal request
scheduling. This can be seen in the fact that, although this
configuration has narrow TSVs and the data takes many cycles
to transmit, the turnaround idle component is very small —
indicating that the controller is unable to schedule requests to
transmit back-to-back on the TSVs. This is also exacerbated
by the limited queue depths per controller, which diminishes
the opportunity for requests to be scheduled around conflicts.

The middle configurations (8 and 16 vaults) are able to
efficiently move data in and out of the controller as well as
to overlap I/O and DRAM access time. As the number of
DRAM dies in the stack grows, there is a slight increase in
the turnaround idle component. This is to be expected as
the probability of reads to different partitions grows with the
number of partitions and thus requires more turnaround cycles
to be inserted.

As the number of vaults increases from 8 to 16, the
turnaround component decreases significantly. Compared to
a 16 vault configuration, each vault in the 8 vault configura-
tion must service twice as many requests (albeit with twice as
much available TSV bandwidth). The increased request load
leads to a higher probability of needing to insert turnaround
cycles. The problem is further accentuated by the fact that
the relative cost of idling a wider bus for a single turnaround
cycle is higher than idling a narrower bus for a single cycle
(i.e., if a request typically takes 7 cycles followed by a cycle of
turnaround, doubling the bus throughput will reduce the data
time to n/2 cycles while keeping a single cycle turnaround
penalty). These two factors together account for the decrease
in the relative number of turnaround cycles when going from
8 to 16 vaults.

In this experiment, the configuration with 16 vaults and a
single DRAM die on top has the highest performance. How-
ever, it is unlikely that it would be feasible to create a single
DRAM die containing 256 banks and significant capacity.
Therefore, it is fortunate that there is only a small penalty for
adding extra banks by adding more DRAM dies to the stack
(and thus reducing the required capacity per die).

5.2.2. Total Bank Allocation. The discussion in the previous
section was limited to several 256 bank configurations. In
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Figure 5: Effect of increasing total number of banks. A con-
figuration with 128 total banks captures most of the
throughput offered by 240GB/s link bandwidth and
160GB/s TSV bandwidth.

this section we attempt to determine the proper number of
total banks required to efficiently utilize the cube’s bandwidth.
Each bank contributes a portion of the data bandwidth and
thus having an insufficient number of banks would lead under-
utilized TSVs while too many banks could potentially saturate
the available bandwidth.

As in the previous experiment we fix the aggregate link
bandwidth at 240GB/s and the TSV bandwidth at 160GB/s as
well as fixing the total logic layer queue entries and switch
bandwidth. Only configurations with four stacked DRAM
dies are chosen, as this yields the maximum number of valid
configurations for 64 to 512 total banks.

Figure 5 shows the effect of different numbers total banks
for various R/W ratios and numbers of vaults. Each group
of bars corresponds to a certain number of vaults, and each
colored bar in the group represents a different number of total
banks.

As discussed in the previous section, the 4 and 32 vault
configurations are unable to make efficient use of the DRAM
and so are not sensitive to the total number of banks. The
middle two graphs show that the 8 and 16 vault configurations
can achieve almost peak performance using 128 banks. In fact,
only in the 56% reads case (i.e., peak link performance) does
increasing the number of banks to 256 yield a 4.2% and 6.5%
increase in throughput in the 8 and 16 vault cases, respectively.
Since each bank requires extra circuitry (sense amplifiers, row
decoders), a trade-off could be made to build 128 larger banks
with less overall circuitry instead of 256 smaller banks. This
128 bank system would provide enough parallelism to cap-
ture a large portion of the available throughput while reducing
DRAM die complexity and power. Furthermore, some applica-
tions may be unable to utilize over one hundred gigabytes per

second of memory bandwidth and thus one could reduce the
bank-level parallelism and the aggregate throughput to save
on cost and power budgets.

In conclusion, this section has highlighted some important
issues in the design space of the HMC. The effective link
bandwidth is sensitive to the read/write ratio and packetiza-
tion overhead which requires links to have significantly higher
throughput than the TSVs. Adding more capacity to the cube
can be achieved by stacking more DRAM dies with only a
small performance penalty due to increased turnaround over-
head. With 160 GB/s TSVs, a 16 vault configuration is able to
reduce the impact of turnaround idle time and make the most
effective usage of the TSVs. Finally, in order to utilize 160
GB/s TSV bandwidth, at least 128 banks are required.

6. Performance Analysis

6.1. Memory Technology Comparison

Using our previous design space analysis as a guide, we con-
figure an HMC with 128 total banks, 16 vaults, 4 DRAM dies,
240 GB/s aggregate link bandwidth, and 160 GB/s TSV band-
width and compare its performance to other currently available
memory technologies. We simulate a quad channel DDR3-
1600 system in both single and dual rank configurations in
DRAMSiIm2 [23]. Additionally, we simulate a Buffer-on-
Board memory system using the BOBSim simulator [5] with
four 6.4GHz channels each populated with four DDR3-1600
DIMMs. We implement a common interface to all three sim-
ulators and first run it with a random stream generator. The
random stream is swept from 5% to 90% reads for all four
memory systems and the average data bandwidth seen memory
system boundary at the is recorded (i.e., packet overheads in
BOB and HMC are not counted as bandwidth).

Figure 6 shows the results of the read/write sweep. Each
curve is labeled with the peak achieved bandwidth and the
percentage of theoretical peak for that memory system (which
is computed based on the peak theoretical channel throughput
for each memory system). The single rank DDR3 memory
system does not have enough memory-level parallelism to
utilize the available data bandwidth, while the dual rank con-
figuration is able to achieve much better throughput. Since the
DDR3 memory system uses a single bi-directional bus it is
agnostic to read/write ratio. Interestingly, with the exception
of the single rank DDR3-1600 system, all three of the memory
systems achieve a peak bandwidth that is approximately 85%
of their theoretical peak bandwidth.

As in the HMC, the Buffer on Board memory system uses
full-duplex serial links with dedicated request and response
paths to communicate with the memory devices. This makes
the BOB system sensitive to the read/write ratio, but the peak
performance is shifted toward higher read/write ratios since
the links are asymmetric (request links are wider than response
links to account for packet overheads).

Although the ideal link utilization graph shown in section
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ical channel bandwidth.

5.1.1 has a sharp point, the HMC performance graph has a
smoother curve near the maximum bandwidth value. This
is partially due to the fact that the links are configured with
more available bandwidth than the TSVs (even with packet
overheads, the links provide greater than 160 GB/s effective
peak bandwidth between 50% reads and 60% reads). Addi-
tionally, as the number of reads increases, the TSV turnaround
overhead grows larger due to a higher incidence of reads going
to different partitions and thus decreasing the TSV utiliza-
tion. This shifts the maximum throughput to a peak at 50%
reads from the peak link efficiency at 55.6% reads for 64 byte
requests.

Overall, even when choosing aggressive comparison points
(quad channel DDR3 and BOB), the HMC outperforms these
technologies over the entire spectrum of read/write ratios. Al-
though the performance results presented here show promise
for delivering the higher bandwidth that modern CMPs de-
mand, our discussion has not included power. Previous sources
report 7-10x power savings as compared to DDR3 which
would make the HMC technology even more attractive, as it
would support much higher throughput while simultaneously
using less energy per bit.

6.2. Full System Simulations

Up to this point our discussion has focused on saturating a
single cube with a random stream to try to understand how
an HMC responds to the most demanding access patterns. In
this section we attempt to ascertain a more concrete picture of
the HMC'’s performance for a variety of workloads running
in a full system simulator presenting results as full system
execution time. Once again, we use a highly aggressive dual
rank, quad channel DDR3-1600 system as our comparison
baseline.

We augment the MARSSx86 [20] full system simulator to
utilize our HMC simulator as well as using the publicly avail-
able DRAMSim?2 bindings for MARSSx86 for the DDR3 com-

CPU 16 Out of Order x86 cores @ 3.2GHz
L1 Cache 128K L1-1/ 128K L2-D
L2 Cache 2MB shared L2

Table 2: MARSSx86 Configuration

Suite Name Input Size
PARSEC 2.1 facesim simlarge
fluidanimate | simlarge
streamcluster | simlarge
MANTEVO miniFE 100x100x100
NASOMP 3.3 | ft Class A
Iu Class C
sp Class C
Other STREAM 8M elements

Table 3: Workload Configurations

parison. MARSSx86 is a cycle-based simulator that models
an out-of-order, superscalar x86 multi-core CPU. It combines
the emulation capabilities of QEMU with very detailed x86
timing models which allows it to boot an unmodified Linux
operating system. Once a simulation begins, both user and
kernel execution are simulated.

MARSSx86 is configured to simulate a 16 core CPU run-
ning at 3.2GHz and 4GB of memory. A summary of the
parameters for MARSSx86 can be found in table 2.

In order to reduce simulation time and to ignore uninter-
esting parts of the workload such as application initialization
and shutdown, the programs are annotated with a "region of
interest" hook. These extra function calls are inserted into
the workload to start the simulation directly before the core
computation begins and stop the simulation after it ends. The
PARSEC benchmarks contain predefined regions of interest
while the other workloads are annotated by hand to include
the primary work done by the program. All of the workloads
presented here are compiled with OpenMP support and run as
16 threads inside of MARSSx86. A list of workloads and their



input sizes is given in Table 3.

Since each run simulates an identical portion of a program’s
execution, it is possible to directly compute the speedup be-
tween two runs by comparing the simulated runtime of the
region of interest.
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Figure 7: Performance of workloads in full system simulation.
The box plot summarizes the bandwidth distribution
over time with whiskers extending to the minimum
and maximum bandwidth. The speedup of HMC over
quad channel DDR3-1600 is shown for each work-
load.

Figure 7 shows a box plot that summarizes the bandwidth
distribution over time for the HMC and quad channel DDR3-
1600 memory systems for our full system workloads. Each
group of the boxes is labeled with the speedup of the HMC
over the DDR3-1600 memory system for a given workload.

Immediately, it becomes evident that, with the exception
of STREAM, ft.A, and lu.c, most of the workloads are not
able to achieve a significant speedup with the HMC. These
benchmarks are not memory bandwidth bound, and so we
see that the average bandwidth for both HMC and DDR3 are
almost identical. Even STREAM, the most memory intensive
benchmark in our set, is unable to stress the HMC enough
to reach the throughput levels seen in our previous random
stream simulations. Since all other parameters in the full
system simulation are identical except for the memory system
model used, it is only possible for the HMC to improve the
performance of memory intensive sections of the program.
To make the problem worse, we have observed in previous
experiments that the coherence protocol between the private
and shared caches often leads to a bottleneck between the CPU
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core and main memory.

There is, however, an interesting trend within these bench-
marks: long whiskers on many of the workloads indicate that
nearly all of the programs have some memory intensive sec-
tions that can take advantage of the HMC’s performance. This
is especially dramatic in fluidanimate, which has the lowest
average bandwidth but has a peak bandwidth that exceeds
many of the other benchmarks’ peaks.

To gain a better understanding of the execution of these
workloads, we compare the time-series execution of several
benchmarks running in full system mode with the HMC, quad
channel DDR3-1600, and “perfect” memory systems. The
“perfect” memory system is a model that only adds latency and
has infinite bandwidth (i.e., any number of requests can be
added per cycle and they are completed after a fixed latency).
We add a latency of tgep + tcr, + turs for a DDR3-1600 de-
vice, which represents the minimum time to open a row and
stream data out of that row. Although it the perfect model
doesn’t represent a realizable memory, it serves as a way to
characterize how memory intensive a particular application is.
That is, if a particular workload’s execution time cannot be
significantly decreased with the perfect model, the workload
is not memory intensive.

The time-series executions of several workloads is shown in
Figure 8. In these graphs, the x-axis represents the simulated
time. Since workloads are simulated between identical points
in the program, a shorter line indicates a lower execution time.
So, for example, the three distinct curves for ft.A show that
the DDR3 system takes almost 1500 milliseconds to execute;
HMC takes roughly 800; and the ideal execution time is just
under 500.

The most memory intensive of the workloads shown in
Figure 8 is the STREAM benchmark. All three lines clearly
show the 10 identical iterations of STREAM as it executes.
Furthermore, in the HMC line it is possible to see the different
phases of STREAM within each iteration. The first phase
of each iteration is a simple "copy" operation which requires
zero FLOPS for two memory accesses, making it the most
memory intensive. The subsequent phases (scale, sum, triad)
require several FLOPS to do computations in between memory
accesses, lowering the memory intensity. The final phase
(triad) phase requires the greatest number of floating point
computations along with one constant which is likely to hit in
the CPU cache. This makes it the least memory intensive and
can be seen as the small dip at the end of each iteration. The
DDR3 line varies within a much smaller range of bandwidth
indicating that all phases of each iteration are saturating the
memory system.

It is clear that STREAM is memory intensive by the drastic
execution time differences between the three memory models:
as the amount of available bandwidth increases from DDR3-
1600 to HMC to perfect, each of the 10 iterations of STREAM
become more compressed in time. With the increased memory
parallelism and bandwidth of the HMC, STREAM executes
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2.1x faster than with the quad channel DDR3-1600 memory
system.

A similar pattern can be seen in the execution of ft.A (also
shown in figure Figure 8). The iterations of ft.A can be seen
in all three lines, and each iteration becomes shorter in time
as the bandwidth of the memory system increases. However,
even with a perfect memory system, ft.A can only generate
140 GB/s of memory bandwidth and thus is unable to see such
a dramatic speedup from an improved memory system. Simi-
larly, 1u.C is unable make full use of extra memory bandwidth
and achieves a modest speedup.

Finally, fluidanimate represents a workload that is memory
intensive in very short bursts. Thus, even with a perfect mem-
ory system, it is unable to achieve any significant performance
gains due to the memory system.

From this initial set of simulations we conclude that some
truly memory intensive workloads stand to gain a significant
performance boost when using the HMC while less intensive
workloads will be able to maintain their performance at a
lower energy per bit.

7. Related Work
7.1. DRAM on CPU Stacking

Much of the previous work on 3D stacked memory has focused
on trying to put DRAM or SRAM stack directly on top of a
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CPU. Low level studies studies [4,6,28] attempt to characterize
the design space of different stack organizations for power
and performance. Several system level studies [3, 12, 14-16]
show how stacking memory on top of the CPU can result in
tremendous power and performance gains. However, since all
of this work focuses on stacking the memory directly on top
of the CPU, they explore a fundamentally different type of
architecture than the one discussed in our work.

7.2. Serially Attached Stacked DRAM

Udipi, et al. [25] examine how the use of emerging silicon
photonics can be efficiently utilized to connect a CPU to an
off-chip 3D stacked memory. Unlike much of the other related
work in this area, their main memory is not stacked directly
on top of the CPU. They propose an interface die that sits
below the memory dies and converts the photonic packet inter-
face into electrical signals and handles the low-level memory
scheduling details. They examine various configurations of
photonic stops in order to most effectively amortize the pho-
tonics power costs. Finally, they propose an “unscheduled”
interface policy between the CPU memory controller and the
DRAM to try to reduce complexity.

They build on their previous work [26] that proposes to
alleviate the “overfetch” problem (i.e., bringing an enormous
number of bits into the row buffers but only using a tiny frac-
tion of them) by making DRAM rows much shorter. One of



the biggest challenges they cited in this work was the lack of
throughput between the smaller banks and the main memory
controller. In their new work, the TSVs provide a low latency
and high bandwidth path from the banks to the interface die,
thereby eliminating the bottleneck. They are able to take ad-
vantage of the parallelism of a large number of banks through
the usage of the TSVs.

Although the architecture presented in [25] is very similar
to the HMC (high speed links providing an abstract memory
interface connected to an interface die with multiple memory
controllers), their work focuses more heavily on the photonics
aspect of optimizing the architecture.

8. Conclusion

The Hybrid Memory Cube is an emerging memory technol-
ogy with the potential to address the three main deficiencies
of today’s main memory systems by increasing capacity and
bandwidth per core and lowering the energy cost per bit. Since
the HMC represents a fairly radical departure from current
DRAM designs, we have highlighted several interesting perfor-
mance issues. First, we discussed the impact of packetized link
interfaces and their influence on the selection link and TSV
throughputs to account for the reduction in effective link band-
width. Then, several performance effects were highlighted
by using using several configurations with fixed resources to
determine the most efficient cube organization (number of
DRAM dies, memory controllers, banks, etc). We presented
some performance characterizations that show that an HMC
outperforms currently available main memory technologies
for random stream workloads. Finally, we showed the per-
formance of several multi-threaded benchmarks running in a
multi-core full system simulation environment. We conclude
that memory intensive workloads can achieve a non-trivial
speedup while less memory intensive applications can gain
more modest speedups, but all workloads can benefit from the
HMC’s power reduction.
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