
ENEE 446: Digital Computer Design — The RiSC-16 Instruction-Set Architecture

6), a
Uni-
ord-

esponds
e, by
reads

y sim-
uction

The RiSC-16 Instruction-Set Architecture
ENEE 446: Digital Computer Design, Fall 2000
Prof. Bruce Jacob
1. RiSC-16 Instruction Set
This paper describes the instruction set of the 16-bit Ridiculously Simple Computer (RiSC-1
teaching ISA that is based on the Little Computer (LC-896) developed by Peter Chen at the
versity of Michigan. The RiSC-16 is an 8-register, 16-bit computer. All addresses are shortw
addresses (i.e. address 0 corresponds to the first two bytes of main memory, address 1 corr
to the second two bytes of main memory, etc.). Like the MIPS instruction-set architectur
hardware convention, register 0 will always contain the value 0. The machine enforces this:
to register 0 always return 0, irrespective of what has been written there. The RiSC-16 is ver
ple, but it is general enough to solve complex problems. There are three machine-code instr
formats and a total of 8 instructions. They are illustrated in the figure below.

opcode reg A reg B reg C0

4 bits 3 bits3 bits3 bits3 bits

RRR-type:

opcode reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

RRI-type:

opcode reg A immediate (0 to 0x3FF)

10 bits3 bits3 bits

RI-type:

23 1Bit: 067 5 41011 9 81415 13 12

23 1Bit: 067 5 41011 9 81415 13 12

000 reg A reg B reg C0

4 bits 3 bits3 bits3 bits3 bits

ADD:

101 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

LW:

110 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

BEQ:

111

3 bits

JALR:

23 1Bit: 067 5 41011 9 81415 13 12

001 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

ADDI:

011 reg A immediate (0 to 0x3FF)

10 bits3 bits3 bits

LUI:

010 reg A reg B reg C0

4 bits 3 bits3 bits3 bits3 bits

NAND:

100 reg A reg B signed immediate (-64 to 63)

7 bits3 bits3 bits3 bits

SW:

reg A reg B

3 bits3 bits

0

7 bits

FORMATS:

INSTRUCTIONS:
1

ENEE 446: Digital Computer Design — The RiSC-16 Instruction-Set Architecture

ed to
s as a
ile for

and
out a
. Then

mne-
y com-
etween
t-
dec-
reted
The following table describes the different instruction operations.

2. RiSC-16 Assembly Language and Assembler
The distribution includes a simple assembler for the RiSC-16 (this is the first project assign
my students in the computer organization class). The assembler is called “a” and come
SPARC executable. Also included is the assembler source code should you wish to recomp
some other architecture (e.g. x86).

The format for a line of assembly code is:

label: <whitespace> opcode <whitespace> field0 , field1 , field2 <whitespace># comments

The leftmost field on a line is the label field. Valid RiSC labels are any combination of letters
numbers followed by a colon. The colon at the end of the label is not optional—a label with
colon is interpreted as an opcode. After the optional label is whitespace (space/s or tab/s)
follows the opcode field, where the opcode can be any of the assembly-language instruction
monics listed in the above table. After more whitespace comes a series of fields separated b
mas and possibly whitespace (you need to have either whitespace or a comma or both in b
each field). All register-value fields are given asdecimalnumbers, optionally preceded by the le
ter ‘r’ ... as in r0, r1, r2, etc. Immediate-value fields are given in either decimal, octal, or hexa
imal form. Octal numbers are preceded by the character ‘0’ (zero). For example, 032 is interp
as the octal number ‘oh-three-two’ which corresponds to the decimal number 26. It isnot inter-

Mnemonic
Name and

Format
Opcode
(binary)

Assembly
Format

Action

add
Add
RRR-type

000 add rA, rB, rC
Add contents of regB with regC,
store result in regA .

addi
Add Immediate
RRI-type

001 addi rA, rB, imm
Add contents of regB with imm ,
store result in regA .

nand
Nand
RRR-type

010 nand rA, rB, rC
Nand contents of regB with regC,
store results in regA .

lui
Load Upper
Immediate
RI-type

011 lui rA, imm
Place the 10 ten bits of the 16-bit imm
into the 10 ten bits of regA , setting the
bottom 6 bits of regA to zero.

sw
Store Word
RRI-type

101 sw rA, rB, imm
Store value from regA into memory.
Memory address is formed by adding
imm with contents of regB .

lw
Load Word
RRI-type

100 lw rA, rB, imm
Load value from memory into regA .
Memory address is formed by adding
imm with contents of regB .

beq
Branch If Equal
RRI-type

110 beq rA, rB, imm

If the contents of regA and regB are the
same, branch to the address
PC+1+imm , where PC is the address of
the beq instruction.

jalr
Jump And Link
Register
RRI-type

111 jalr rA, rB
Branch to the address in regB .

Store PC+1 into regA , where PC is the
address of the jalr instruction.
2

ENEE 446: Digital Computer Design — The RiSC-16 Instruction-Set Architecture

oh-x).
al 12.
.

ons.

s
e pro-

or the
e

the

hine
in
preted as the decimal number 32. Hexadecimal numbers are preceded by the string ‘0x’ (
For example, 0x12 is ‘hex-one-two’ and corresponds to the decimal number 18, not decim
For those of you who know the C programming language, you should be perfectly at home

The number of fields depends on the instruction. The following table describes the instructi

Anything after a pound sign (‘#’) is considered acommentand is ignored. The comment field end
at the end of the line. Comments are vital to creating understandable assembly-languag
grams, because the instructions themselves are rather cryptic.

In addition to RiSC-16 instructions, an assembly-language program may contain directives f
assembler. These are often calledpseudo-instructions. The six assembler directives we will us
arenop, halt, lli , movi, .fill , and.space(note the leading periods for.fill and.space, which sim-
ply signifies that these represent data values, not executable instructions).

The following paragraphs describe these pseudo-instructions in more detail:

• Thenop pseudo-instruction means “do not do anything this cycle” and is replaced by
instructionadd 0,0,0 (which clearly does nothing).

• Thehalt pseudo-instruction means “stop executing instructions and print current mac
state” and is replaced byjalr 0, 0 with a non-zero immediate field. This is described
more detail in the documentsThe Pipelined RiSC-16and An Out-ofOrder RiSC-16, in

Assembly-Code Format Meaning

add regA, regB, regC R[regA] <- R[regB] + R[regC]

addi regA, regB, immed R[regA] <- R[regB] + immed

nand regA, regB, regC R[regA] <- ~(R[regB] & R[regC])

lui regA, immed R[regA] <- immed & 0xffc0

sw regA, regB, immed R[regA] -> Mem[R[regB] + immed]

lw regA, regB, immed R[regA] <- Mem[R[regB] + immed]

beq regA, regB, immed

if (R[regA] == R[regB]) {
PC <- PC + 1 + immed
(if label, PC <- label)

}

jalr regA, regB PC <- R[regB], R[regA] <- PC + 1

Assembly-Code Format Meaning

nop do nothing

halt stop machine & print state

lli regA, immed R[regA] <- R[regA] + (immed & 0x3f)

movi regA, immed R[regA] <- immed

.fill immed initialized data with value immed

.space immed zero-filled data array of size immed
3

ENEE 446: Digital Computer Design — The RiSC-16 Instruction-Set Architecture

and
te as
, etc.

-
l is

sign-
.

t it
ance
.

ction
ric
ction
he
bel

its 0.

, just
d

per-

in
gis-

an
be

n.
ter, it

nd
which HALT is a subset of syscall instructions for the purposes of handling interrupts
exceptions: any JALR instruction with a non-zero immediate value uses that immedia
a syscall opcode. This allows such instructions as syscall, halt, return-from-exception

• The lli pseudo-instruction (load-lower-immediate) means “OR the bottom six bits of this
number into the indicated register” and is replaced byaddi X,X,imm6, whereX is the reg-
ister specified, andimm6 is equal toimm & 0x3f . This instruction can be used in conjunc
tion with lui : the lui first moves the top ten bits of a given number (or address, if a labe
specified) into the register, setting the bottom six bits to zero; thelli moves the bottom six
bits in. The six-bit number is guaranteed to be interpreted as positive and thus avoids
extension; therefore, the resultingaddi is essentially a concatenation of the two bitfields

• Themovi pseudo-instruction is just shorthand for thelui+lli combination. Note, however,
that themovi instructionlookslike it only represents a single instruction, whereas in fac
represents two. This can throw off your counting if you are expecting a certain dist
between instructions. Thus, it is always a good idea to use labels wherever possible

• The .fill directive tells the assembler to put a number into the place where the instru
would normally be stored. The.fill directive uses one field, which can be either a nume
value or a symbolic address. For example, “.fill 32” puts the value 32 where the instru
would normally be stored. Using.fill with a symbolic address will store the address of t
label. In the example below, the line “.fill start” will store the value 2, because the la
“start” refers to address 2.

• The .spacedirective takes one integern as an argument and is replaced byn copies of
“.fill 0” in the code; i.e., it results in the creation ofn 16-bit words all initialized to zero.

The following is an assembly-language program that counts down from 5, stopping when it h

lw 1,0,count # load reg1 with 5 (uses symbolic address)
lw 2,1,2 # load reg2 with -1 (uses numeric address)

start: add 1,1,2 # decrement reg1 -- could have been addi 1,1,-1
beq 0,1,1 # goto end of program when reg1==0
beq 0,0,start # go back to the beginning of the loop

done: halt # end of program
count: .fill 5
neg1: .fill -1
startAddr: .fill start # will contain the address of start (2)

In general, acceptable RiSC assembly code is one-instruction-per-line. Itis okay to have a line
that is blank, whether it is commented out (i.e., the line begins with a pound sign) or not (i.e.
a blank line). However, a labelcannot appear on a line by itself; it must be followed by a vali
instruction on the same line (a.fill directive orhalt/nop/etc counts as an instruction).

Note that the 8 basic instructions of the RiSC-16 architecture form a complete ISA that can
form arbitrary computation. For example:

• Moving constant values into registers.The number 0 can be moved into any register
one cycle (add rX r0 r0). Any number between -64 and 63 can be placed into a re
ter in one operation using the ADDI instruction (addi rX r0 number). And, as men-
tioned, any 16-bit number can be moved into a register in two operations (lui+lli).

• Subtracting numbers. Subtracting is simply adding the negative value. Any number c
be made negative in two instructions by flipping its bits and adding 1. Bit-flipping can
done by NANDing the value with itself; adding 1 is done with the ADDI instructio
Therefore, subtraction is a three-instruction process. Note that without an extra regis
is a destructive process.

• Multiplying numbers. Multiplication is easily done by repeated addition, bit-testing, a
left-shifting a bitmask by one bit (which is the same as an addition with itself).
4

	The RiSC-16 Instruction-Set Architecture
	ENEE 446: Digital Computer Design, Fall 2000 Prof. Bruce Jacob
	1. RiSC-16 Instruction Set
	2. RiSC-16 Assembly Language and Assembler

